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Abstract

IMPORTANCE Although several predictive models for response to antidepressant treatment have
emerged on the basis of individual clinical trials, it is unclear whether such models generalize to
different clinical and geographical contexts.

OBJECTIVE To assess whether neuroimaging and clinical features predict response to sertraline and
escitalopram in patients with major depressive disorder (MDD) across 2 multisite studies using
machine learning and to predict change in depression severity in 2 independent studies.

DESIGN, SETTING, AND PARTICIPANTS This prognostic study included structural and functional
resting-state magnetic resonance imaging and clinical and demographic data from the Establishing
Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) randomized
clinical trial (RCT), which administered sertraline (in stage 1 and stage 2) and placebo, and the
Canadian Biomarker Integration Network in Depression (CANBIND-1) RCT, which administered
escitalopram. EMBARC recruited participants with MDD (aged 18-65 years) at 4 academic sites
across the US between August 2011 and December 2015. CANBIND-1 recruited participants with MDD
from 6 outpatient centers across Canada between August 2013 and December 2016. Data were
analyzed from October 2023 to May 2024.

MAIN OUTCOMES AND MEASURES Prediction performance for treatment response was assessed
using balanced classification accuracy and area under the curve (AUC). In secondary analyses,
prediction performance was assessed using observed vs predicted correlations between change in
depression severity.

RESULTS In 363 adult patients (225 from EMBARC and 138 from CANBIND-1; mean [SD] age, 36.6
[13.1] years; 235 women [64.7%]), the best-performing models using pretreatment clinical features
and functional connectivity of the dorsal anterior cingulate had moderate cross-trial generalizability
for antidepressant treatment (trained on CANBIND-1 and tested on EMBARC, AUC = 0.62 for stage
1 and AUC = 0.67 for stage 2; trained on EMBARC stage 1 and tested on CANBIND-1, AUC = 0.66). The
addition of neuroimaging features improved the prediction performance of antidepressant response
compared with clinical features only. The use of early-treatment (week 2) instead of pretreatment
depression severity scores resulted in the best generalization performance, comparable to within-
trial performance. Multivariate regressions showed substantial cross-trial generalizability in change in
depression severity (predicted vs observed r ranging from 0.31 to 0.39).

CONCLUSIONS AND RELEVANCE In this prognostic study of depression outcomes, models
predicting response to antidepressants show substantial generalizability across different RCTs of
adult MDD.
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Introduction

Treatment of psychiatric conditions, including major depressive disorder (MDD) often fails, with
more than one-half of patients with MDD not responding to first-line antidepressant treatment.1

Leveraging machine learning in prediction of treatment response promises to accelerate symptom
reduction. However, a recent study2 of clinical markers predicting treatment outcomes has
highlighted the challenge of identifying markers that generalize across trials. Although several
studies3-7 have identified promising markers of antidepressant response, it is unclear whether
findings generalize across trials and, thus, to future patients.

Clinical trials featuring biomarkers alongside in-depth clinical assessments are scarce and
expensive, and different trials often use distinct assessments and imaging protocols to evaluate
potential biomarkers.2,8 As a result, there are no markers of treatment response that cut across
different MDD treatment trials,8 although higher pretreatment depression severity and early change
in depression scores have been linked to treatment response.4

Functional connectivity (FC) is an important neuroimaging predictor of antidepressant response
in MDD.8-11 Systematic reviews have identified a number of regions whose FC may be associated with
response to pharmacological and neurostimulation treatments, including dorsolateral and
ventrolateral prefrontal cortex, lateral parietal areas, and the anterior cingulate cortex (ACC).8,9

Response to selective serotonin reuptake inhibitors (SSRIs) in particular has been associated with
lower connectivity between the ACC with the dorsolateral prefrontal cortex (dlPFC) and insula.6

Among structural markers of response, reduced gray matter volume in cortical regions12 and
hippocampus13 predicted treatment outcomes, especially in late-life depression. Critically, recent
studies14,15 linking magnetic resonance imaging (MRI) data with maps of gene expression and
receptor binding can help improve interpretation of molecular correlates of MRI-derived biomarkers.

Clinical and pathophysiological heterogeneity may explain variability in MDD biomarkers.9 To
address heterogeneity, unique biomarkers need to be identified in independent samples.
Accordingly, studies combining clinical trials of different samples, similar to Chekroud et al,2 are
needed to test the generalizability and robustness of clinical and biological markers of treatment
outcomes. Accordingly, we investigated the generalizability of models featuring clinical and
functional MRI (fMRI) features across 2 MDD trials, the Establishing Moderators and Biosignatures of
Antidepressant Response in Clinical Care (EMBARC) and Canadian Biomarker Integration Network
in Depression (CANBIND-1). These trials administered SSRIs—sertraline in EMBARC and escitalopram
in CANBIND-1—to adults with non–treatment-resistant MDD. We expected early-treatment models
to outperform pretreatment models and the addition of ACC connectivity features to improve model
performance.

Methods

Study Design
In this prognostic study, we used clinical, demographic, and neuroimaging data from 2 MDD
randomized clinical trials: EMBARC and CANBIND-1. EMBARC is a 2-stage trial that recruited
participants with MDD (aged 18-65 years) at 4 academic sites across the US between August 2011
and December 2015; participants were randomized to sertraline or placebo in stage 1. After 8 weeks,
in stage 2, nonresponders to sertraline were switched to bupropion, nonresponders to placebo were
switched to sertraline, and responders to sertraline or placebo continued with their treatment.
Similarly, CANBIND-1 is a 2-step trial that recruited participants with MDD from 6 outpatient centers
across Canada between August 2013 and December 2016; participants received escitalopram in
stage 1 for 8 weeks. In stage 2, nonresponders were offered an augmentation treatment of
escitalopram with aripiprazole, whereas responders continued with their treatment. Detailed
descriptions of the EMBARC16 and CANBIND-117,18 design have been published elsewhere. Ethical
approval for EMBARC was obtained from the institutional review board at each site. Approval for
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CANBIND-1 was obtained from research ethics boards at each site. Participants provided written,
informed consent for all study procedures. The methods of the current study follow Transparent
Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)
reporting guidelines.

Participants
Among 296 unmedicated outpatients in EMBARC, we defined 3 subgroups: individuals treated with
sertraline in stage 1 with complete data, a different group of individuals treated with sertraline in
stage 2 after not responding to placebo, and individuals receiving placebo in stage 1. The stage 2
sertraline group is, thus, a subset of the stage 1 placebo group, who did not respond to placebo.
Among 144 patients with MDD in CANBIND-1, we included those who had completed at least 6 weeks
of escitalopram treatment and had complete baseline prediction data.

Clinical Data
In addition to age, sex, employment status, and body mass index (BMI; calculated as weight in
kilograms divided by height in meters squared), we used baseline depression severity (CANBIND-1,
Montgomery Asberg Depression Rating Scale [MADRS]19 and EMBARC, 17-item Hamilton Depression
Rating Scale [HDRS]20), and anhedonia (Snaith Hamilton Rating Scale [SHAPS]21) as baseline
predictors. MADRS scores were converted to HDRS in CANBIND-1 following a validated mapping22

(eAppendix 1 in Supplement 1). Early treatment models included the change in depression scores
between week 2 and baseline.

Treatment Outcomes
Primary treatment outcome was treatment response, defined as a 50% or greater reduction in
depression severity (EMBARC, HDRS scores; CANBIND-1, converted MADRS scores). In EMBARC,
HDRS was assessed at weeks 8 and 16 in stages 1 and 2, respectively, whereas MADRS outcomes
were collected at week 8 in CANBIND-1. When no data were available at week 8 in CANBIND-1, the
closest assessment (ie, week 6) data were used instead. We also present analyses predicting change
in depression severity in eAppendix 2 in Supplement 1.

MRI Data
We preprocessed structural and resting-state fMRI data in EMBARC using fMRIPrep software version
22.1.1 and in CANBIND-1 using fMRIPrep software version 23.0.2 (The fMRIPrep Developers), using
fixed confound regression for denoising and applied a 6-mm smoothing kernel. FC matrices were
calculated for the Human Connectome Project cortical parcellation.23 Global cortical FC was obtained
by averaging the rows of these connectivity matrices; we also obtained seed-based FC of the dorsal
ACC (dACC) and rostral ACC (rACC), respectively.

Statistical Analysis
Data were analyzed from October 2023 to May 2024. Following recent studies,2 we used elastic net
logistic regressions with regularization (lassoglm in Matlab R2022a24; MathWorks) to predict
treatment outcomes in the 4 datasets. We tested 5 sets of models using baseline depression severity:
(1) a clinical model including age, sex, employment, baseline HRSD, SHAPS, and BMI; (2) a
clinical plus global FC model; (3) a clinical plus dACC FC model; (4) a clinical plus rACC FC model; and
(5) a clinical plus cortical thickness model. We then tested 5 analogous models that included week 2
instead of baseline depression severity scores. We provide more details on predictive modeling in
eAppendix 2 in Supplement 1. The baseline models included the following: (1) response predicted
by age plus sex plus employment plus baseline HDRS plus SHAPS plus BMI; (2) response predicted
by age plus sex plus employment plus baseline HDRS plus SHAPS plus BMI plus global FC; (3)
response predicted by age plus sex plus employment plus baseline HDRS plus SHAPS plus BMI plus
dACC FC; (4) response predicted by age plus sex plus employment plus baseline HDRS plus SHAPS
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plus BMI plus rACC FC; and (5) response predicted by age plus sex plus employment plus baseline
HDRS plus SHAPS plus BMI plus brain structure

First, we tested the prediction performance of models within CANBIND-1 and EMBARC stage 1
by creating 100 random training and test data splits, training the elastic net model with 10-fold cross-
validation on the training dataset, and predicting outcomes in the test dataset on each iteration.
Second, we evaluated the prediction performance of models trained on CANBIND-1 and tested in
EMBARC stage 1, EMBARC stage 2, and EMBARC placebo. Area under the curve (AUC) and balanced
accuracy2 were used to assess prediction performance. Across all models, we used thresholds
derived from simulation studies to assess whether balanced accuracy was significantly higher than
chance (P < .05).3,25 Second, for a select subset of models (clinical features only and
clinical plus dACC models), bootstrapping was used to test whether AUCs were significantly higher
than chance and to compare the most promising models with each other (1-tailed P < .05).

Next, in secondary analyses we used a multivariate partial least squares regression (PLS-R) to
predict change in depression severity scores after treatment (eAppendix 2 in Supplement 1). PLS-R
predictors included 360 dACC connectivity features, age, sex, employment, baseline HDRS-17,
SHAPS, and BMI. We used permutation testing (n = 5000) to assess model significance
(permutation P < .05) and bootstrapping (n = 5000; |Z| > 3) to identify robust features. After
training the model on CANBIND-1, we applied the regression weights to predict change in depression
severity in EMBARC. Similarly, after training the model on EMBARC stage 1 sertraline, we applied the
regression weights to CANBIND-1, EMBARC stage 2 sertraline, and EMBARC stage 1 placebo.

In sensitivity analyses, first, we reanalyzed the data while correcting for batch effects in the
resting-state fMRI data and the gray matter brain structure using ComBat.26 Second, we
bootstrapped elastic net models with the full set of 366 predictors. All code is available elsewhere.27

Results

An overview of the demographic and clinical features of the participant groups is provided in Table 1.
Briefly, of the 363 participants (225 from EMBARC and 138 from CANBIND-1; mean [SD] age, 36.6

Table 1. Demographic and Clinical Sample Characteristics

Characteristic

Participants, No. (%)
CANBIND-1
escitalopram
(n = 138)

EMBARC stage 1
sertraline
(n = 110)

EMBARC stage 2
sertraline
(n = 60)a

EMBARC stage 1
placebo
(n = 115)

Sex

Female 89 (64.5) 75 (68.2) 34 (56.7) 71 (61.7)

Male 49 (35.5) 35 (31.8) 26 (43.3) 44 (38.3)

Employed 65 (47.1) 62 (56.4) 30 (50.0) 63 (54.8)

Race

African American or Black 5 (3.6) 22 (20.0) 10 (16.7) 18 (15.7)

Asian 19 (13.8) 5 (4.5) 2 (3.3) 8 (6.9)

White 106 (76.8) 73 (66.4) 43 (71.7) 80 (69.7)

Otherb 12 (8.7) 10 (9.1) 5 (8.3) 9 (7.8)

Ethnicity

Hispanic 9 (6.5) 20 (18.2) 10 (16.7) 20 (17.4)

Non-Hispanic 129 (93.5) 90 (81.8) 50 (83.3) 95 (82.6)

Response 60 (43.5) 58 (52.7) 36 (60.0) 42 (36.5)

Age, mean (SD), y 34.8 (12.4) 38.2 (14.0) 39.2 (13.3) 37.3 (13.1)

Body mass index, mean (SD)c 26.3 (5.9) 28.7 (8.1) 27.5 (5.9) 28.2 (6.8)

Years of education, mean (SD) 16.9 (2.1) 15.1 (2.6) 15.3 (2.5) 15.4 (2.4)

Pretreatment depression severity,
mean (SD)d

22.1 (4.3) 18.7 (4.4) 18.6 (3.8) 18.7 (4.3)

Snaith Hamilton Rating Scale, mean (SD) 35.6 (6.0) 33.5 (5.4) 33.2 (5.4) 33.2 (5.8)

Abbreviations: CANBIND-1, Canadian Biomarker
Integration Network in Depression; EBARC,
Establishing Moderators and Biosignatures of
Antidepressant Response in Clinical Care.
a Participants who received sertraline in EMBARC

stage 2 had not responded to placebo in stage 1.
b Other race refers to multiracial or unknown. In

CANBIND-1 participants could indicate multiple races
at the same time.

c Body mass index is calculated as weight in kilograms
divided by height in meters squared.

d Pretreatment depression severity was assessed
using the 17-item Hamilton Depression Rating Scale
in EMBARC and scores converted from the
Montgomery Asberg Depression Rating Scale to the
Hamilton Depression Rating Scale scores in
CANBIND-1.
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[13.1] years), 235 (64.7%) were women, and they showed response rates ranging between 40% and
60%. A detailed breakdown of participant drop-out and missing data is provided in eFigure 1 in
Supplement 1. We evaluated the out-of-trial performance of 10 machine learning models in 2 training
scenarios: first, we trained the models in CANBIND-1 and tested them in EMBARC stage 1 sertraline,
stage 2 sertraline, and stage 1 placebo conditions; second, we trained the models in EMBARC stage 1
sertraline and tested them in CANBIND-1 and EMBARC stage 2 sertraline, as well as EMBARC stage 1
placebo conditions.

Pretreatment Models of Response
AUC and balanced accuracy values for pretreatment models are summarized in Table 2. We found
that the clinical data model and the model using dACC-to-cortex connectivity alongside clinical data
performed best (trained on CANBIND-1 and tested on EMBARC, AUC = 0.62 for stage 1 and
AUC = 0.67 for stage 2; trained on EMBARC stage 1 and tested on CANBIND-1, AUC = 0.66). Although
the clinical model reached out-of-trial AUCs of 0.58 to 0.61 and balanced accuracy of 59% to 61%
when trained and tested on CANBIND-1 and EMBARC antidepressant groups, the addition of dACC
connectivity features (clinical plus dACC) improved pairwise out-of-trial model performance to AUCs
of 0.61 to 0.68 and balanced accuracy of 61% to 71%. Although the clinical and rACC connectivity
model (clinical plus rACC) and the clinical and brain structure (clinical plus cortical thickness) model
also achieved good performance when trained in CANBIND-1, they did not generalize well when
trained in EMBARC stage 1. The addition of global FC features (clinical plus global FC) did not improve
model performance, with worse AUC values across all training and testing setups for groups given
SSRIs. Bootstrapping the models showed that the addition of dACC connectivity data significantly
improved model performance for EMBARC stage 2 when the models were trained on CANBIND-1,
with a trend in improvement in model performance for EMBARC stage 1 sertraline. When mapping

Table 2. Summary of Out-of-Trial Model Performance for Models Trained in the CANBIND-1 and EMBARC Clinical Trialsa

Models of response

Models trained on CANBIND-1 Models trained on EMBARC stage 1 sertraline
Tested on EMBARC
stage 1 sertraline

Tested on EMBARC
stage 2 sertraline

Tested on EMBARC
stage 1 placebo

Tested on CANBIND-1
escitalopram

Tested on EMBARC
stage 2 sertraline

Tested on EMBARC
stage 1 placebo

AUC BA AUC BA AUC BA AUC BA AUC BA AUC BA
Pretreatment

Clinical modelb 0.58 0.61c 0.58 0.60c 0.63 0.59c 0.59 0.59c 0.61 0.60c 0.52 0.55

Clinical plus global FCd 0.56 0.59c 0.50 0.51 0.62 0.59c 0.52 0.56 0.60 0.59 0.49 0.57

Clinical plus dACC FCd 0.62 0.63c 0.67 0.65c 0.57 0.55 0.66 0.64c 0.70 0.71c 0.62 0.61c

Clinical plus rACC FCd 0.59 0.60c 0.63 0.65c 0.68 0.64c 0.51 0.52 0.57 0.56 0.44 0.46

Clinical plus CTe 0.58 0.56 0.61 0.63c 0.63 0.63c 0.56 0.52 0.62 0.62c 0.48 0.51

Early treatment

Clinical modelf 0.68 0.69c 0.73 0.66c 0.71 0.66c 0.66 0.69c 0.68 0.66c 0.63 0.66c

Clinical plus global FCd 0.64 0.64c 0.65 0.60c 0.69 0.64c NVg NVg NVg NVg NVg NVg

Clinical plus dACC FCd 0.68 0.64c 0.79 0.73c 0.70 0.69c 0.59 0.58c 0.71 0.70c 0.64 0.63c

Clinical plus rACC FCd 0.66 0.67c 0.74 0.67c 0.73 0.69c NVg NVg NVg NVg NVg NVg

Clinical plus CTe 0.69 0.69c 0.73 0.70c 0.73 0.69c 0.57 0.57 0.66 0.61c 0.56 0.51

Abbreviations: AUC, area under the curve; BA, balanced accuracy; dACC, dorsal anterior
cingulate cortex; FC, functional connectivity; CT, cortical thickness; NV, no variables;
rACC, rostral anterior cingulate cortex.
a We analyzed data from 138 participants in CANBIND-1, 110 participants who received

sertraline in stage 1 of EMBARC, 115 participants who received placebo in stage 1 of
EMBARC, and 60 participants who received sertraline in EMBARC stage 2 after not
responding to placebo in EMBARC stage 1.

b Model includes age, sex, Snaith Hamilton Rating Scale score, employment, body mass
index, and baseline Hamilton Depression Rating Scale and Montgomery Asberg
Depression Rating Scale scores.

c Balanced accuracy values were significantly higher than chance (P < .05, not
correcting for the number of models) based on prior simulations.25

d FC models trained on EMBARC stage 1 used variables derived from the CANBIND-
1 models.

e CT models trained on EMBARC stage 1 used variables derived from the CANBIND-
1 models.

f Model includes age, sex, Snaith Hamilton Rating Scale score, employment, body mass
index, baseline Hamilton Depression Rating Scale and Montgomery Asberg Depression
Rating Scale scores, and change in Hamilton Depression Rating Scale and Montgomery
Asberg Depression Rating Scale scores at week 2.

g No variables survive regularization.
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the global FC predictors of response in CANBIND-1 and EMBARC (eFigure 2 in Supplement 1), we
found a different pattern of connectivity that did not generalize across trials or within EMBARC.
However, we found that lower connectivity of the dACC with dlPFC, medial temporal and parietal
areas and higher dACC connectivity with the posterior cingulate (Figure 1A and Figure 2A) were
predictive of response to antidepressants, generalizing across trials (Figure 1B and Figure 2B).

Early-Treatment Models of Response
AUC and balanced accuracy values for early treatment models are summarized in Table 2, and
resampling results are shown in eFigure 3 and eFigure 4 in Supplement 1. We found that the early-
treatment models performed the best overall, outperforming the clinical plus dACC pretreatment
models. The clinical model reached out-of-trial AUCs of 0.66 to 0.73 and balanced accuracy of 66%
to 69% when trained on CANBIND-1 and EMBARC data and tested on samples who received SSRIs
rather than placebo (eTable in Supplement 1). Although the addition of dACC connectivity features
improved the model fit in EMBARC stage 2, this improvement was not significant in bootstrapping
analyses (Figure 3 and eFigure 5 in Supplement 1).

Multivariate Regression Predicting Change in Depression Severity
A PLS-R model predicting change in depression severity in CANBIND-1 explained significantly more
variance than expected by chance, whereas a similar PLS-R model explained significantly more
variance than expected by chance in EMBARC stage 1. Models trained and tested on the same data
showed very high levels of performance (eFigure 6 in Supplement 1); performance decreased when
models were trained on one trial and tested on a different trial, with out-of-trial predicted vs
observed correlations for SSRI-to-SSRI generalization ranging between 0.31 and 0.39. In sensitivity
analyses, reanalyzing the data while applying batch harmonization (using ComBat) within trials
reduced out-of-trial performance slightly, but did not alter the overall results (eAppendix 3 and
eTable in Supplement 1).

Figure 1. Functional Connectivity (FC) Predictors of Treatment Response in Canadian Biomarker Integration Network in Depression (CANBIND-1) and the Out-of-Trial
Generalization Performance

Out-of-trial AUCBTrained in CANBIND-1 escitalopramA
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EMBARC stage 1 sertraline:
AUC = 0.62
EMBARC stage 2 sertraline:
AUC = 0.67
EMBARC stage 1 placebo:
AUC = 0.57

We trained models on CANBIND-1 escitalopram data and then tested them on
Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care
(EMBARC) stage 1 sertraline, EMBARC stage 2 sertraline, and EMBARC stage 1 placebo
groups. We show the seed-based dorsal anterior cingulate (dACC) connectivity maps
predicting response in CANBIND-1 (A) alongside the respective out-of-trial area under

the receiver operator curve (AUC) analyses (B). The dACC seed highlighted in light green
(A) was selected on the basis of the overlap between the global FC maps in CANBIND-1
(eFigure 2 in Supplement 1) and prior literature on the ACC involvement in major
depression.
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Discussion

The findings of this prognostic study identified promising biological and clinical markers of
antidepressant treatment response. Overall cross-trial model prediction performance for SSRIs was
encouraging, with baseline models including dACC connectivity features achieving cross-trial
balanced accuracy of 63% to 71% in 2 multisite trials from Canada and the US. Importantly, early
(2-week) depression severity produced model performance that was on par or better than
performance of a combination of baseline clinical and fMRI FC features. Notably, neuroimaging
predictors included lower connectivity of the dACC with dlPFC, which is consistent with transcranial
magnetic stimulation (rTMS) studies for MDD.

Although our model performance was moderate, it was better than expected based on similar
studies of schizophrenia treatment markers.2 This may be due to shared clinical features of the 2
trials considered here. Testing across trials featuring patient groups who vary widely in levels of
severity, chronicity, and age groups2 may result in lower generalization. Differences in underlying
cause likely underpin patient heterogeneity and may require context-dependent models that identify
markers in more homogeneous patient populations (eg, treatment-resistant late-life depression vs
nonresistant MDD in adults). We also harmonized clinical and neuroimaging data across trials, using
the same fMRI processing streams and predictive features, and our results were relatively robust to
batch harmonization. Nevertheless, the moderate performance likely reflects MDD
heterogeneity.28-30

The circuit identified as predictive of treatment response included the anticorrelation between
dACC and dlPFC as well as the angular gyrus. The dACC seed included posterior Brodmann area 24
and the anterior Brodmann area 32 prime. It is thus at the intersection between the hot and cold
subdivisions of the dACC.31 A similar connectivity map has been previously identified as predicting
treatment outcomes in CANBIND-1,6 despite differences in fMRI processing and statistical models. In
addition, rTMS trials use the most anticorrelated portion of the dlPFC with the subgenual ACC as a
target stimulation region to maximize effectiveness,10,32 implicating this circuit in both
pharmacotherapy and rTMS response.9 These findings fit theories proposing that top-down

Figure 2. Functional Connectivity (FC) Predictors of Treatment Response in Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care
(EMBARC) and the Out-of-Trial Generalization Performance
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We trained models on the EMBARC stage 1 sertraline sample and tested the resulting
models on Canadian Biomarker Integration Network in Depression (CANBIND-1)
escitalopram, EMBARC stage 2 sertraline, and EMBARC stage 1 placebo samples. We
show the seed-based dorsal anterior cingulate (dACC) connectivity maps (A) predicting

response in EMBARC alongside the respective out-of-trial area under the receiver-
operator curve (AUC) analyses (B). The dACC seed highlighted in light green (A) was
selected on the basis of the overlap between the global FC maps in CANBIND-1 (eFigure 2
in Supplement 1) and prior literature on the ACC involvement in major depression.

JAMA Network Open | Psychiatry Generalizability of Treatment Outcome Prediction Across Antidepressant Trials

JAMA Network Open. 2025;8(3):e251310. doi:10.1001/jamanetworkopen.2025.1310 (Reprinted) March 20, 2025 7/12

Downloaded from jamanetwork.com by guest on 03/24/2025

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2025.1310&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2025.1310


emotional regulation is achieved by prefrontal regions regulating the ACC and amygdala activity,
regions typically recruited by emotional stimuli.33-35

The inclusion of global cortical connectivity and gray matter structure did not improve
prediction performance, consistent with previous studies of CANBIND-1 cortical thickness data.36

These biomarkers may be different in distinct patient populations, however. Finally, early treatment

Figure 3. Area Under the Curve (AUC) for Models Predicting Treatment Response Across Best-Performing Models Derived From Bootstrapping Analyses
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Models trained on Canadian Biomarker Integration Network in Depression (CANBIND-1)
data were tested on Establishing Moderators and Biosignatures of Antidepressant
Response in Clinical Care (EMBARC) stage 1 sertraline, EMBARC stage 2 sertraline, and
EMBARC stage 1 placebo data. Similarly, models trained on EMBARC stage 1 sertraline
were tested on all other groups. Error bars represent 95% CIs (2.5%-97.5%), not
adjusted for multiple comparisons. We compared dACC models with their respective
clinical counterparts. Within-trial model performance was tested using repeated 10-fold
cross-validation (CV). For dACC models, within-trial cross-validation was conducted on
a full set of predictors; conversely, cross-trial bootstrapping was conducted on a smaller

set of predictors (52 clinical and dACC variables) that survived regularization in
CANBIND-1. Bootstrapping of the full predictor set can be found in eFigure 4 in
Supplement 1.
a Denotes models whose performance was significantly higher than chance

(1-tailed P < .05).
b Denotes significant differences between models (P < .10 from bootstrapping the

differences in AUC).
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outcome data from week 2 depression severity scores were very informative as early improvements
in depressive symptoms predicted treatment response at the end of a full course of treatment.

In addition to the main analyses of a binary response outcome variable, we also found
substantial cross-trial generalizability of multivariate models predicting change in depression
severity, with out-of-trial predicted vs observed correlations between 0.31 and 0.39. Overall,
although our model performance is moderate, it shows that adding early treatment response
information, as well as resting-state biomarkers, improves our ability to predict response after a full
course of treatment. Integrating neuroimaging markers with other modalities, such as cognitive and
psychological assessments, may further boost prediction performance.3

If the FC and clinical markers identified here are replicated, prospective trials with biomarker-
guided treatment assignment will be needed to test the markers’ utility. Although using
neuroimaging and cognitive markers to help assign treatments is promising, this research avenue is
not without challenges, limited by the training data and generalizability of models as well as
harmonization and similarity between different samples.37

Limitations
Our study has some limitations. First, we included only 2 clinical trials, which limited our sample size.
Lack of preregistration of the analytic approach is an additional limitation, although our methods
follow previously published modeling approaches.2 Furthermore, data harmonization across trials
can be challenging, because no approaches for prospective harmonization of data from new,
previously unseen participants in novel biomarker-guided trials exist. Future work should combine
data across trials for more robust biomarkers and reveal more mechanistic insights into treatment
response. In addition, we focused on SSRIs, and future studies will be needed to develop robust
biomarkers for different therapies, including pharmacological medications and rTMS.

Conclusions

In conclusion, the current cross-trial generalization results represent an important step toward
biomarkers of antidepressant response. Leveraging data to identify robust biomarkers that
generalize across patient populations in different geographic locations will allow us to test such
biomarkers in prospective randomized clinical trials and hopefully help connect patients with
treatments that work best for them.
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eAppendix 1. Demographic and clinical information  

We provide more details on the demographics of the Establishing Moderators and Biosignatures of 

Antidepressant Response in Clinical Care (EMBARC) and the Canadian Biomarker Integration Network in 

Depression (CANBIND) samples in Table 1. An overview of the participant flow is shown in Supplementary 

Figure 1. Employment status was determined as full or part-time employment in EMBARC; and ‘working 

now’ in CANBIND. The Body Mass Index (BMI) data in EMBARC included some extreme outliers, hence 

we excluded BMI data for those with BMI<13 and BMI>55. We used linear regression to impute BMI from 

waist circumference for those participants with available data. Pre-treatment depression severity was 

measured using the Montgomery Asberg Depression Rating Scale (MADRS)1 in CANBIND and Hamilton 

Depression Rating Scale (HDRS) 2 in EMBARC. We converted MADRS scores to HDRS-17 scores as part 

of data harmonization using a previously described approach3 (see also https://mood-

disorders.co.uk/ASSETS/FILES/QIDS-MADRS-HRSD-conversion-table-pdf.pdf). The conversion 

approach used a previously published table mapping between HDRS-17 and MADRS scores. This 

approach has been extensively validated using item response theory analyses3. While the mapping is 

mostly linear, sometimes a range of scores from one questionnaire corresponds to one score on the other 

questionnaire. For instance, a MADRS score of 8 or 9 corresponds to an HDRS-17 score of 7 while a 

MADRS score of 10 corresponds to a HDRS-17 score of 8. We provide the code used for this mapping in 

a public github repository:  

https://github.com/peterzhukovsky/MDD_response_prediction/blob/main/madrs2hdrs17.m 

 

eFigure 1. Overview of the participant flow in CANBIND and EMBARC. MRI data refer to baseline MRI 

only.  

  



© 2025 Zhukovsky P et al. JAMA Network Open. 

eAppendix 2. Supplemental Methods 

Participants. EMBARC included 296 outpatients 18–65 years of age recruited from four academic sites in 

the US (Columbia University, Massachusetts General Hospital, University of Michigan, UT Southwestern 

Medical Center) who were diagnosed as having recurrent or chronic MDD and were not taking medication 

for MDD; participants were not required to be medication naive. They took part in an MRI session that 

included both resting state fMRI and structural MRI imaging. To test our hypotheses, we defined three 

population subgroups, with the first group being treated with sertraline in Stage 1 (n=110 with complete 

data), the second group being treated with sertraline in Stage 2 after not responding to placebo in Stage 1 

(i.e., a different set of n=64) and the third group receiving placebo in Stage 1 (n=115). CANBIND included 

144 MDD patients 18-61 years of age recruited from six sites in Canada (Toronto General Hospital (TGH); 

CAMH (CAM); McMaster University (MCU);University of Calgary (UCA); University of British Columbia 

(UBC); Queens University (QNS)) who completed a resting state fMRI and structural MRI scan before 

starting escitalopram treatment. Among those participants, 138 had completed at least six weeks of 

escitalopram treatment and had complete baseline prediction data.  

Clinical data. Participants provided information on their age, sex, employment status (binarized as 

unemployed vs. partially or fully employed here) and overlapping clinical data were available on baseline 

depression severity (MADRS 1 in CANBIND and 17-item HDRS 2 in EMBARC) and anhedonia (Snaith 

Hamilton Rating Scale (SHAPS) 4). BMI scores were also available in both datasets. BMI outlier scores 

(<15 or >55) were removed in EMBARC; we imputed BMI using regression of waist circumference scores 

for participants who had those data available. No outliers were present in CANBIND. Finally, to harmonize 

across prediction models, we converted MADRS to HRSD scores in CANBIND 3. 

MRI Data. We preprocessed structural and resting-state fMRI data in EMBARC using fMRIPrep v22.1.1 

and in CANBIND using fMRIPrep v23.0.25. For denoising, we regressed out 24 fixed confounds: 6 motion 

parameters, average signal from the white matter and cerebrospinal fluid and their first and second-order 

temporal derivatives. Next, we applied a 6-mm smoothing kernel. We registered fMRIPrep outputs from the 

MNI152 (Nlin6) space to the FreeSurfer fsaverage space (mri_vol2surf) and extracted fMRI timeseries for 

360 cortical regions in the Human Connectome Project (HCP) parcellation 6. We then calculated global 

cortical FC measures by averaging the rows of a 360 x 360 connectivity matrix, excluding the values along 

the diagonal. In addition to the global cortical FC measures, due to a priori hypotheses, we also calculated 

seed-based FC of the dorsal anterior cingulate (dACC) and rostral anterior cingulate (rACC), respectively. 

Seeds were selected based on the bilateral dACC and rACC regions that survived regularization in 

predicting treatment response in CANBIND. The dACC seed comprised bilateral p24 and a32pr regions, 

while the rACC seed comprised bilateral a24 and p32 regions from the HCP parcellation (Figure 1B, 1D). 

Structural data were processed using FreeSurfer as part of the fMRIPrep pipeline, producing cortical 

thickness outputs in the aparc parcellation7, and subcortical volumes in the aseg parcellation. Subcortical 

volumes were divided by the total intracranial volumes to provide normalized values.  

While EMBARC also includes arterial spin labeling data 8,9 and both EMBARC 10,11 and CANBIND 12,13 have 

task-based fMRI with different tasks (e.g., emotion conflict monitoring in EMBARC and Go/NoGo and 

incentive delay in CANBIND), we focus on imaging data that are common across both EMBARC and 

CANBIND, namely structural MRI and resting-state functional connectivity. Future studies should also 

examine other imaging modalities such (e.g. ASL) as candidate biomarkers of treatment response. 

Predictive modeling approach. We used elastic net logistic regressions with regularization (lassoglm, 

Matlab R2022a 16) to predict treatment outcomes in the four datasets. While various machine learning 

approaches with non-linear prediction exist, recent evidence from large-scale brain-behavior studies 

suggests that linear models perform on par with some of the more complex prediction models 17. Given the 
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moderate size of the imaging datasets analyzed here, and following recent studies of treatment outcome 

prediction 18, we use elastic net logistic models aiming to maintain a higher feature-to-observation ratio 19. 

Regularization also allows us to identify a smaller, most salient set of predictors that could be tested in 

future studies. There were five sets of models tested using baseline depression severity: (1) a clinical model 

including age, sex, employment, baseline HDRS, SHAPS, and BMI; (2) a clinical + global FC model that 

included all features from the clinical model and added 360 global FC features; (3) a clinical + dACC FC 

model that added 360 seed-based dACC features to the clinical model; (4) a clinical + rACC FC model that 

added 360 seed-based rACC features to the clinical model; and (5) a clinical + cortical thickness (CT) model 

that added 74 gray matter features to the clinical model. We then tested five analogous models that included 

week 2 instead of baseline depression severity scores. We provide an overview of the models below: 

(1) response ~ age + sex + employment + baseline HDRS + SHAPS + BMI 

(2) response ~ age + sex + employment + baseline HDRS + SHAPS + BMI + global FC 

(3) response ~ age + sex + employment + baseline HDRS + SHAPS + BMI + dACC FC 

(4) response ~ age + sex + employment + baseline HDRS + SHAPS + BMI + rACC FC 

(5) response ~ age + sex + employment + baseline HDRS + SHAPS + BMI + brain structure 

First, we tested the prediction performance of models within CANBIND and EMBARC Stage 1 by creating 

100 random training and test data splits, training the elastic net model with 10-fold cross-validation on the 

training dataset, and predicting outcomes in the test dataset on each iteration. Second, we evaluated the 

prediction performance of models trained on CANBIND and tested in EMBARC Stage 1, EMBARC Stage 

2, and EMBARC placebo. Training models used 10-fold cross-validation to optimize regression weights. 

This process resulted in point-estimates of AUC and balanced accuracy for out-of-trial prediction 

performance, reported in Table 2. Balanced accuracy was calculated as the mean of sensitivity and 

specificity 18. 

We next used bootstrapping (bootfun in Matlab) to assess whether AUCs were significantly higher than 

chance and to compare the most promising models with each other. We conducted two sets of 

bootstrapping analyses: first, across 1,000 bootstraps, we sampled from CANBIND and tested the out-of-

trial performance of models with clinical features only and those with clinical and dACC FC features that 

survive regularization in the EMBARC datasets. Second, we sampled from EMBARC Stage 1 and tested 

the out-of-sample performance of models with clinical features only and those with clinical and dACC FC 

features that survive regularization (n=1,000 iterations) in CANBIND and in EMBARC Stage 2 and 

EMBARC placebo data. A limitation of this approach is that while the models are trained on EMBARC Stage 

1 data and tested on CANBIND and EMBARC Stage 2 data, they only include features that survive 

regularization in original CANBIND training. While this process makes feature selection circular, feature 

tuning or coefficient selection is not. Models were deemed to perform significantly higher than chance by 

comparing the AUCs from the bootstrap distribution to AUC=0.5. We calculated the p-values by dividing 

the number of bootstraps with AUC below 0.5 by 1,000 with a one-tailed p-value threshold of 0.05 for 

significance (50 out of 1,000 iterations). When comparing between models, we calculated the difference in 

AUC for pairs of models (i.e., clinical models vs. clinical and dACC-to-cortex FC models) on each bootstrap 

and calculated the p-values by dividing the number of bootstraps with AUC<0 by 1,000, with a one-tailed 

p-value threshold of 0.05. We removed models leaving no variables after regularization, primarily among 

clinical-only models, affecting up to 10% of bootstraps. In those cases, following previous studies 18, we did 

not include the AUC in our plots and analyses. In our elastic net models, we used  the hyperparameter 

=0.01 for models trained on CANBIND data and =0.001 for models trained on EMBARC data. One-tailed 

p-value thresholds were chosen given that we tested whether models performed significantly better than 

chance and whether more complex models including connectivity features performed better than clinical 

models.  
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Hyperparameter optimization. The elastic net models used the default hyperparameter optimization options 

(lassoglm.m). We used the following alpha hyperparameters: =0.3 for clinical+fMRI models trained in 

CANBIND; =0.1 for structural MRI models trained in CANBIND; and =0.001 for models trained on clinical 

models or models trained on EMBARC data.  

We tested a range of  thresholds when training the model within the CANBIND or EMBARC data =[0.001, 

0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6], and selected the above values as they produced a reasonable set of 

predictors at the training stage. Models with higher  criteria resulted in more conservative regularization 

and often did not return any predictors surviving regularization. Conversely, models with very low  criteria 

returned regression weights for nearly every predictor variable. Since we expected only some imaging 

features to be contributing to predictions, we selected  criteria that would prune over 50% of the functional 

connectivity features or brain structure features. We also reran the models with the best performing  values 

several times and selected the  value for which the model returned the nearly same number of features 

every time. 

When reporting balanced accuracy values, we preferentially select balanced accuracy values based on 

both sensitivity and specificity being larger then 0.55; if that was not possible, we selected balanced 

accuracy values based on both sensitivity and specificity being larger then 0.50. Sometimes, higher 

balanced accuracy is possible at the trade-off cost of having either low sensitivity and high specificity or 

vice versa; however, we were aiming to balance both sensitivity and specificity performance.  

Data harmonization. We repeated the analyses described above twice. First, we report findings without 

batch harmonization. Current batch harmonization tools require full datasets to estimate site- and confound-

specific biases, posing the challenge of prospective harmonization to a new patient from a new site. To test 

generalizability in context of potential clinical trials, we wanted to test model performance with the currently 

available tools. However, we also report results of predicting modelling after batch harmonization in ComBat 

(see Supplementary Section 3.2). 

Sensitivity analyses. First, we reanalyzed the data while correcting for batch effects in the rs-fMRI data and 

the gray matter brain structure using ComBat 20 https://github.com/Jfortin1/ComBatHarmonization/  in the 

Supplementary Information. 

To test the robustness of our findings we conducted several sensitivity analyses. First, while we report in 

the main results the bootstrapped performance of the most parsimonious model featuring 52 predictors, we 

also bootstrapped elastic net models with the full set of 366 predictors. This analysis allowed the elastic net 

models to prune any predictors via regularization on each bootstrap iteration in addition to fitting regression 

weights to a specific set of predictors. We found a similar bootstrapping performance in this analysis to that 

of the 52-predictor model (Supplementary Section 3.3).  

Multivariate regression predicting change in depression severity. In this secondary analysis, we aimed to 

test model performance predicting change in HDRS-17 scores in EMBARC and the MADRS scores 

transformed to HDRS-17 scores in CANBIND. Absolute difference between 8-week and baseline was used 

as an outcome. Whenever 8-week outcomes were not available, 6-week scores were used in CANBIND. 

In EMBARC Stage 2, 12-week scores were available while in EMBARC Stage 1, 6-week scores were 

available. Given that a 4-week course of treatment is short, and we aimed for consistency within each trial 

we only include EMBARC data with a full 8-week course of treatment. Partial least squares models with 

360 dACC connectivity features, age, sex, employment, baseline HDRS-17, SHAPS, and BMI were run. 

These were the same predictors as those used in the main analyses. We used permutation testing 

(n=5,000) and bootstrapping (n=5,000, Z > 3 and Z < -3) to assess model significance and to identify robust 

features. We trained the model on CANBIND and then applied the regression weights from the resulting 

model to predict change in depression severity in EMBARC; similarly, we trained the model on EMBARC 

https://github.com/Jfortin1/ComBatHarmonization/
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Stage 1 sertraline and applied the regression weights to predict change in depression scores in the other 

datasets.  

eAppendix 3. Supplemental Results 

3.1. Global functional connectivity maps predicting treatment response 

eFigure 2. Global functional 

connectivity (Global FC) 

predictors of treatment 

response in CANBIND-1 

and EMBARC and the out-

of-trial generalization 

performance. We first 

trained models on 

CANBIND-1 escitalopram 

data (A) and then tested 

them on EMBARC Stage 1 

sertraline, EMBARC Stage 

2 sertraline, and EMBARC 

Stage 1 placebo groups. We 

then trained models on the 

EMBARC Stage 1 sertraline 

sample (B) and tested the 

resulting models on 

CANBIND-1 escitalopram, 

EMBARC Stage 2 sertraline 

and EMBARC Stage 1 

placebo samples. We show 

the global FC maps 

predicting response in CANBIND-1 (A) and EMBARC (B) alongside the respective out-of-trial receiver-

operator curve (ROC-AUC) analyses. ESC: escitalopram, FC: functional connectivity, SERT: sertraline, 

AUC: area under the curve.  

3.2. Model stability 

We evaluated the stability of models following repeated training. Training the regularized elastic net models 

involved random data splits, which may produce slightly different models on each iteration, and we wanted 

to test whether model performance for the clinical+dACC (dorsal Anterior Cingulate Cortex) varied 

depending on the training split. We found the best performing pre-treatment model (including dACC 

connectivity features) to be very stable (Supplementary Figure S3).  
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eFigure 3. Receiver operating characteristic curves (A) and area-under the curve (AUC) histogram (B) for 

predicting response to sertraline and placebo in EMBARC after repeated 10-fold cross-validation training 

on CANBIND data for the clinical+dACC model. Models trained on CANBIND data were tested on EMBARC 

Stage 1 sertraline, EMBARC Stage 2 sertraline and EMBARC Stage 1 placebo data. We plot receiver-

operator curves after running the same model 100 times. On every iteration, the model was trained using 

a different 10-fold data split, with regularization leading to slightly different model coefficients. 

Regularization hyperparameter was set at =0.3 for this fMRI model. Overall, the AUCs are very similar 

across the iterations. SERT: sertraline; PLA: Placebo 

 

3.3. Model performance following batch harmonization using ComBat  

We applied ComBat batch harmonization to adjust for age, sex and scanning site within each trial. We then 

repeated the main out-of-trial prediction analyses from the main text. We found the results of this re-analysis 

(shown in Supplementary Table 2) to be largely consistent with the findings reported in the Table 1 of the 

main text. The overall out-of-trial model performance was similar, and the addition of dACC connectivity 

features also improved model performance in this analysis.  
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eTable. Summary of out-of-trial model performance for models trained in the CANBIND and EMBARC 

clinical trials following ComBat batch harmonization. AUC: area under the curve; bACC: balanced accuracy. 

Balanced accuracy values highlighted in bold were significantly higher than chance (p<0.05, not correcting 

for the number of models) based on prior simulations 33.  

3.4. Bootstrapping the full set of dACC predictors 

We re-ran the bootstrapping of the out-of-trial model performance in CANBIND using all potential 366 

predictors, which allowed us to apply regularization (=0.3) and fit regression weights for the surviving 

predictors on each bootstrap iteration. We show the results of this re-analysis in Supplementary Figure S4. 

Overall, we found bootstrapping performance in this analysis to be similar to the performance of the 52-

predictor model reported in the main analyses.  

eFigure 4. Area under the curve (AUC) for models 

predicting treatment response in clinical+dACC 

models with all 366 features derived from 

bootstrapping analyses. Models trained on 

CANBIND data were tested on EMBARC Stage 1 

sertraline (EMBARC1), EMBARC Stage 2 sertraline 

(EMBARC2) and EMBARC Stage 1 placebo data 

(EMBARC1 PLA). Error bars represent 95% 

confidence intervals [2.5%-97.5%], not adjusted for 

multiple comparisons. Boxplots of models whose 

performance was significantly higher than chance 

(one-tailed *p<0.05, #p<0.1) are highlighted in red. 

We compared dACC models with their respective 

clinical counterparts, with significant differences 

between models highlighted with a bar (one-tailed 

*p<0.05; #p<0.1 from bootstrapping the differences 

in AUC).

Pre-treatment models of response

Tested on:

AUC bACC AUC bACC AUC bACC AUC bACC AUC bACC AUC bACC

Clinical Model* 0.58 0.61 0.58 0.60 0.63 0.59 0.59 0.59 0.61 0.60 0.52 0.55

Clinical + Global FC# 0.55 0.57 0.49 0.52 0.63 0.63 0.45 0.46 0.60 0.55 0.49 0.49

Clinical + dACC FC# 0.61 0.61 0.64 0.62 0.55 0.56 0.71 0.68 0.67 0.66 0.61 0.63

Clinical + rACC FC# 0.61 0.64 0.66 0.67 0.66 0.62 0.44 0.51 0.49 0.51 0.44 0.47

Clinical + CT^ 0.60 0.57 0.63 0.56 0.64 0.61 0.60 0.63 0.65 0.68 0.51 0.56

*Age, Sex, SHAPS, Employment, BMI, baseline HDRS/MADRS

Early treatment models of response Early treatment models of response

Clinical Model* 0.68 0.69 0.73 0.66 0.71 0.66 0.66 0.69 0.68 0.66 0.63 0.66

Clinical + Global FC# 0.64 0.67 0.63 0.60 0.70 0.65 no variables survive regularization

Clinical + dACC FC# 0.67 0.62 0.78 0.74 0.69 0.65 0.67 0.62 0.74 0.74 0.64 0.65

Clinical + rACC FC# 0.66 0.64 0.77 0.73 0.74 0.68 no variables survive regularization

Clinical + CT^ 0.66 0.63 0.80 0.77 0.72 0.65 0.56 0.56 0.68 0.63 0.55 0.56

*Age, Sex, SHAPS, Employment, BMI, baseline HDRS/MADRS, change in HDRS/MADRS at week 2

#FC models trained on EMBARC1 used variables derived from the CANBIND models

^CT models trained on EMBARC1 used variables derived from the CANBIND models

EMBARC 

Stage 1 PLA

Models trained on CANBIND ESC Models trained on EMBARC Stage 1 SERT 
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3.5. Model comparison 

The model performance was improved by the addition of dACC features when the models were trained on 

CANBIND and tested on EMBARC Stage 1 SERT (p=0.0824) and on EMBARC Stage 2 SERT (p=0.033); 

model performance was also improved by the addition of dACC features when the models were trained on 

EMBARC Stage 1 SERT and tested on EMBARC Stage 1 PLA (p=0.068) as shown in Supplementary 

Figure S5.  

eFigure 5. Difference in areas under the 

curve (AUC) for dACC and clinical 

models predicting treatment response 

derived from bootstrapping analyses. 

Models trained on CANBIND data were 

tested on EMBARC Stage 1 sertraline, 

EMBARC Stage 2 sertraline and 

EMBARC Stage 1 placebo data. 

Similarly, models trained on EMBARC 

Stage 1 sertraline were tested on all 

other groups. dACC models included 52 

features in total. Error bars represent 

95% confidence intervals [2.5%-97.5%], 

not adjusted for multiple comparisons. 

Boxplots of dACC models that 

performed better than the clinical 

models across bootstraps (one-tailed 

*p<0.05; #p<0.1) are highlighted in red.  
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3.6. Partial Least Squares Regression predicting change in depression severity 

We found the model predicting change in depression severity in CANBIND to explain significantly more 

variance than expected by chance (permutation p=0.004), with various dACC functional connectivity 

features and baseline depression severity crossing the Z > 3 or Z < -3 threshold after bootstrapping. 

Similarly, we found the model predicting change in depression severity in EMBARC Stage 1 to explain 

significantly more variance than expected by chance (permutation p=0.0298), with various dACC functional 

connectivity features and baseline depression severity crossing the Z > 3 or Z < -3 threshold after 

bootstrapping. Similar to the main analyses predicting treatment response, we found that models trained 

and tested on the same data showed very high levels of performance. However, performance decreased 

when models were trained on one trial and tested on a different trial, with out of trial predicted vs observed 

correlations for SSRI-to-SSRI generalization ranging between 0.3 and 0.4. Models trained on SSRI data 

and used to predict changes in depression severity to placebo showed predicted vs observed correlations 

of approximately 0.2. We show all predicted vs. observed correlations in Supplementary Figure S6.  

 

eFigure 6. Scatterplots of predicted vs observed change in HDRS-17 depression severity scores between 

the last clinical assessment and baseline. Partial least squares regression models were first trained on 

CANBIND data and tested within CANBIND, on EMBARC Stage 1 sertraline, Stage 2 sertraline and Stage 

1 placebo (A). Similarly, models were trained on EMBAR Stage 1 sertraline data and tested within EMBARC 

Stage 1 sertraline, on CANBIND, on Stage 2 sertraline and Stage 1 placebo (B). Pearson’s correlations (r) 

for observed vs predicted values are shown. Uncorrected p<0.05*; uncorrected p<0.01**. 
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