
Biological
Psychiatry
CNNI
314

Biolog

:
 Archival Report
Reward Neurocircuitry Predicts Longitudinal
Changes in Alcohol Use Following Trauma
Exposure

Cecilia A. Hinojosa, Sanne J.H. van Rooij, Negar Fani, Robyn A. Ellis, Nathaniel G. Harnett,
Lauren A.M. Lebois, Timothy D. Ely, Tanja Jovanovic, Vishnu P. Murty, Stacey L. House,
Francesca L. Beaudoin, Xinming An, Thomas C. Neylan, Gari D. Clifford, Sarah D. Linnstaedt,
Laura T. Germine, Scott L. Rauch, John P. Haran, Alan B. Storrow, Christopher Lewandowski,
Paul I. Musey Jr., Phyllis L. Hendry, Sophia Sheikh, Christopher W. Jones, Brittany E. Punches,
Lauren A. Hudak, Jose L. Pascual, Mark J. Seamon, Erica Harris, Claire Pearson, David A. Peak,
Roland C. Merchant, Robert M. Domeier, Niels K. Rathlev, Brian J. O’Neil, Paulina Sergot,
Steven E. Bruce, Diego A. Pizzagalli, John F. Sheridan, Steven E. Harte, Karestan C. Koenen,
Ronald C. Kessler, Samuel A. McLean, Kerry J. Ressler, and Jennifer S. Stevens
ABSTRACT
BACKGROUND: Trauma is a risk factor for developing maladaptive alcohol use. Preclinical research has shown that
stress alters the processing of midbrain and striatal reward and incentive signals. However, little research has been
conducted on alterations in reward-related neurocircuitry posttrauma in humans. Neuroimaging markers may be
particularly useful because they can provide insight into the mechanisms that may make an individual vulnerable
to developing trauma-related psychopathologies. In this study, we aimed to identify reward-related neural
correlates associated with changes in alcohol use after trauma exposure.
METHODS: Participants were recruited from U.S. emergency departments for the AURORA study (n = 286; 178
female). Trauma-related change in alcohol use at 8 weeks posttrauma relative to pretrauma was quantified as a
change in 30-day total drinking per the PhenX Toolkit Alcohol 30-Day Quantity and Frequency measure. Reward-
related neurocircuitry activation and functional connectivity were assessed 2 weeks posttrauma using functional
magnetic resonance imaging during a monetary reward task using region of interest and whole-brain voxelwise
analyses.
RESULTS: Greater increase in alcohol use from pretrauma to 8 weeks posttrauma was predicted by 1) greater ventral
tegmental area, 2) greater cerebellum activation during gain . loss trials measured 2 weeks posttrauma, and 3)
greater seed-based functional connectivity between the ventral tegmental area and lateral occipital cortex and
precuneus.
CONCLUSIONS: Altered ventral tegmental area activation and functional connectivity early posttrauma may be
associated with reward seeking and processing, thereby contributing to greater alcohol use posttrauma. These data
provide novel evidence of neural correlates that underlie increased alcohol use early posttrauma that may be targeted
via early interventions to prevent the development of maladaptive alcohol use.

https://doi.org/10.1016/j.bpsc.2024.09.015
Little is known about the mechanisms that place an individual
at an increased risk for developing alcohol use disorder (AUD)
after experiencing trauma. Uncovering vulnerability factors that
contribute to increased alcohol use and ultimate disorder
posttrauma will be critical for creating early interventions and
improving current treatments. To this end, neuroimaging
markers may be particularly useful because they can provide
insight into the underlying mechanisms that make an individual
more vulnerable to developing trauma-related psychopathol-
ogies, such as AUD.
ª 2024 Society of Biological Psychiatry. Published by Elsevier Inc.
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc
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According to a recent national survey, 29.5 million people in
the United States had an AUD in the past year (1). Risk factors
that increase the likelihood of developing an AUD include
exposure to fatal/catastrophic events, such as natural di-
sasters and events that pose a physical threat to one’s life
(2,3). Similarly, in the United States, up to 70% of Americans
will experience at least 1 traumatic event during their lifetime
(4). Unfortunately, frequent alcohol use, used to alleviate
stress-related symptoms, increases the risk of dependence (5).
One proposed theoretical mechanism through which AUD
This is an open access article under the
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may develop following trauma exposure is associated with
stress due to its anxiolytic effects (i.e., self-medication hy-
pothesis) (6,7).

Many preclinical animal and clinical human studies provide
empirical evidence supporting the self-medication hypothesis.
In preclinical models, stress exposure, especially in early life,
can produce increased alcohol self-administration in adult-
hood (8,9). In humans, longitudinal studies highlight the onset
of mood and anxiety disorders developing first and alcohol and
substance use disorders developing second (10,11). Thus, a
robust literature supports the development of alcohol use
problems upon trauma exposure. However, few studies have
tested whether neurobiological mechanisms identified in ani-
mal studies translate to stress-related alcohol use in human
populations.

Reward neurocircuitry has been thoroughly explored, high-
lighting dopaminergic pathways, including the meso-
corticolimbic pathway (12,13) and the nigrostriatal pathway
(14). The mesocorticolimbic pathway contains dopaminergic
projections from the ventral tegmental area (VTA) to the medial
prefrontal cortex and nucleus accumbens (NAcc) (15,16).
Alcohol use and anticipation of consumption release dopamine
in this pathway, which strengthens the rewarding effects (17),
ultimately leading to compulsive drug seeking (18). The
nigrostriatal pathway connects the midbrain to the dorsal
striatum, including the globus pallidus, caudate, and putamen.
Previous studies have found a significant role of the dorsal
striatum in compulsive alcohol use (19,20).

Chronic and acute stress can directly influence alcohol use
via morphological changes in the brain. For example, exposure
to chronic stress, such as social defeat stress and restraint
stress, can exert excitotoxic cascades that lead to the loss of
VTA dopaminergic neurons (21). Furthermore, rats who un-
derwent single restraint stress showed greater alcohol self-
administration due to the excitation of GABA (gamma-amino-
butyric acid) neurons in the VTA (22). Studies with trauma-
exposed humans have also shown alterations in the function
of this circuit (23–25). Thus, alterations have been found in
neural reward-related neurocircuitry with stress, although
these studies were largely cross-sectional and did not spe-
cifically examine stress-related changes in alcohol use. Lon-
gitudinal studies would allow scientists to determine when
maladaptive increases in alcohol use arise, potentially leading
to the development of targeted, time-sensitive interventions to
prevent the escalation of maladaptive alcohol use.

Additionally, while rates of AUD have historically been
higher in males, excessive alcohol use in females has risen
substantially (26). This increase in alcohol use is alarming given
the amplified detrimental health effects that females face from
alcohol, including developing liver cirrhosis more rapidly
(27–29) and having a greater risk of developing alcohol-related
cancers than males (30). Furthermore, females show a more
rapid escalation of drug taking to addiction, possibly mediated
by estradiol-induced dopamine release on the striatum (31).
Even though males are more likely to experience trauma during
their lifetime, females are twice as likely to develop trauma-
related psychopathology (32,33). Furthermore, females report
that the development of trauma-related psychopathology
predates the onset of substance use, consistent with findings
that females endorse more coping motives for use than males
Biological Psychiatry: Cognitive Neuroscience and Neu
(34). Thus, it is imperative to determine whether sex differences
exist in reward neurocircuitry that could promote the devel-
opment of maladaptive alcohol use by sex.

In this investigation, we used a reward reactivity task during
functional magnetic resonance imaging (fMRI) to measure
reward-related brain activation among recently trauma-
exposed participants to identify neural correlates that may
predict change in alcohol use posttrauma. We hypothesized
that in the early aftermath of trauma, 1) greater response to
monetary reward in the midbrain and striatal regions, including
the VTA, NAcc, globus pallidus (external and internal), caudate,
and putamen, would predict increased alcohol use from pre- to
posttrauma and 2) greater task-based functional connectivity
(FC) between reward-related brain regions and the ventral
medial prefrontal cortex and hippocampus would negatively
predict an increase in alcohol use from pre- to posttrauma. We
also investigated whether differences in reward neurocircuitry
influenced trauma-related changes in alcohol use by sex.
Finally, to ensure that we did not miss any potential brain re-
gions associated with increased alcohol use, we conducted
exploratory whole-brain voxelwise analyses of regions whose
reward response may be linked with alcohol use posttrauma.

METHODS AND MATERIALS

Participants

Participants were recruited from 22 U.S. emergency de-
partments (EDs) as part of a multisite longitudinal study
(AURORA) (35). Participants had to have experienced a trau-
matic event within 72 hours of their ED visit. MRI scanning
procedures were performed at 5 sites near multiple enrolling
EDs. MRI exclusion criteria included metal or ferromagnetic
implants, unwillingness to complete the MRI, a history of sei-
zures or epilepsy, a history of Parkinson’s disease, dementia
(inclusive of Alzheimer’s disease), having endured a moderate
to severe traumatic brain injury, and current pregnancy. None
of the participants in the current study sustained moderate to
severe traumatic brain injury based on readings of computed
tomography scans ordered during the ED admission. All par-
ticipants provided written informed consent approved by each
study site’s institutional review board. Of the full sample (N =
2625), a subsample of participants was able to complete
neuroimaging procedures (n = 286). Sample characteristics for
the full sample can be found in Table S1; sample character-
istics for the neuroimaging sample can be found in Table 1.
The total and neuroimaging samples exhibited similar de-
mographic characteristics, including biological sex, race/
ethnicity, employment, income, trauma type distributions, and
alcohol use patterns.

Measures

Once enrolled in the study, participants completed question-
naires measuring demographics and current trauma charac-
teristics at multiple time points. Demographic data collected
included race/ethnicity, sex assigned at birth, marital status,
income, education level, and employment status. Participant
demographic and clinical information is presented in Table 1
for individuals with neuroimaging data. Participants’ reported
alcohol use was obtained at the following time points:
roimaging March 2025; 10:314–323 www.sobp.org/BPCNNI 315
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Table 1. Demographic and Clinical Information, n = 286

Variable n (%) or Mean (SD)

Sex

Female 178 (62.2%)

Male 108 (37.8%)

Age, Years 33.75 (12.61)

Race/Ethnicity

Black, Non-Hispanic American 123 (43%)

Hispanic/Latin American 45 (15.73%)

Other 14 (0.5%)

White, Non-Hispanic American 102 (35.66%)

Employment

Employed 174 (60.84%)

Retired 6 (0.21%)

Homemaker 7 (0.24%)

Student 12 (0.42%)

Unemployed/disabled/other 53 (18.53%)

No response 34 (11.89%)

Income

,$19,000 71 (24.83%)

$19,001–$35,000 77 (26.92%)

$35,001–$50,000 36 (12.59%)

$50,001–$75,000 27 (9.44%)

$75,001–$100,000 18 (6.29%)

.$100,000 21 (7.34%)

No response 36 (12.59%)

Chance of Dying 5.15 (3.42)

Trauma Type

Motor vehicle collision 202 (70.63%)

Sexual assault 3 (1.05%)

Physical assault 32 (11.19%)

Mass incident 1 (0.35%)

Fall ,10 feet or unknown height 16 (5.59%)

Fall $10 feet 4 (1.40%)

Nonmotorized collision 11 (3.85%)

Animal related 9 (3.15%)

Burns 1 (0.35%)

Other 7 (2.45%)

CTQ-SF Total 10.39 (10.47)

Mild Traumatic Brain Injurya 81 (28.32%)

Medication

Anticholinergics 15 (5.24%)

Beta blockers 6 (2.10%)

Opioids 16 (5.59%)

Benzodiazepines 7 (2.45%)

Serotonin and norepinephrine reuptake inhibitors 11 (3.85%)

Selective serotonin reuptake inhibitors 18 (6.29%)

Alcohol Use Score

Pretrauma 16.61 (53.65)

2 weeks 10.16 (23.35)

8 weeks 17.99 (51.07)

3 months 17.37 (52.40)

6 months 18.57 (64.71)

CTQ-SF, Childhood Trauma Questionnaire-Short Form.
aMild traumatic brain injury was defined using the American College of

Rehabilitation Medicine 2015 criteria.
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pretrauma (assessed in the ED at enrollment), weeks 2 and 8,
and months 3 and 6. Trauma severity was measured via par-
ticipants’ subjective ratings of their chance of dying. Given the
previous findings that childhood trauma was associated with
reward-related neurocircuitry, childhood trauma was assessed
via the Childhood Trauma Questionnaire Short Form, a 28-item
scale used to examine exposure to traumatic experiences
during childhood (36).

Alcohol quantity and frequency were assessed using the
PhenX Toolkit Alcohol 30-Day Quantity and Frequency mea-
sure, a 2-item questionnaire (37). To assess alcohol frequency,
we asked, “During the ‘reference period,’ how many days did
you have at least one drink of any kind of alcohol, not including
small tastes or sips?” For alcohol quantity, we asked an
additional question: “On that day/those days, about how many
drinks of alcohol did you have/usually have, on average, per
day?” Our primary alcohol use outcome of interest was the
product of frequency and quantity for the 30 days, as
measured by the difference in this product at 8 weeks post-
trauma minus pretrauma (ED enrollment). Thus, this score ex-
amines the difference in alcohol use from pretrauma to 8
weeks posttrauma (the earliest posttrauma time point showing
an increase in drinking). The reference period for all assess-
ments was the past 30 days, except for the 2-week time point,
where data was assessed in the past 14 days. To facilitate
longitudinal analysis, we multiplied this variable by 2 to create
a rate of drinking that more closely matched the other time
points (see Table 1).
fMRI Task Procedures

Table S2 displays key data acquisition parameters obtained at
the 5 neuroimaging sites. While inside the scanner, partici-
pants completed a brief validated version of Delgado’s mon-
etary reward task (38), which only includes reward or loss
receipt without allowing an anticipation period or including
neutral trials. During this task, participants viewed a card with a
question mark. They were asked to guess correctly via button
press whether the card’s value would be higher or lower than 5
when the real value was revealed (see the Supplement for more
details). The contrast gain . loss was used to measure reward
processing.
Data Analysis

fMRI Data Analysis. See the Supplement for details
regarding fMRI data analysis. Data on blood oxygen level–
dependent activation in response to the monetary reward
task were available for 368 participants. Of these 368 partici-
pants, 82 were excluded for the following reasons: excessive
motion (movement exceeding 1 mm for more than 15% of
volumes, n = 35), technical issues during scan collection (n =
21), poor task response (responding to 65% of trials or less,
n = 18), issues with anatomical scan quality (n = 7), and missing
demographic information (n = 1). The remaining 286 partici-
pants were used in the final analysis. Hypotheses were tested
as contrasts where linear compounds of the model parameters
were evaluated using t statistics, which were then transformed
into z scores. Voxelwise gain . loss contrasts were computed
for each participant (first level).
arch 2025; 10:314–323 www.sobp.org/BPCNNI
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Figure 1. Mean alcohol use across 5 time points, separated by sex
across all participants. Dots indicate mean quantity 3 frequency (square-
root transformed) within each group. Error bars represent standard error. M,
month; WK, week.
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Region of Interest Analyses. Hypothesis-driven regions of
interest (ROIs) were extracted using the Reinforcement Learning
Atlas (https://osf.io/JKZWP/). Our ROIs included the bilateral
VTA, NAcc, globus pallidus (external and internal), caudate, and
putamen. A mean of all voxels within these anatomically defined
ROIs was extracted for contrast estimates from gain . loss
contrast. To determine whether greater reward-related activation
was associatedwith a change in alcohol use from8weeks versus
pretrauma, we used an alpha of .05 and a Bonferroni correction
for multiple comparisons (6 ROIs, p , .008).

Whole-Brain Voxelwise Analyses. Whole-brain group-
level maps were created for reward processes and their cor-
relation with alcohol use change scores, and dummy variables
for age, MRI site, sex, and reward-related region 3 sex inter-
action terms were included. A primary threshold of p , .005
combined with a familywise error (FWE) cluster-level correction
was applied to correct for multiple comparisons (39).

FC Analysis. The Conn toolbox (http://web.mit.edu/swg/
software.htm) was used for task-based FC analysis. For each
voxel within the whole-brain mask, covariance with each ROI
during responses to gain was contrasted with covariance with
each respective ROI during responses to loss trials. Scrubbing,
realignment, cerebrospinal fluid, global signal, and white mat-
ter time courses were first-level covariates. Age, MRI site, and
sex were included as second-level covariates. We examined
the effect of change in alcohol use from pretrauma to 8 weeks
posttrauma on FC values.

Statistical Analysis

We used the Hmisc R package to impute data missing for
alcohol use. Data imputation was conducted using predictive
mean matching, and imputation uncertainty was accounted
for by bootstrapping. We examined descriptive statistics and
the distributional properties of each variable at each time
point (see the Supplement). Given that alcohol use was
positively skewed across all time points, we applied square-
root transformation to each time point. Alcohol change
scores were created after imputation and square-root trans-
formation. For the extracted gain . loss values within the
ROIs (with the inverse being loss . gain) and change in
alcohol use from pretrauma to 8 weeks posttrauma, when
extreme outliers (z score . 3.29) were present, scores were
winsorized to match the next z score value , 3.29. Winsori-
zation is known to preserve information and power while
removing outliers (40).

Using the total sample, a 5 (time: pretrauma, 2 weeks, 8
weeks, 3 months, 6 months) 3 2 (sex: female, male) analysis of
variance with sex as an independent factor and time point as a
within-subjects factor was performed to determine whether
statistically significant differences existed in alcohol use over
time and differed between males and females and whether
significant differences existed in alcohol use between sexes
across time points. Because we were interested in exploring
alcohol use before and after trauma exposure, we created a
change score between pretrauma alcohol use and the earliest
posttrauma time point, showing an increase in drinking to be
used in subsequent analyses.
Biological Psychiatry: Cognitive Neuroscience and Neu
To test whether reward-related brain fMRI measures pre-
dicted change in alcohol use after a trauma, we conducted hi-
erarchical linear regression analyses. In step 1, we included age,
site, race/ethnicity, the chance of dying, and Childhood Trauma
Questionnaire-Short Form scores to determine the variance that
these demographic and clinical variables accounted for in
alcohol use change. Previous studies have highlighted the
importance of controlling for age (41–44), and it is customary to
control for site given the differences in scanners used across
data collection sites. Race/ethnicity is particularly important in
predicting clinical symptoms posttrauma (45). In step 2, we
separately added reward-related brain activation to themodel for
each ROI (i.e., 6 separate regression models). Lastly, in step 3, a
term for the interaction between reward-related brain activation
at 2 weeks posttrauma and sex for each ROI (i.e., 6 separate
regression models) was included to determine whether brain
activation contributed significant variance in predicting clinical
symptoms above and beyond the variance contributed by de-
mographic and clinical variables and whether sex contributed
significantly to the model.

RESULTS

Change in Alcohol Use Over Time

A significant main effect of time was found (F4,13115 = 13.33,
p , .001). Bonferroni-corrected post hoc tests were performed
to identify pairwise changes in alcohol use between time
points. Alcohol use decreased from pretrauma to 2 weeks
posttrauma (pretrauma: mean = 2.13, SD = 2.87; 2 weeks:
mean = 1.97, SD = 2.67; padjusted = .02) and increased from
pretrauma to 8 weeks (mean = 2.47, SD = 3.32; padjusted ,

.001), 3 months (mean = 2.34, SD = 3.27; padjusted = .004), and
6 months (mean = 2.45, SD = 3.26; padjusted , .001) post-
trauma. There was also a significant increase from 2 weeks
posttrauma to 8 weeks (padjusted , .001), 3 months (padjusted ,

.001), and 6 months (padjusted , .001) posttrauma. A significant
main effect of sex was also found (F1,13115 = 184.87, p , .001),
wherein males exhibited significantly greater alcohol use than
females across all time points (Figure 1). We removed the
imputed data, and the results remained significant (ps , .001).
roimaging March 2025; 10:314–323 www.sobp.org/BPCNNI 317
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Figure 2. (A) Positive correlation with ventral tegmental area (VTA) acti-
vation during gain . loss and alcohol change scores from pretrauma to
week 8; (B) positive whole-brain voxelwise correlation with spinocerebellum
activation (Montreal Neurological Institute coordinates x = 216, y = 248,
z = 228) during gain . loss and alcohol change scores from pretrauma to
week 8. Activation was extracted using REX.

Table 2. Predicting Alcohol Change Scores From Pretrauma
to 8 Weeks Posttrauma From Reward-Related ROIs

Brain Region

Step 2 Step 3

BROI t p
BROI 3

Sex t p

Week 8 2 Pretrauma Alcohol Change Scores

Ventral Tegmental Area 1.06 3.67 .000296a,b,c 0.40 0.67 .51

Putamen 0.60 1.15 .25 1.39 1.26 .21

Globus Pallidus
(Internal)

0.59 1.12 .26 21.26 21.18 .24

Globus Pallidus
(External)

1.24 2.18 .03d 1.36 1.11 .27

Nucleus Accumbens 0.69 2.18 .03d 0.14 0.20 .84

Caudate 0.32 0.66 .51 21.12 21.08 .28

Month 6 2 Pretrauma Alcohol Change Scores

Ventral Tegmental Area 0.59 2.35 .02d 0.76 1.47 .14

Putamen 0.44 0.99 .32 1.66 1.77 .08

Globus Pallidus
(Internal)

0.18 0.39 .70 20.86 20.94 .35

Globus Pallidus
(External)

0.29 0.59 .56 20.16 20.15 .88

Nucleus Accumbens 0.11 0.38 .70 20.19 20.31 .76

Caudate 0.27 0.65 .52 0.15 0.17 .86

Step 2: alcohol change scores w age 1 MRI site 1 race/ethnicity 1 CTQ 1

chance of dying 1 ROI. Step 3: alcohol change scores w age 1 MRI site 1

race/ethnicity 1 CTQ 1 chance of dying 1 ROI 3 sex.
CTQ, Childhood Trauma Questionnaire; MRI, magnetic resonance imaging;

ROI, region of interest.
ap , .001.
bSignificant (p , .05) overall regression model.
cMet Bonferroni correction of p = .008.
dp , .05.

Reward Neurocircuitry and Alcohol Use Posttrauma
Biological
Psychiatry:
CNNI
ROI Analyses

In the neuroimaging sample, 99 participants (35%) exhibited
increased alcohol use from pretrauma to 8 weeks posttrauma.
When constructing the predictive model for trauma-related
alcohol use, step 1, which contained demographic and clin-
ical variables, was nonsignificant (F5,235 = 0.95, p = .45, R2 =
0.02). Including VTA activation gathered at 2 weeks post-
trauma in step 2 predicted alcohol change scores above and
beyond covariates of age, MRI site, race and ethnicity, self-
reported chance of dying, and childhood trauma exposure
(DR2 = 0.05, b = 1.06, t234 = 3.67, p, .001) (Figure 2A). Holding
our covariates constant, 1.06 was the expected increase in
alcohol use from pretrauma to 8 weeks posttrauma given a 1
unit higher score in VTA activation. In step 3, the VTA
activation 3 sex interaction effect did not significantly predict
alcohol change scores above and beyond covariates of age,
MRI site, the chance of dying, childhood trauma exposure, or
VTA activation (b = 0.40, t232 = 0.67, p = .51). No additional
regression model for the other reward-related ROIs was sig-
nificant (ps . .15) (see Table 2). We removed the imputed and
winsorized data; the results are presented in the Supplement.

Whole-Brain Voxelwise Analyses

Whole-brain voxelwise correlations to the gain . loss contrast
were conducted with alcohol use change from pretrauma to 8
weeks and its correlation with alcohol use change scores. A
statistically significant positive correlation was observed in the
functional subdivision of the cerebellum called the
318 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging M
spinocerebellum (Montreal Neurological Institute (MNI) co-
ordinates x = 216, y = 248, z = 228; FWE-corrected p = .03;
z = 5.46; KE [number of voxels in a cluster] = 184) (Figure 2B).
No statistically significant negative correlations were found. A
term was included for the interaction between alcohol use
change from pretrauma to 8 weeks posttrauma and sex. No
statistically significant positive or negative correlations were
found after we included this interaction term.

FC Analyses

The alcohol change score was positively associated with FC
between the VTA seed and the right lateral occipital cortex
(LOC) (MNI coordinates x = 28, y =276, z = 50; FWE-corrected
p , .001; z = 4.33; KE = 607) (Figure 3A) and left precuneus
(MNI coordinates x = 220, y = 260, z = 18; FWE-corrected
p = .014; z = 3.93; KE = 290) (Figure 3B). This finding sug-
gests that functional integration of the VTA and right LOC and
left precuneus in response to monetary reward was positively
associated with change in alcohol use early posttrauma. No
regions showed statistically significant negative correlations
between alcohol change scores and their connectivity with the
VTA seed.

DISCUSSION

This investigation is one of the first to utilize a longitudinal
design to uncover reward-related brain activation associated
arch 2025; 10:314–323 www.sobp.org/BPCNNI
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Figure 3. Alcohol change scores and functional connectivity (FC) be-
tween the ventral tegmental area (VTA) seed and (A) the lateral occipital
cortex (Montreal Neurological Institute coordinates x = 28, y = 276, z = 50;
z = 4.33; K = 607) and (B) the precuneus (Montreal Neurological Institute
coordinates x = 220, y = 260, z = 18; z = 3.93; KE = 290). Clusters that
survived the familywise error–corrected threshold were extracted using REX.
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with increased alcohol use in trauma-exposed participants, a
group that is more at risk for the development of AUD. The
findings partially support our first hypothesis: greater response
to monetary reward in the VTA predicted increased alcohol use
from pretrauma to 8 weeks posttrauma. The results did not
support our second hypothesis of lower task-based FC be-
tween the reward-related brain regions and the ventromedial
prefrontal cortex and hippocampus. Instead, we found greater
task-based FC between the VTA and LOC, and the precuneus
was associated with increased alcohol use from pre- to post-
trauma. Lastly, we found no statistically significant differences
in associations between brain activation and alcohol change
scores based on sex.

The VTA is a key region in the mesolimbic pathway that is
important in the development and progression of an AUD. The
neural processes that underlie the progression of alcohol use
to the development of an AUD are defined by an increase in
dopamine release in the VTA to the NAcc during the initial
consumption of alcohol; however, upon consumption of
alcohol for an extended time, dopamine levels decrease, and
motivation for use to relieve or prevent withdrawal leads to
disorder (46). In this investigation, the positive association
between VTA activation and trauma-related increase in alcohol
use may reflect an acute-phase poststressor increase in
dopamine signaling from the VTA. Preclinical studies have
found that alcohol directly stimulates dopamine firing in the
VTA, increasing dopamine release in the NAcc and ultimately
mediating the rewarding effects of alcohol (47). For our par-
ticipants, secondary rewards might have caused greater
Biological Psychiatry: Cognitive Neuroscience and Neu
dopamine release. On a mechanistic level, alterations in the
mesolimbic pathway caused by stress may contribute to in-
creases in alcohol use posttrauma (22). Preclinical studies
have highlighted the role of chronic and acute stress in alcohol
use [reviewed in (8)] mediated by many factors, including
corticotropin-releasing factors, glucocorticoids, and other
stress-related neuropeptides. One study found that adrenal-
ectomy caused decreased alcohol drinking in alcohol-
preferring rats (48), while intracerebroventricular infusion of
corticosterone increased alcohol intake (49). Our findings
provide preliminary evidence that measuring VTA responsivity
to reward is a potential biomarker for predicting increased
drinking early posttrauma. This makes sense given the role of
glucocorticoids in potentiating dopamine release within the
VTA (50). Our study results are important for potentially
developing preventive interventions such as neuromodulation,
psychoeducation, and psychopharmacological avenues.
However, future research must provide more detailed mecha-
nistic validation of our findings, especially using preclinical
studies to manipulate dopaminergic pathways early
poststressor.

Our whole-brain voxelwise findings highlighted the potential
importance of cerebellar reward responsivity in predicting
alcohol use posttrauma. The cerebellum is a hindbrain struc-
ture responsible for motor coordination, cognitive processing,
and sensory discrimination (51) and has connections to the
VTA (52). Cerebellum activation has been associated with
alcohol craving (53), especially during the presentation of
alcohol cues (54), and encodes reward-related information
(55,56). While our fMRI task did not use alcohol-related stimuli,
it is possible that the cerebellum is responding to the pre-
sentation of the reward-related cue (i.e., a green check mark in
this study that corresponded to a $1 monetary value received).

The seed-based FC findings highlight the importance of the
VTA’s functional coupling with the LOC and precuneus. While
dopamine receptors are sparse in the visual cortex (57), pre-
vious studies have found modulation of this region in response
to reward-related task performance (58,59). Greater FC be-
tween the VTA seed and LOC could contribute to an elevated
visual attentional bias to reward cues. Previous studies have
reported that participants who exhibited a greater change in
alcohol use over time were generally biased toward directing
attention to reward-related cues (60,61). However, our study
did not measure the time an individual fixated on reward-
related cues or subjective feelings to reward, so this interpre-
tation should be evaluated further. Given the lack of dopamine
receptors in the LOC, alternative interpretations should be
investigated. Previous studies have also shown that the LOC is
involved in numeric representation and activation (62), and
activation from this area was significantly correlated with the
reaction time that it took to for participants to respond to
numbers versus object names (63). Thus, it could be that the
presentation of numbers activates the LOC. These findings
highlight that greater activation in visual regions may be related
to greater attention to stimuli associated with reward-related
cues to help determine how to respond to subsequent trials
to achieve the same positive outcome. It will be important to
replicate our findings and conduct more research on the role of
the LOC in alcohol use given that this area could be a good
target for neuromodulation techniques that are designed to
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change VTA-cortical circuits. Neuromodulation techniques
have shown promise in targeting the occipital cortex (64–68)
and treating maladaptive alcohol and substance use (69,70).

The precuneus is important for self-monitoring and pro-
cessing internal states (71) and has dopamine D1 (72) and
D2/D3 (73) receptors, making it easily modulated by dopamine
(74). In individuals with alcohol dependence who had recently
relapsed, precuneus activation in response to script-driven
imagery was correlated with alcohol craving (75). In our
study, greater FC between the VTA and precuneus was found
[as was found in a previous study in trauma-exposed children
(24)] and associated with greater trauma-related change in
alcohol use. One interpretation is that given the role of the
precuneus in self-monitoring and the processing of internal
states, trauma-exposed participants might have been more
conscious about the strategy they used that ended in their
receiving a reward and ruminated on how that reward made
them feel. This also incorporates the VTA-LOC findings
because it incentivizes the participant to expend attentional
resources on the trials in which they received rewards to
succeed in future trials.

We did not find significant associations between clinical
symptoms and reward-related activation (see Table S3). This is
interesting because many studies have provided empirical
evidence for the self-medication hypothesis (i.e., individuals
use alcohol to relieve clinical symptoms experienced after
trauma exposure) (11). We may have failed to find evidence
supporting the self-medication hypothesis given methodolog-
ical differences (i.e., differences in the timing of when as-
sessments were gathered and the assessments used). While
our findings highlight the variability that exists in trauma-
related alcohol use, it should be emphasized that none of
our participants had an AUD.

We found sex differences in alcohol use; males drank more
than females, even when we controlled for pretrauma alcohol
use scores. However, sex did not significantly influence brain
activation to predict alcohol use. Previous preclinical studies
have highlighted a potentially important role of estradiol in
modulating reward responses in the VTA. For example, one
study found that when estradiol levels were highest in female
rats, VTA neurons were more sensitive to alcohol excitation (76)
as mediated by the activation of the estrogen receptor alpha
(77). Thus, it is interesting that we did not identify neural corre-
lates that mediated the different trends for females versus
males. However, this lack of significant findings in our sample
could be related to the stimuli used to examine reward. The
preclinical studies described examined sex differences in
response to alcohol administration, while our study utilized a
monetary reward task, a secondary reinforcer. Thus, a broader
examination outside the context of monetary reward is war-
ranted. Furthermore, our sample shows a divergence between
males and females in alcohol use from 3 to 6months. Given that
the current study was focused on the early aftermath of trauma,
future studies should examine neural correlates that mediate
these longitudinal changes in alcohol use between sexes.
Limitations

Although our investigation had many strengths, including its
longitudinal design, large sample size, recruitment of
320 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging M
participants from multiple, geographically diverse EDs that
increase its external validity, a standardized posttrauma time-
line, and examination of sex differences, our study also has
some limitations. One limitation of our work is that we relied on
self-report data to measure our factors and outcomes of in-
terest. Furthermore, we asked participants to recall alcohol use
for the previous 14 to 30 days, introducing the potential for
recall bias. Future longitudinal prospective studies that follow
participants before they experience trauma would be ideal for
gathering less potentially biased baseline assessments of
alcohol use behavior, and the use of more ecologically valid
forms of measurement, such as daily mobile surveys or diary-
keeping of alcohol use behavior, could be used to measure
alcohol use. Additionally, our reward task did not include a
neutral condition, which would have allowed us to remove
potential confounds inherently caused by the task. Specifically,
we may be missing activation that is present for both gain and
loss trials given that the activation is excluded when the gain .

loss contrast is calculated. Future studies should incorporate a
neutral condition to examine the relationship of overlapping
activation separately for gain and loss trials with alcohol use
change scores in trauma-exposed individuals. Lastly, we did
not assess AUD directly, which limits conclusions regarding
severity and consequences that may inform intervention
efforts.

Conclusions

This investigation is one of the first to utilize a longitudinal
design to uncover reward-related brain activation associated
with increased alcohol use in trauma-exposed individuals. Our
findings highlight that even at 2 weeks posttrauma, VTA
function in response to monetary gain can help guide de-
cisions about which trauma-exposed individuals are at great-
est risk for greater alcohol use. We have also identified a neural
pathway (VTA and LOC) as a potential neural circuit–based
target for future neuromodulation techniques for intervention.
This work highlights the importance of measuring reward-
related neurocircuitry, specifically VTA activation, early post-
trauma to gain insight into those who are most at risk for
greater alcohol use.
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