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A B S T R A C T

Hyperstable arousal regulation during a 15-min resting electroencephalogram (EEG) has been linked to a
favorable response to antidepressants. The EMBARC study, a multicenter randomized placebo-controlled clinical
trial, provides an opportunity to examine arousal stability as putative antidepressant response predictor in short
EEG recordings. We tested the hypothesis that high arousal stability during a 2-min resting EEG at baseline is
related to better outcome in the sertraline arm and explored the specificity of this effect. Outpatients with
chronic/recurrent MDD were recruited from four university hospitals and randomized to treatment with ser-
traline (n = 100) or placebo (n = 104). The change in the Hamilton Rating Scale for Depression (HRSD-17) was
the main outcome. Patients were stratified into high and low arousal stability groups. In mixed-model repeated
measures (MMRM) analysis HRSD-17 change differed significantly between arousal groups, with high arousal
stability being associated with a better outcome in the sertraline arm, and worse outcome in the placebo arm at
week 4, with moderate effect sizes. When considering both treatment arms, a significant arousal group x time x
treatment interaction emerged, highlighting specificity to the sertraline arm. Although findings indicate that
arousal stability is likely to be a treatment-specific marker of response, further out-of-sample validation is
warranted.
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1. Introduction

Antidepressant treatment in major depressive disorder (MDD) con-
tinues to be a challenge, as indicated by relatively low remission and
high nonresponse rates (Murphy et al., 2021; Barlati et al., 2023), due to
the lack of valid response predictors (Kennis et al., 2020). Reliable
biological or clinical markers to robustly predict antidepressant treat-
ment response in patients with MDD are still missing in both clinical care
and research (Kennis et al., 2020). To address this issue, the multisite
placebo-controlled randomized clinical trial—Establishing Moderators
and Biosignatures of Antidepressant Response for Clinical Care
(EMBARC)—systematically examined the value of multiple biomarkers
(biosignatures) with combined predictive value of treatment outcome
(Trivedi et al., 2016; Petkova et al., 2017).

Electroencephalogram (EEG)-derived neurophysiological measures
provide direct information of different functional brain states and
neuronal activation with high temporal resolution. Importantly, they are
low cost measures with good test-retest reliability (Tenke et al., 2017,
2018). Within the EMBARC study there are two tiers of baseline patient
characteristics, including clinical and biological parameters that have
been pre-specified by the study team (Petkova et al., 2017). Pretreat-
ment posterior alpha (Bruder et al., 2008; Tenke et al., 2011) and rostral
anterior cingulate cortex theta activities are first tier predictors in the
EEG data modality according to the EMBARC data analysis plan
(Petkova et al., 2017), and pretreatment rostral anterior cingulate cortex
theta activity has emerged as general prognostic marker for treatment
outcome (Mulert et al., 2007; Pizzagalli et al., 2018). However, these
two metrics differ in their validity and reliability which may negatively
impact the clinical utility of frontal theta as a biomarker (Smith et al.,
2020). EEG measures of arousal (Ulke et al., 2019a) are putative marker
candidates of the third tier, which are defined as variables that were not
pre-specified in the EMBARC data analysis plan, but that can be
computed from the collected data. However, to avoid multicollinearity,
these variables are subjected to independent screening and a selection
process prior to combining them with other markers from a given mo-
dality (Petkova et al., 2017). In a first feasibility study, we examined the
robustness of two correlated EEG measures (arousal stability and level)
during a 2-min resting EEG, and found that arousal stability was more
robust than arousal level (Ulke et al., 2019a). In the current study, we
therefore examined the value of arousal stability for predicting clinical
response to antidepressants.

In patients with depression, hyperstable brain arousal regulation has
been consistently found during quiet rest (Hegerl et al., 2012; Schmidt
et al., 2016; Ulke et al., 2017, 2019a) as indicated by high arousal sta-
bility. Given previous findings of upregulated arousal at baseline in
antidepressant responders during a 15-min EEG at quiet rest (Schmidt
et al., 2017), we tested the following hypothesis: Relative to MDD pa-
tients with low arousal stability during a 2-min resting EEG at baseline
(as assessed by the VIGALL 2.1 algorithm (Hegerl et al., 2017)) MDD
patients with high arousal stability will show a better response to ser-
traline at week 4. To explore the specificity of the effect, we performed
the same analysis in the placebo arm, and examined the 3-way inter-
action between arousal group, visit week and treatment in secondary
mixed-model repeated measures analysis.

2. Methods

2.1. Design, setting and study participants

In this multicenter randomized clinical trial outpatients with chronic
or recurrent MDD without psychosis were enrolled between July 29,
2011, and December 15, 2015. Patients were recruited from four uni-
versity hospitals, Columbia University Medical Center in New York
(CU), Massachusetts General Hospital in Boston (MG), University of
Texas Southwestern Medical Center in Dallas (TX) and University of
Michigan in Ann Arbor (UM) (Tenke et al., 2017). Between testing sites,

there was no significant difference in mean age or sex ratio. Over four
weeks of treatment, the drop-out rate did not differ between the two
randomizations groups for both the targeted EEG sample (N = 204;
sertraline, 11/99, 11.1 %; placebo, 8/105, 7.6 %; χ2[1] = 0.726, p =

0.39) and the full sample (N = 296; sertraline, 19/146, 13.0 %; placebo,
15/150, 10.0 %; χ2[1] = 0.661, p = 0.42).

Main inclusion criteria were age between 18 and 65 (m/f), chronic
(episode duration > 2 years) or recurrent (≥ 2 recurrences) non-
psychotic MDD (according to DSM-IV) with an early onset (before age
30), fluency in English, and provision of written informed consent. Main
exclusion criteria included diagnosis of bipolar disorder or schizo-
phrenia (current or lifetime), other Axis I or II diagnoses (except for
nicotine/caffeine dependence), or meeting DSM-IV criteria for sub-
stance abuse in the last 6 months (except for nicotine). The trial was
conducted according to FDA guidelines and the Declaration of Helsinki.
Signed informed consent was obtained from all participants at study
entry.

2.2. Primary outcome measures

The change in the17-item Hamilton Rating Scale for Depression
(HRSD-17; (Hamilton, 1960)) over four weeks (i.e., at baseline, and visit
weeks 1, 2, 3, 4) served as outcome measure. Specifically, the change in
the HRSD-17 total score (ΔHRSD-17) was assessed as percentage change
at week 4 from baseline and calculated as follows: HRSD-17 baseline
score minus estimated HRSD total score at week 4 divided by the HRSD-
17 baseline score (x 100). The time frame was an a priori choice to
optimize the time for clinical improvement with the number of drop-
outs.

2.3. Data acquisition and processing

EEG data acquisition and processing harmonization has been previ-
ously described (Tenke et al., 2017); EEG labs of all four participating
centers followed a standardized procedure, and on-site staff were
certified by the Columbia lab to ensure satisfactory EEG data (Tenke
et al., 2017; Ulke et al., 2019a). Briefly, continuous EEG data were
recorded while participants sat quietly for four 2-minute periods in fixed
order: eyes-open (block 1), eyes-closed (block 2), eyes closed (block 3),
eyes-open (block 4). During the recording, participants were instructed
to remain still, inhibit blinks or eye movements and, during the
eyes-open condition, fixate a central cross on a monitor (Tenke et al.,
2017). For the purpose of this study, only block 2 was examined (i.e., the
first eyes-closed condition). Data were processed according to a stan-
dardized preprocessing pipeline as described by Tenke et al. (2017).
Using VIGALL 2.1 (Hegerl et al., 2017) consecutive 1-s segments were
classified into six different EEG-vigilance stages based on frequency
bands and source localization with LORETA (Pascual-Marqui et al.,
2011). Thereafter, each EEG vigilance stage was assigned a score,
ranging from 6 to 1 ((Ulke et al., 2019a); Suppl. Table S1). The VIGALL
software is licensed under GPL3 and available at https://github.
com/danielboettger/VIGALL/.

2.4. EEG measures of arousal

To quantify arousal stability during the 2-min resting EEG at baseline
we calculated an arousal stability index that was based on sliding 1-min
intervals (interval 1: segments 1–60, interval 2: segments 2–61, inter-
val 3: segments 3–62 etc.). A high score indicated a high arousal stability
(Suppl. Table S2), scoring criteria are described in more details else-
where (Ulke et al., 2019a). To obtain equal group sizes patients were
stratified via median split into high and low arousal stability subgroups.
The histogram of arousal stability indices based on treatment arm
(sertraline vs placebo) is presented elsewhere (Suppl. Fig. S1).
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2.5. Statistical analyses

In a first step using Chi-square tests, Mann-Whitney U tests and t-tests
for independent sample comparisons, respectively (dependent on the
scale of measurement for the dependent variables and their distribu-
tion), we investigated whether there were significant differences be-
tween arousal subgroups in the sertraline and the placebo arm regarding
demographic and clinical variables in order to be able to identify rele-
vant covariates. In a second step, we conducted mixed-model repeated
measures (MMRM) analyses in both arms over 4 weeks of treatment,
including fixed effects of covariates when indicated. We used MMRM to
address the problem of dropouts and the differences between groups
regarding this aspect (Twisk, 2013). The MMRM approach allows the
utilization of all available and usable data; it is known to be flexible in
modeling of time effects and advisable regarding the handling of missing
data in an adequate way (Gueorguieva and Krystal, 2004). We applied
the restricted maximum likelihood algorithm. The mixed model was
built up step by step, adding independent variables, covariates and
random effects to the model one after the other. At each step, the
model’s − 2 log likelihood and the Bayesian Information Criterion (BIC)
were considered—if it improved significantly compared to the previous
step, the added parameter was retained (Suppl. Tables S3–S5). Signifi-
cance was tested using the chi-square distribution (− 2 log likelihood).
The aim was to obtain a model that had both a high model quality (i.e. it
contained all influential parameters) and no unnecessarily complex
structure.

In the final MMRM analysis we included as fixed factors arousal
group (high vs. low arousal stability), time (visit weeks 0, 1, 2, 3, 4) as
well as covariates in the sertraline arm, and the interaction between
arousal group and time. We treated intercepts as randomly varying
across study participants. The statistical significance of the fixed effect of
the interaction between arousal group and time was utilized to deter-
mine whether the change of HRSD-17 over time differed across arousal
groups. To test our hypothesis (H1: high vs. low arousal stability during a
2-min resting EEG at baseline is related to better outcome in the sertraline
arm) we computed ΔHRSD-17 values (baseline to week 4 change in
percentages) in the sertraline arm, based on the predicted values of the
MMRM, and compared them between arousal groups. To explore the
specificity of the effect, we performed the same analysis in the placebo
arm. In secondary analyses we explored whether the effects are
moderated by treatment arm, by examining the 3-way interactions be-
tween arousal group (high vs. low arousal stability), time (visit weeks 0,
1, 2, 3, 4) and treatment (sertraline vs. placebo) in MMRM analysis. For
all statistical tests, the significance level was set at p = 0.05. Statistical
analyses were performed with SPSS software, version 25.0 (IBM Corp.,
Armonk, New York, USA).

3. Results

3.1. Participants

During enrollment, a total of 634 patients were screened, and 296
were randomized to receive sertraline hydrochloride (≤ 200 mg daily)
or placebo. Of those, nine patients dropped out before the first medi-
cation/placebo dose, leaving 287 participants for analyses. Among the
remaining 287 patients, 266 patients had EEG recordings and 204 had
usable EEG data (sertraline arm: n= 100, placebo arm: n= 104) for EEG
vigilance analyses. Of the 204 participants 128 were women (Table 1).

3.2. Main analyses

Of the 100 patients randomized to the sertraline arm, 49 were
assigned to the high (arousal stability index = 6) and 51 to the low
arousal group (arousal stability index≤ 5). In the sertraline arm, the two
subgroups did not significantly differ regarding sex distribution (χ2 =

0.85, df = 1; n.s.), years of education (Z = − 0.51; n.s.) and degree of
right-handedness (EHI) score (Z = − 0.01; n.s.). However, frequencies of
high vs. low arousal groups differed regarding collection site (χ2 = 8.35,
df = 3; p = 0.039) and the subgroup with lower arousal stability tended
to have higher age (Z= − 1.85; p= 0.064). Therefore, fixed effects of site
and age were included in multivariate statistical analyses in the sertra-
line arm. In the placebo arm, 49 of the 104 patients were assigned to the
high (arousal stability index = 6) and 55 to the low arousal group
(arousal stability index ≤ 5). The two subgroups did not significantly
differ regarding age (t102 = − 0.52; n.s.) sex distribution (χ2 = 0.087, df
= 1; n.s.), years of education (Z= − 0.30; n.s.), collection site (χ2= 5.59,
df = 3; p = 0.133) and EHI score (Z = − 0.04; n.s.), and therefore no
covariates were included in subsequent analyses.

In the sertraline arm, MMRM analysis revealed a significant main
effect of time (F4, 101= 35.70; p< 0.001), indicating a decrease in HRSD-
17 score over the four weeks. Further, there was no main effect of
arousal group (F1, 88 = 0.00; n.s.). A significant interaction between
arousal group and time (F4, 101 = 2.57, p = 0.021 [one-sided test])
revealed that patients with higher (vs. lower) arousal stability indices
showed a different change of depressive symptoms over time, indicating
better outcome in patients with higher arousal stability at baseline.
Based on the predicted values of the mixed models (Fig. 1A), we
computed ΔHRSD-17 values (baseline-week4) and compared them be-
tween arousal groups. The two subgroups significantly differed
regarding ΔHRSD-17 values, indicating a greater symptom reduction in
the high arousal stability group, mean percentage (SD) high vs. low:
42.01% (7.2) and 36.02% (7.9); Mann-Whitney U test: Z = − 3.975, p <
0.001 [one-sided test], r = 0.398, η2 = 0.158 (moderate effect, Fig. 1C).

In the placebo arm, MMRM analysis revealed a significant main

Table 1
Characteristics of MDD patients included in analysis.

All (N ¼ 204) Sertraline (n = 100; high arousal n = 49) Placebo (n = 104; high arousal n = 49)

high arousal low arousal high arousal low arousal

Mean/Prop. SD Mean/Prop. SD Mean/Prop. SD Mean/Prop. SD Mean/Prop. SD

Age, yrs. 36.3 13.2 33.7 13.8 38.1 13.3 35.8 13.3 37.1 12.6
Sex, female .63 .71 .63 .57 .60
Edu., yrs. 15.1 2.4 14.8 2.2 15.1 2.3 15.2 2.5 15.4 2.5
EHI, sc. 73.2 46.3 76.5 36.9 64.2 59.7 72.1 49.5 79.5 35.6
Bl HRSD, sc. 18.6 4.4 18.3 4.0 18.6 5.1 18.0 3.9 19.4 4.6
Center
CU
UM
TX
MG

.33

.19

.30

.18

.45

.18

.27

.10

.20

.22

.35

.24

.43

.14

.31

.12

.25

.22

.27

.25

Annotations: MDD = Major Depressive Disorder; Prop. = Proportion; SD = Standard deviation; yrs = years; sc. = score; Edu.= Education; Bl = Baseline; HRSD =

Hamilton Rating Scale for Depression; EHI= Edinburgh Handedness Inventory score (laterality quotient; Oldfield, 1971); CU= Columbia University, New York; UM=

University of Michigan, Ann Arbor; TX = University of Texas Southwestern, Medical Center Dallas; MG = Massachusetts General Hospital, Boston.
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effect of time (F4,112= 34.44; p< 0.001), indicating a decrease in HRSD-
17 score over the 4 weeks. There was no main effect of arousal group (F1,
93= 0.34; n.s.). A significant interaction between arousal group and time
(F4, 112 = 3.34, p = 0.013 [two-sided test]) revealed that patients with
lower (vs. higher) arousal stability indices showed a different change of
depressive symptoms over time. Contrary to the sertraline arm, the re-
sults indicated a better outcome in patients with lower arousal stability
at baseline (Fig. 1C). Based on the predicted values of the mixed models
(Fig. 1B), we computed ΔHRSD-17 values and compared them between
arousal groups. The two subgroups differed significantly regarding
ΔHRSD-17 values, but with reverse effects (mean percentage (SD) high
vs. low: 28.5 % (6.7) and 36.9 % (10.2); Mann-Whitney U test: Z =

− 4.868, p < 0.001 [two-sided test], r = 0.477, η2 = 0.228 (moderate
effect, Fig. 1C).

3.3. Secondary analysis

Since arousal stability predicted response to sertraline in the ser-
traline arm over 4 weeks, we explored whether the effects were
moderated by treatment arm. We therefore included a 3-way interaction
of the factors treatment (sertraline vs. placebo), arousal group (high, n=
98, vs. low, n = 106) and time (visit weeks 0, 1, 2, 3, 4) in MMRM
analysis. The two arousal groups did not significantly differ regarding
sex (high vs. low arousal stability: 63 [64.3 %] and 65 [61.3 %] female),
years of education (mean ± SD, 15.0 ± 2.4 and 15.2 ± 2.4), and EHI
score (74.3 ± 43.5 and 72.1 ± 49.1) at baseline, but they differed con-
cerning study site (χ2 = 12.8, p = 0.005). Further, the subgroup with
lower arousal stability tended to be older (high vs. low arousal stability:
34.7 ± 13.5 and 37.8 ± 12.8 years; Z = − 1.72; p = 0.085). Thus, we
integrated fixed effects of site and age in multivariate statistical ana-
lyses. MMRM analysis revealed a significant main effect of time (F4, 218
= 68.28; p < 0.001), but not of treatment (F1,182 = 0.57, p = 0.452) or
arousal group (F1, 181= 0.04, p= 0.851). While there were no significant
two-way interactions (time x treatment: F4,218 = 0.89; n.s.; arousal
group x time: F4,218= 1.12; p= 0.349; arousal x treatment: F1,182= 0.02;
n.s.), a significant interaction of arousal group x time x treatment (F4,218
= 4.77, p = 0.001 [two-sided test], small effect) was observed, con-
firming that symptom reductions were most pronounced for the higher
arousal stability group receiving sertraline.

4. Discussion

EEG measures of brain arousal have been suggested as markers for
antidepressant treatment response. In the context of the EMBARC study,

a clinical trial with patients randomized to treatment with sertraline
hydrochloride or placebo, we examined the value of arousal stability, as
assessed with VIGALL 2.1 (Hegerl et al., 2017), for the prediction of
treatment outcome. Our main hypothesis was confirmed: high arousal
stability during a 2-min resting EEG at baseline predicted greater
depression improvement after 4 weeks in the sertraline arm as assessed
by changes in HRSD-17 sum score. Second, the effect was specific to the
sertraline arm, whereas it was reversed in the placebo arm. Third, in
secondary analysis, the interaction between treatment, arousal group
and time was significant. Taken together, these findings indicate that
arousal stability may be a candidate for a treatment-specific marker of
symptom improvement, rather than a general prognostic predictor.

The present findings corroborated findings of an earlier study using
VIGALL 2.1 to examine EEG measures as predictors of antidepressant
response, where we reported a higher frequency of high EEG vigilance
stages in antidepressant responders as compared to non-responders
(Schmidt et al., 2017). However, those findings were based on 15-min
resting EEG data stemming from a smaller sample (N = 65) and no
single variable was computed indexing arousal stability (Schmidt et al.,
2017). Conversely, another study found an association between the
propensity towards lower EEG vigilance stages over time and the
response to selective serotonin reuptake inhibitors (SSRI) treatment
(Olbrich et al., 2016) which is contrary to our findings. We attribute this
discrepancy to differences in parametrization, and to the application of a
newer version of the VIGALL algorithm having improved classification
accuracy and less susceptibility to eye artifacts (Hegerl et al., 2017).
Still, given these conflicting findings, additional studies using an inde-
pendent dataset with comparable processing, classification and param-
eterization procedures as employed in the current study are warranted.

Consistently, previous EEG studies examining arousal stability in
MDD patients during resting-state conditions described hyperstable
arousal regulation in MDD when compared to healthy controls (Hegerl
et al., 2012; Olbrich et al., 2012; Schmidt et al., 2016; Sander et al.,
2018; Ulke et al., 2019b, 2019a), and arousal stability has been asso-
ciated with depression severity in SSRI-medicated patients (Ulke et al.,
2019b). Posterior alpha wave activity has been associated with better
response to antidepressant treatment (Bruder et al., 2008; Tenke et al.,
2011), which is consistent with the current finding of better HRSD-17
response in the high arousal group with predominant occipital alpha
activity. Animal studies have repeatedly shown that SSRIs decrease the
neuronal firing rate of the locus coeruleus (LC) (Grant and Weiss, 2001;
West et al., 2009) known to modulate brain arousal (Berridge and
Waterhouse, 2003; Maness et al., 2022). The noradrenergic LC system
balances cortical excitation and inhibition by thalamocortical alpha

Fig. 1. Estimated Hamilton Rating Scale for Depression (HRSD-17) scores of high and low arousal stability groups in the (A) sertraline and (B) placebo arm based on
the predicted values of the mixed-model repeated measures analyses. (C) Estimated ΔHRSD-17 values (baseline-week 4, in percentages) in high and low arousal
stability groups in the placebo and sertraline arms. In the sertraline arm, patients with high arousal stability at baseline showed a more pronounced reduction of the
HRSD-17 score as compared to patients with low arousal stability at baseline, while in the placebo arm, the effect went in the opposite direction.
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synchronization (Dahl et al., 2022), thereby modulating cortical states
(Weiss et al., 2024). Thus, we speculate that the depressive symptom
reduction may be partially mediated by the noradrenergic LC system, as
postulated by the arousal regulation model of affective disorder (Hegerl
and Hensch, 2014).

There are several limitations to the current study. The analyses uti-
lized a previously published dataset, and the examined parameter and
outcome measures were not part of the original study analysis plan,
although secondary analyses had been intended (Petkova et al., 2017)
and we chose the outcome measures a priori. VIGALL analyses were
performed in a dataset that had been processed using a different stan-
dard procedure concerning artifact correction than previous studies
utilizing VIGALL. Moreover, VIGALL-based measures (based on 15–20
min EEG recordings) have been shown to have good validity (Jawinski
et al., 2017; Huang et al., 2018) and reliability (Huang et al., 2015), but
validation studies of VIGALL parameters based on shorter
EEG-recordings are missing. However, in a feasibility studywe were able
to demonstrate the applicability of this algorithm in the EMBARC
dataset (Ulke et al., 2019a). The 3-way interaction of arousal group,
treatment and time is in part based on baseline HRSD-17 differences
between high/low arousals group in the placebo arm. Although effect
sizes concerning ΔHRSD-17 were moderate in either arm, their direction
nonetheless supported the specificity of the effect. Finally, because the
original study used relatively strict inclusion criteria, results may not
easily generalize to other samples. Strengths include the study design,
the harmonization of EEG data acquisition and processing across study
centers and the sample size.

5. Conclusion

As hypothesized, higher arousal stability specifically predicted
treatment response to sertraline but not to placebo. Replications in in-
dependent samples are warranted. Before considering arousal stability
for inclusion in a composite index for personalized treatment decisions
in the context of the EMBARC study, as described by Petkova et al.
(2017), the predictive accuracy of this biomarker, alone and in combi-
nation with other biomarkers, should be tested in an adequately pow-
ered sample.
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