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ABSTRACT
BACKGROUND: Neurocognitive factors including aberrant reward learning, blunted GABA (gamma-aminobutyric
acid), and potentiated stress sensitivity have been linked to anhedonia, a hallmark depressive symptom, possibly
in a sex-dependent manner. However, previous research has not investigated the putative associations among
these factors or the extent to which they represent trait- or state-based vulnerabilities for depression.
METHODS: Young adults with current major depressive disorder (MDD) (n = 44), remitted MDD (n = 42), and healthy
control participants (HCs) (n = 44), stratified by sex assigned at birth, underwent magnetic resonance spectroscopy to
assess macromolecular contaminated GABA (GABA1) and then a reward learning task before and after acute stress.
We assessed changes in reward learning after stress and associations with GABA1.
RESULTS: Results revealed blunted baseline reward learning in participants with remitted MDD versus participants
with current MDD and HCs but, surprisingly, no differences between participants with current MDD and HCs. Reward
learning was reduced following acute stress regardless of depressive history. GABA1 in the rostral anterior cingulate
cortex, but not the dorsolateral prefrontal cortex, was associated with reduced baseline reward learning only in female
participants. GABA1 did not predict stress-related changes in reward learning.
CONCLUSIONS: To our knowledge, this is the first study to investigate associations among GABA, reward learning,
and stress reactivity in current versus past depression. Hypothesized depression-related differences in reward
learning did not emerge, precluding claims about state versus trait vulnerabilities. However, our finding that
blunted GABA was associated with greater reward learning in female participants provides novel insights into sex-
selective associations between the frontal GABAergic inhibitory system and reward processing.

https://doi.org/10.1016/j.bpsc.2024.02.009
The prevalence of major depressive disorder (MDD) has been
rising (1), with 17%of young adults reporting at least onepast-year
depressive episode (2). Anhedonia, or the loss of interest or
pleasure in activities, is a hallmark symptom of MDD that is
associated with poor prognosis, predicting treatment resistance,
functional impairment, and suicidal ideation above and beyond
other depressive symptoms (3). As such, elucidating behavioral or
neurochemical mechanisms that underlie anhedonia is a priority.
Furthermore, the extent to which mechanisms of anhedonia and
MDD are state or trait based remains an unanswered question.
Studies examining whether correlates of MDD persist after full
remission are needed to identify putative targets for preventing
future episodes. Finally, testing for sex-dependent mechanisms is
needed given elevated rates of depression in females (4).
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Reward Learning in Depression

Reduced reward learning is a well-established behavioral
manifestation of anhedonia (5,6), but it is unclear whether
these differences are state based or represent a more persis-
tent vulnerability. For example, adults with current MDD
developed a lower response bias toward a more frequently
rewarded stimulus than control participants, and this effect
was correlated with anhedonia severity (7,8). Blunted reward
learning also emerged in remitted MDD (rMDD), as well as in
never-depressed, asymptomatic offspring of parents with
MDD, suggesting a possible trait-level vulnerability (9–11).
Studies that include past and current depression in the same
sample are needed to clarify the state- versus trait-like nature
of reward deficits in MDD.
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The Role of Stress. Stress is a well-established contributor
to depression and anhedonia (5,12), and altered reward learning
is strongly implicated in the relationship between stress and
depression (5). Chronic stress reliably reduces reward motivation
in animals and humans and may sensitize an organism to the
effects of subsequent stressors (12–16). Meanwhile, research on
the effects of acute stress on reward learning has produced
mixed results, with studies reporting both acute stress-induced
increases (17,18) and decreases in reward learning (12,19–21).
Thus, while aberrant reward learning is clearly linked to chronic
stress and depression, the specific relationship between acute
stress and reward learning merits further investigation.

Furthermore, few studies have examined whether reward
response deficits under stress represent a state- or trait-
dependent marker for depression. Greater stress-induced
blunting in reward learning was associated with current
anhedonia in a community sample (20). To our knowledge, the
association between reward learning and stress in rMDD has
not been tested. Reward response deficits may moderate the
effects of stress on depression (a trait-level marker), develop
alongside depression (a state-dependent marker), or mediate
the relationship between stress and depression (13).

The Role of GABA. Alongside stress, atypical signaling of
GABA (gamma-aminobutyric acid) has been implicated in
depression (22) and anhedonia more specifically (23,24). Studies
have described blunted GABA in both the anterior cingulate
cortex (ACC) and dorsolateral prefrontal cortex (dlPFC) in current
and past MDD (23–28). However, the findings have been mixed
overall (29–32) and generally based on small sample sizes (all but
one group analysis utilized N , 81) (23–32).

Some early preclinical and clinical evidence has supported the
notion that GABA deficits may contribute to depression via
impaired reward processing (33). While the precise neural circuitry
that underlies this effect remains poorly understood, prefrontal
cortical projections are known to innervate classic reward areas
including the striatum and ventral tegmental area (34). Moreover,
preclinical findings have shown that infusion of a GABA antago-
nist into the PFC interferes with reward sensitivity and valuation,
which may be due to downstream effects in the nucleus
accumbens (35). Meanwhile, the results of initial studies of ACC
GABA and reward have been mixed. In a study of 37 healthy
participants, higher ACC GABA during the baseline condition of a
reward task predicted better subsequent learning performance
(36); in contrast, another study found that higher ACC GABA at
baseline predicted poorer learning on a reward task in 30 healthy
participants (37). Clearly, additional studies are needed.

Furthermore, whether this putative association between
GABA and reward learning is modulated by sex remains largely
unexplored, although early research indicates a nuanced
relationship. Females with depression have been found to have
larger reductions in ACC GABA interneurons than males, while
males with depression show a greater reduction in synthesiz-
ing enzymes in the ACC (38). GABA signaling has also been
shown to be suppressed by estrogens in ex vivo and animal
work (39). Furthermore, there is initial preclinical evidence of
sex differences (i.e., stronger in females) in the associations
between alterations in cortical GABAergic signaling and dif-
ferences in learning, although the directionality of GABAergic
effects on learning have been mixed (40,41).
Biological Psychiatry: Cognitive Neuroscience and N
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Despite evidence connecting both GABA and stress to
aberrant reward learning, the role of GABA in stress-induced
reward response deficits has received little study. Czéh et al.
(42) found that rats that developed anhedonic-like behavior
under chronic stress showed fewer neuropeptide Y-positive
GABAergic neurons in the infralimbic cortex than stress-
resilient rats, possibly related to stress-induced alterations in
reward learning. Sex differences have been found in the
structure and function of brain regions that are involved in
stress and reward circuitry in humans (43–46), but to our
knowledge, they have not been assessed in the context of
GABA and stress-induced changes in reward learning.
Research is needed directly probing the relationship between
acute stress, sex, reward, and GABA.
The Current Study

To address these gaps, the current study examined associations
among reward learning, GABA, sex, and acute stress sensitivity
in current and past depression. Specifically, we hypothesized the
following: 1) Reward learning would be blunted in participants
with lifetime depression compared to healthy control participants
(HCs) (indicating a trait-level vulnerability), but particularly among
those with current compared to remitted MDD (a state-
dependent change), regardless of sex. 2) Reward learning
would decrease after a stress induction across all participants,
and especially in those with lifetime depression (i.e., either cur-
rent or remitted MDD) versus HCs, indicating a trait-level
vulnerability, regardless of sex. 3) Higher rostral ACC (rACC)
and dlPFC macromolecular-contaminated GABA (GABA1)
would be associated with greater reward learning across all
participants, with the strongest association among females. 4)
Higher rACC and dlPFC GABA1 would buffer against potential
changes in reward learning after a stress induction across all
participants, with the strongest association among females.

METHODS AND MATERIALS

Participants

A sample of 130 young adults (ages 18–25 years [mean = 21.3,
SD = 2.2]; balanced by sex assigned at birth) was recruited
from the greater Boston area. The sample comprised 3 groups:
current depression (MDD, n = 44), rMDD (n = 42), and HCs with
no psychopathology history (n = 44). See Table 1 for de-
mographics and the Supplement for more detail.

Procedures: Screening Session

Participants provided informed consent in compliance with the
Mass General Brigham Human Research Protection Program.
Participants were assessed for lifetime psychopathology via
the Structured Clinical Interview for DSM-5 (47), clinician-rated
Quick Inventory of Depressive Symptomatology (48), and
Hamilton Depression Rating Scale (49) by a master- or Ph.D.-
level clinician. See Table 2 for clinical characteristics of the
sample and the Supplement for detailed eligibility criteria,
interrater reliability metrics, and quality control steps. Partici-
pants who met criteria for nondepressive psychiatric disorders
were excluded, except for those with anxiety (when secondary
to MDD) and cannabis use disorders due to high rates of co-
morbidity (50,51). Participants were excluded if they were
taking psychoactive medications.
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Table 1. Demographic Characteristics of Study Participants

MDD,
n = 44

rMDD,
n = 42

HC,
n = 44

Total,
N = 130

Age, Years 20.8 (2.1) 21.6 (2.0) 21.4 (2.3) 21.3 (2.2)

Sex

Assigned female at birth 50.00% 52.38% 47.73% 50.00%

Assigned male at birth 50.00% 47.62% 52.27% 50.00%

Ethnicity

Hispanic or Latine 25.00% 9.52% 11.36% 15.38%

Non-Hispanic or Non-Latine 75.00% 90.48% 88.64% 84.62%

Race

American Indian or
Alaskan Native

0.00% 0.00% 0.00% 0.00%

Asian 15.91% 11.90% 27.27% 18.46%

Black or African American 11.36% 4.76% 11.36% 9.23%

Native Hawaiian or
Other Pacific Islander

0.00% 2.38% 0.00% 0.77%

Multiracial 6.82% 11.90% 9.09% 9.23%

White 56.82% 66.67% 50.00% 57.69%

Undisclosed 9.09% 2.38% 2.27% 4.62%

Education

High school 20.45% 2.38% 20.45% 14.62%

Some college 50.00% 54.76% 20.45% 41.54%

4-year college degree 18.18% 30.95% 27.27% 25.38%

Postgraduate 9.09% 11.90% 25.00% 15.38%

Undisclosed 2.27% 0.00% 6.82% 3.08%

Family Annual Income

,$10,000 11.36% 11.90% 18.18% 13.85%

w$10,000–$24,999 18.18% 9.52% 9.09% 12.31%

w$25,000–$49,999 27.27% 16.67% 18.18% 20.77%

w$50,000–$74,999 15.91% 9.52% 13.64% 13.08%

w$75,000–$99,000 18.18% 16.67% 15.91% 16.92%

.$100,000 9.09% 35.71% 22.73% 22.31%

Undisclosed 0.00% 0.00% 2.27% 0.77%

Values are presented as mean (SD) or %. The table shows descriptive statistics
for self-identifieddemographic information split by diagnostic group. Educationwas
measured using number of years completed rather than degrees obtained and was
operationalized as 12 years = high school, 13 to 15 years = some college, 16 years =
4-year college degree, and 171 years = postgraduate. If financially independent,
participants were instructed to report only personal income; if participants were
financially dependent, they were instructed to include parental or guardian income.

HC, healthy control participant; MDD, major depressive disorder; rMDD,
remitted major depressive disorder.

Table 2. Clinical Characteristics of Study Participants

Characteristic
MDD,
n = 44

rMDD,
n = 42

HC,
n = 44

Total,
N = 130

Depression Metrics

SHAPS 33.9 (5.0) 18.4 (4.0) 19.2 (4.6) 23.8 (8.4)

QIDS 14.2 (2.7) 0.7 (1.1) 0.4 (0.8) 4.3 (6.3)

HDRS 16.6 (4.0) 1.1 (1.5) 0.3 (0.8) 6.1 (7.9)

Number of depressive
episodes

2.3 (1.3) 1.6 (0.9) – 1.9 (1.2)

Age of depression onset, years 16.9 (3.5) 17.7 (2.4) – 17.2 (3.0)

Secondary Comorbidities

Generalized anxiety disorder 22.73% – – 7.69%

Social anxiety disorder 15.91% – – 5.38%

Specific phobia 9.09% – – 3.08%

Cannabis use disorder 2.27% 4.76% – 2.31%

Values are presented asmean (SD) or%. The table shows clinical characteristics
of the participants split by diagnostic group. Participants could report amaximumof
5 depressive episodes (.5 episodes or “too many to count” were coded as 5 to
facilitate computing the mean and SD). All anxiety disorders were required to be
secondary to MDD to meet eligibility requirements. rMDD and HCs were ineligible
if they met criteria for a current anxiety disorder, and HCs were also ineligible if
they met criteria for a cannabis use disorder. Participants with any current
psychiatric comorbidities that are not listed above (e.g., panic disorder,
posttraumatic stress disorder, agoraphobia, obsessive-compulsive disorder,
eating disorders) were ineligible for the study regardless of diagnostic group.

HC, healthy control participant; HDRS, Hamilton Depression Rating Scale;
MDD, major depressive disorder; QIDS, Quick Inventory of Depressive
Symptomatology; rMDD, remitted MDD; SHAPS, Snaith-Hamilton Pleasure Scale.
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Procedures: Scanning Session

Scanning session procedures included 1) resting-state mag-
netic resonance spectroscopy, 2) subsequent functional
magnetic resonance imaging with a psychosocial stressor
(44,52), and 3) 2 runs of a reward learning paradigm (proba-
bilistic reward task [PRT]) (53) completed outside the scanner
before and after a second psychosocial stressor. Figure 1
depicts the flow of study procedures.

Spectroscopy. Voxels were placed in the rACC (17.5 mL;
35 3 20 3 25 mm3) and left dlPFC (18.75 mL; 25 3 30 3

25 mm3) using a T1-weighted structural image. GABA1 was
acquired via a Meshcher-Garwood point resolved spectros-
copy sequence. Current macromolecular suppression
608 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
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techniques suffer from notable limitations (e.g., frequency drift)
(54) and thus were not employed. GABA1 was fit from the dif-
ference spectrum using LCModel (55). See Duda et al. (56) for
further description of magnetic resonance spectroscopy methods
and reliability analyses and the Supplement for quality assurance
procedures. Group differences in rACC and dlPFC GABA1 are
reported separately (57). Results showed significantly higher
rACC GABA1 in HCs than in participants with a lifetime history
of depression, consistent with a trait-level vulnerability, and no
significant group differences in dlPFC GABA1.

Initial Stress Induction. Next, participants underwent a
hybrid psychosocial stressor in the scanner comprising
the Montreal Imaging Stress Task (MIST) (58) and the
Maastricht Acute Stress Test (MAST) (59). For details
regarding functional magnetic resonance imaging findings
and the hybrid stressor, see the Supplement and Ironside
et al. (52).

PRT and Second Stress Induction. Before completing
the PRT, participants engaged in neutral activities (reading or
writing) for 90 minutes after the onset of the MIST/MAST
stressor. To assess baseline reward learning, participants
completed a first run of the PRT [prestress onset (53)] (see the
Supplement for detailed task information). Next, stress was
reintroduced by experimenters falsely informing participants
that they would need to complete the MIST/MAST stressor a
second time due to inferior performance (PRT stressor). Par-
ticipants then completed a second PRT run (poststress onset).
Stress induction via the threat of an upcoming stressor such as a
cold pressor task has been used in previous literature and shown
une 2024; 9:606–615 www.sobp.org/BPCNNI
 from ClinicalKey.com by Elsevier on June 07, 2024. 
opyright ©2024. Elsevier Inc. All rights reserved.

http://www.sobp.org/BPCNNI


Figure 1. A schematic outlining study procedures at the scanning session. Neuroimaging scans began with the acquisition of GABA1 (gamma-aminobutyric
acid with macromolecular contamination) in the rostral anterior cingulate cortex and dorsolateral prefrontal cortex at rest followed by functional magnetic
resonance imaging (fMRI) scans while participants completed a hybrid psychosocial stressor. After exiting the scanner, participants sat quietly while either
reading or writing neutral materials to allow cortisol to return to baseline. Participants then completed the first administration of the probabilistic reward task
(PRT) (approximately 105 min after the initiation of the Montreal Imaging Stress Task and Maastricht Acute Stress Test [MIST/MAST] stressor), after which
stress was reintroduced when a study team member informed them that they would need to repeat the MIST/MAST stressor due to poor performance. A
second, poststress administration of the PRT was then completed before participants were debriefed and the study visit concluded. MRS, magnetic resonance
spectroscopy.
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to reliably induce a stress response [for a summary, see (60)].
Furthermore, it has been shown that repeated administrations of
a socially evaluated cold pressor test continued to induce a
stress response (utilizing a 24-hour delay between administra-
tions) [see (61)]. A response bias metric for the PRT was
computed consistent with previous studies (7) to assess reward
learning (6). PRT response bias has been shown to have modest
test-retest reliability over a much longer period of 3 weeks (r =
0.59, p , .004) (D. Dillon, Ph.D., et al., unpublished data,
December 2023).

Cortisol. Serum cortisol was collected at 9 time points via a
saline-lock intravenous line (see the Supplement for details).
Stress-induced cortisol reactivity was calculated using area
under the curve with respect to increase (AUCi) (62) as a
manipulation check.

Affective Ratings. As a further stress manipulation check,
Visual Analog Mood Scale measuring tenseness versus
relaxedness, hostility versus friendliness, and sadness versus
happiness were administered at 6 time points. Changes in
affect were calculated with AUCis.

Analysis

Analyses were performed in RStudio. Continuous predictors
were mean centered, and categorical variables were contrast
coded, which yielded 2 clinical contrasts: healthy versus clin-
ical (combined MDD and rMDD) and MDD versus rMDD.
Alternate group contrasts (HC vs. MDD; rMDD vs. combined
HC and MDD) were also run for the reward learning models to
test for hypothesized differences between currently depressed
and healthy participants. All mixed-effects models included
fixed effects of sex and a random intercept for subject, and
stress models also included a fixed effect of condition and
random slope for condition (pre- vs. poststress onset). Outliers
were removed based on Cook’s distance. For specific details
of each model and additional results based on dimensional
symptoms of depression, see the Supplement.

RESULTS

Manipulation Checks: Affect and Cortisol

One-sample t tests showed that cortisol (AUCi) increased
following the MIST/MAST stressor (t91 = 7.08, p , .001) and
returned to baseline after 90 minutes (i.e., no difference from
Biological Psychiatry: Cognitive Neuroscience and N
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baseline (t97 = 20.25, p = .800). In contrast, following the
second introduction of stress (PRT stressor), participants
showed a significant decrease in cortisol over 90 minutes
(t87 = 25.80, p , .001) despite reporting heightened tension
(t108 = 9.46, p , .001), sadness, (t109 = 3.71, p , .001), and
hostility (t108 = 5.20, p , .001).

To better understand the diminished cortisol reactivity in
response to the second stressor, an exploratory linear model
assessed the association between cortisol responses (AUCis)
to the MIST/MAST and PRT stressors and revealed a signifi-
cant negative association, t86 = 24.04, p , .001 (Figure S1).
These data indicate a possible cortisol habituation effect, with
greater cortisol responses to the initial stress induction pre-
dicting lower cortisol reactivity during stress reintroduction
(see the Supplement for group analyses of cortisol findings).

Hypothesis 1: Reward Learning and Depression

A mixed-effects model predicting baseline reward learning
with fixed effects of block, group, sex, the interactions of group
and sex, and a subject-specific random intercept revealed no
significant reward learning differences between the current
MDD group and HCs (t108 = 0.67, p = .504) or between the
MDD group and HCs (t108 = 0.47, p = .641), in contrast to our
hypotheses. Interestingly, participants with rMDD had signifi-
cantly blunted reward learning compared to those with current
MDD and HCs (t108 = 22.12, p = .036). An unexpected inter-
action between sex and the HC versus MDD contrast emerged
(t108 = 2.30, p = .023), but post hoc tests run separately for
males and females revealed no significant group differences in
reward learning.

Hypothesis 2: Reward Learning After Stress

A similar mixed-effects model was run predicting pre- and
poststress reward learning, adding a fixed effect of condition
(pre- or poststress onset), its interactions with group and sex,
and a random slope for condition (Figure 2). Results revealed
that participants’ response bias was significantly lower post-
stress onset versus prestress (t107 = 22.85, p = .005),
consistent with our hypotheses. Contrary to our hypotheses,
group did not interact with condition to predict response bias
(ps . .087). An unexpected simple effect of sex emerged, with
female participants showing greater reward learning, averaging
across stress (t105 = 2.05, p = .043). Finally, results also
revealed an effect of block (t224 = 5.45, p , .001), reflecting
improvements in performance during the task.
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Figure 2. Box plots of pre- and poststress reward learning operationalized as response bias on the probabilistic reward task, by clinical group and sex
assigned at birth. Outliers were removed based on Cook’s distance values . 4/n. HC, healthy control participant; MDD, major depressive disorder; rMDD,
remitted MDD.
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Hypothesis 3: GABA1 and Reward Learning

Next, a similar mixed-effects model to hypothesis 1 was run
predicting baseline reward learning, but with GABA1 (rACC or
dlPFC, run separately) replacing clinical group1. Results
revealed an interaction between sex and rACC GABA1
(t92 =22.30, p = .024) and a simple effect of block (t95 = 2.44, p =
.017) (Figure 3). Post hoc mixed-effects models run separately
by sex revealed no relationship between rACC GABA1 and
baseline reward learning among male participants (t48 = 0.48,
p = .634); however, contrary to our hypotheses, there was a
significant negative relationship between rACC GABA1 and
1We evaluated the relationship between GABA1 and reward
learning across all participants (without group as a covariate)
because we did not hypothesize that the strength of the rela-
tionship between GABA1 and reward learning would differ by
diagnosis and were concerned about limited power as well as
collinearity between GABA1 and group. Additionally, given that
we predicted that GABAergic-related impairments in reward
processing might be one mechanism by which depression is
maintained, there was concern that controlling for depression
might mask this effect.

610 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
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reward learning for female participants (t44 = 22.45, p = .018).
Notably, an exploratory linear model revealed no overall sex
differences in rACC GABA1 (t101 = 0.18, p = .855). Contrary to
our hypotheses, a similar model with dlPFC replacing rACC
GABA1 revealed no significant effect of dlPFC GABA1 on
baseline reward learning (t97 =20.62, p = .535) or a sex3 dlPFC
GABA1 interaction (t97 = 20.27, p = .786).

Hypothesis 4: GABA1 and Reward Learning After
Stress

Next, the mixed-effects model predicting reward learning pre-
and poststressonsetwas estimatedwithGABA1 levels replacing
clinical group. Contrary to our hypotheses, results revealed no
significant interaction between condition and rACC GABA1
(t95 = 20.31, p = .758) or dlPFC GABA1 (t105 =20.23, p = .823),
and sex did not moderate these relationships (ps . .399).

DISCUSSION

In the current study, we examined—to the best of our knowl-
edge, for the first time—putative associations among GABA,
reward learning, and stress sensitivity in a moderately large
une 2024; 9:606–615 www.sobp.org/BPCNNI
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Figure 3. Prestress response bias by sex and (A) rostral anterior cingulate cortex (rACC) GABA1 (gamma-aminobutyric acid with macromolecular
contamination) or (B) dorsolateral prefrontal cortex (dlPFC) GABA1. Reward learning was operationalized as response bias on the probabilistic reward task.
Outliers were removed based on Cook’s distance values . 4/n. Females showed a significant negative relationship between rACC GABA1 and baseline
response bias. The relationship between rACC GABA1 and response bias was not significant for males. There were no significant associations between dlPFC
GABA1 and response bias.
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sample of young adults with current and past depression.
Contrary to hypothesis 1, we found no baseline differences in
reward learning between participants with current depression
Biological Psychiatry: Cognitive Neuroscience and N
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and HCs. However, we observed reduced baseline reward
learning in rMDD compared to current depression or no history
of psychopathology. This finding is consistent with previous
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research that has shown blunted response bias in rMDD
(10,11), although these earlier studies did not include a
currently depressed comparison group. Previous studies
interpreted diminished response bias in rMDD as evidence of a
trait-level abnormality, and the current results partially support
this hypothesis. However, the lack of blunted response bias in
our current MDD group complicates the interpretation, and
thus this question remains unanswered. The reasons that we
did not replicate blunted reward learning in the MDD group are
unclear, although several explanations are possible. First, our
MDD group may have experienced less severe depressive
episodes than our remitted group for 2 reasons: 1) individuals
may have been less motivated to enroll in studies during a
severe depressive episode, whereas remitted participants with
past severe episodes may have been more likely to participate;
and 2) recent psychiatric medication use was grounds for
exclusion, and thus participants experiencing severe current
depression that required medication could not participate.
Second, our MDD sample may have less severe depression
than samples from previous studies with the PRT that have
utilized inpatient samples [e.g., (8)]. Third, only 27.3% of our
participants met criteria for the melancholic subtype of
depression, which has been specifically associated with
reduced response bias on the PRT (63). In addition to differing
sample characteristics, our failure to replicate blunted reward
learning in current MDD could also relate to the heterogeneity
of depression, which may reflect multiple phenotypes (5).

In support of hypothesis 2, we found that reward learning
was lower after stress, replicating results of past studies
(19,20,64). This could reflect transient stress-induced anhe-
donic behavior across the sample. Contrary to our hypotheses,
we found no significant differences in stress-related changes in
reward learning between participants with lifetime depression
and control participants (20,65), and thus, claims cannot be
made about whether stress-related changes in reward learning
represent a state versus trait vulnerability for depression. The
lack of a cortisol response to the second stressor should be
considered when interpreting these results; however, the
elevated self-reported negative affect after stress suggests
that the stress induction was successful, and the finding of a
cortisol habituation effect (i.e., greater early cortisol respon-
siveness predicting subsequently blunted cortisol reactivity)
may explain the surprising lack of a cortisol response.

Contrary to hypothesis 3, we did not find an overall rela-
tionship between GABA1 and baseline reward learning.
Interestingly, results revealed a sex 3 rACC GABA1 interac-
tion on baseline response bias, with GABA1 being negatively
associated with reward learning among females but not males,
in contrast to our hypotheses. These sex-related functional
differences in the rACC mirror structural differences by sex in
this region (45). Interpretation of these findings is challenged
by a paucity of studies that have probed sex differences in the
relationship between GABA and reward learning. In a preclin-
ical study, cortical GABA was associated with greater
depressive behavior specifically in females, possibly related to
alterations in PFC and amygdala function (40), although reward
learning was not assessed. Scholl et al. (37) demonstrated a
similarly negative relationship between dorsal ACC GABA and
the use of learned information in decision making (a measure of
reward learning) but did not directly probe response biases or
612 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
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examine sex differences. Future studies are needed to repli-
cate a negative relationship between ACC GABA and reward
learning in female participants. Finally, claims about trait
versus state vulnerabilities cannot be made with these models,
because group predictors were omitted due to an expectation
that GABA would serve as a mechanism of blunted reward
learning (and thus that this association would not depend on
depression status). We expected reduced rACC GABA to be
associated with lower reward learning, because both blunted
rACC GABA and reward learning have been implicated in
depression. However, our findings that lower rACC GABA was
associated with greater reward learning suggests that these
associations may be more complex than was previously
thought.

In contrast to hypothesis 4, GABA levels did not explain
variability in reward learning under stress, and sex did not
moderate these effects. While GABA has been connected to
anhedonic behavior under chronic stress in rats (42), studies
have not yet examined the relationship between GABA and
acute stress-induced changes in reward learning in humans.
Thus, additional research is needed to substantiate these
findings, especially with a larger sample size for testing 3-way
interactions.

The current study has a number of strengths, including a
moderately large unmedicated sample with current or past
depression, which allowed for the examination of possible
state or trait effects. Additionally, participants who were
assigned male and female at birth were recruited in equal
numbers to test possible sex effects. Female participants were
scanned during the follicular phase of their menstrual cycles to
control for cyclical changes in neural GABA levels (66), and the
visits consistently began in the early afternoon to account for
diurnal variation in cortisol levels (67). Finally, inclusion criteria
were strict to limit confounds.

However, several important limitations should be consid-
ered. A study utilizing a larger sample would have better power
to capture interaction effects, and it is possible that some of
our null findings (especially the 3-way interaction between sex,
stress, and GABA1) are due to a lack of power. Additionally,
the initial MIST/MAST stressor may have impacted subsequent
prestress PRT results, although there was a .90-minute gap
between these procedures to allow cortisol levels to return to
baseline. The lack of a comparison condition for the second
stressor also prevents ruling out practice or fatigue effects on
reward learning, although participants reported increased
tension after the stress induction, and our results are consis-
tent with previous studies that have shown stress-induced
reductions in response bias (12,20). The ecologic validity of
laboratory-based stressors also limits generalizability, and we
did not collect measures of participant life stress. The current
study also relied on a single measure of reward learning (the
PRT); applying a battery of tasks would likely result in a more
generalizable assessment of reward processing. Furthermore,
the use of categorical measures of depression may have
masked more specific associations between depressive
symptoms and reward learning (although see the Supplement
for nonsignificant dimensional analyses). Additionally,
acquiring GABA1 via magnetic resonance spectroscopy is
technically challenging, with evidence of only moderate
test-retest reliability in the rACC (56). Finally, findings of sex
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differences may stem from biology or the social environment and
often reflect overlapping distributions of traits (68). Research
should disentangle the effects of sex at birth, the social envi-
ronment, and diverse gender identities on these factors.

Conclusions

The current study is a novel investigation into relationships
among 3 key neurocognitive correlates of depression (GABA,
reward learning, and stress sensitivity) in both symptomatic
and remitted young adults with depression. Contrary to our
expectations, we found reduced reward learning at baseline
only in participants with remitted, but not current, depression
and no group differences in changes in reward learning
following stress. Given the mixed nature of these findings, we
cannot answer the question of whether baseline or stress-
induced reward learning deficits in depression are state or trait.

Nevertheless, our results contribute several important findings
to the literature. First, we replicated findings of blunted reward
learning after stress (11,19) using a within-subject design and a
relatively large sample, thereby adding to the body of literature
indicating that stress may alter reward-related behavior. We also
found a sex-specific association between GABA and reward
learning, with lower rACC GABA being associated with greater
reward learning only in female participants. Results challenge
previous hypotheses [e.g., (69)] that blunted GABA is associated
with anhedonia via impaired reward processing but are consis-
tent with preclinical work indicating an association between
cortical GABA and depressive behaviors in female mice (40).
Notably, this study is one of the first to translate preclinical re-
sults of sex-dependent associations between GABA and
depressive behaviors to a human population.

Our results raise a number of questions, including possible
sex differences in the relationship between GABA and reward
learning. Replication is needed to substantiate these findings,
particularly in a larger sample, and to further explore the re-
lationships between GABA, sex, stress, and reward learning in
depression. Better understanding the associations among
these neurocognitive mechanisms may be an important step
toward elucidating the etiology of depression.
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Supplemental Information 
 

Methods 
Eligibility Criteria 

To be eligible for the major depressive disorder (MDD) group, participants were required 
to meet criteria for a current depressive episode according to the Structured Clinical Interview 
for DSM-5 [SCID-5 (1)], have a minimum Beck Depression Inventory-II [BDI-II; (2)] score of 
13, and either a Quick Inventory of Depressive Symptomatology [QIDS-C (3)] score above 10 or 
a  Hamilton Depression Rating Scale (4) score above 15. As the SCID-5 assesses symptoms in 
the past month, these additional score requirements were designed to ensure symptoms persisted 
at the time of the session. To be eligible for the remitted MDD (rMDD) group, participants were 
required to meet criteria for one fully-remitted depressive episode lasting at least two months (or 
two prior episodes lasting at least two weeks) in the past five years, given concerns around 
possible biases in retrospective reporting. RMDD participants were required to be in remission 
for at least 8 weeks (i.e., with no anhedonia or low mood and with no more than two sub-
threshold symptoms among the other seven diagnostic criteria of depression). On average, rMDD 
participants’ most recent episode had remitted 1.5 years prior (range = 2 months-4.5 years). 
Healthy control (HC) participants were required to have no history of psychopathology 
according to the SCID-5. Both rMDD and HC participants were additionally required to have a 
current BDI-II score of less than or equal to 10, QIDS-C score of less than or equal to 5, and 
HDRS score of less than or equal to 7. Scores were entered into REDCap by trained research 
assistants and entries were checked for accuracy by a second research assistant. Diagnostic 
(SCID) interviews were performed by masters- or PhD-level clinicians, who underwent various 
calibration processes. An inter-rater reliability analysis for the current study demonstrated high 
diagnostic agreement on the SCID-5 depression diagnosis (kappa coefficient=0.94), HDRS score 
(ICC = 0.95), and QIDS score [ICC=0.96; see supplement of (5)]. 

Participants were excluded for recent recreational substance use aside from marijuana, 
greater than five lifetime alcohol-related blackouts, or an alcohol use disorder, given the well-
established relationship between alcohol and neural GABA levels (6).   
 
Scanning Session 

The scanning session with spectroscopy was completed within a month of the initial 
screening visit. Female participants completed their visit during the follicular phase of their 
menstrual cycle (1-11 days after cycle onset, M = 4.5 days), given known effects of the 
menstrual cycle on neural GABA levels (7) and stress-induced cortisol secretion (8)]. 

 
Spectroscopy 

GABA+ datapoints were excluded based on signal-to-noise ratios < 20 and linewidth 
values > .07 ppm. Two additional participants were excluded for severe baseline distortion based 
on visual inspection by MR physicists (XC and FD). After quality assurance, we had a sample of 
NdlPFC = 114 and NrACC = 108.  
 
Initial Stressor 

Participants completed the Montreal Imaging Stress Test [MIST (54)] and the Maastricht 
Acute Stress Task [MAST (55); together “MIST/MAST”] (See Figure 1 in main text). The 
MIST involved blocks of arithmetic problems (some timed and some untimed) with real-time 
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feedback provided about performance. Between the first and second block, participants 
completed the MAST stressor while lying on the scanner table, in which two experimenters 
acting as “doctors” asked participants to perform blocks of mental arithmetic (counting backward 
from a large number in steps of 17) interspersed with placing their hand in ice water. Participants 
then completed three more blocks of the MIST. Between the third and fourth block of the MIST, 
a “doctor” told the participant via the intercom that their performance was below average to 
induce further stress. Affective ratings (see Affective Ratings section of main text) and serum 
cortisol (see Cortisol section below) were utilized to assess stress response. 
 
Probabilistic Reward Task (PRT) 

Participants completed the 2-block version of the PRT (9), with 100 trials per block. On 
each trial of the PRT, participants were briefly (150 ms) shown one of two highly similar faces 
and were asked to identify which stimulus was shown by pressing a corresponding key. To 
induce a response bias (serving as a measure of reward learning), some correct responses yielded 
a reward of $0.20 based on an asymmetric reward ratio, with correct identifications of one face 
(rich stimulus) rewarded 3x more frequently than the other face (lean stimulus). Participants 
were informed that only some correct responses would be rewarded but were not told of the 
asymmetric reward ratio. Participants completed the task twice, before and after undergoing a 
psychosocial stressor (“PRT Stressor”, in which they were falsely informed they would need to 
redo the earlier hybrid MIST/MAST stressor in the scanner due to inferior performance). To 
avoid practice effects, separate versions of the task were administered pre vs. post stress onset 
(counterbalanced across participants): a “mouth” version with two highly similar mouths (11mm 
vs. 10mm) and a “nose” version with noses of similar lengths (5.3mm vs. 5.0mm). To ensure 
data quality, trials with response times of less than 150 ms or greater than 2500 ms were 
excluded from analyses. Runs were excluded if at least one block had 1) >20 invalid trials (e.g., 
due to outlier response times), 2) fewer than 20 rich rewarded trials or six lean rewarded trials, 
or 3) a ratio of rewards between rich and lean trials of less than 2:1. 

As a measure of reward learning, a response bias metric was calculated for each block as: 
 

Response bias: log b = 1
2
𝑙𝑙𝑙𝑙𝑙𝑙 �𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
�, 

 
with 0.5 added to each “rich” and “lean” parameter in the formula, such that response bias could 
be computed even when one of the parameters was equal to zero. 
 
Cortisol 

The IV was placed at the start of the session at least one hour prior to the beginning of the 
magnetic resonance spectroscopy scan. A baseline blood draw was collected immediately before 
the onset of the MIST/MAST stressor (during fMRI scanning). Subsequent draws occurred every 
15 minutes following stress onset for 60 minutes, and again at 90 minutes post-stress, with the 
goal of tracking cortisol’s return to baseline (10). The draw occurring 90-minutes post-
MIST/MAST stressor was used as the baseline cortisol value for the second stressor (PRT 
stressor). Blood was then collected every 30 minutes for the 90 minutes following stress 
reintroduction (again allowing cortisol responses to return to baseline).  

A maximum of 35cc of blood was collected at each draw. Samples sat for 30 minutes to 
allow clotting before centrifuging, and were then aliquoted and stored at -80 °C. Given 
occasional difficulties maintaining a clear IV line while participants moved throughout their 
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visit, imputed values were calculated for missing serum cortisol data. These imputed values were 
based on quadratic mixed effects models that allowed for the estimation of each participant’s 
cortisol levels by time point. 
 
Analysis Plan 

First, as a manipulation check, one-sample t-tests evaluated whether tension, sadness, and 
hostility rating AUCis and cortisol AUCis were elevated after the PRT stressor. Second, a linear 
mixed effects model predicted baseline reward learning by clinical group, sex, and their 
interactions, controlling for task block (Hypothesis 1). Third, the mixed effects model was re-run 
to predict reward learning across both runs of the task, adding fixed effects of condition (pre or 
post stress onset) and its interactions with group and sex (Hypothesis 2). Fourth, the mixed-
effects model predicting baseline (pre-stress onset) reward learning was re-run, substituting 
GABA+ (either dlPFC or rACC, run separately) for clinical group (Hypothesis 3). Fifth, the 
mixed-effects model predicting overall reward learning (pre and post stress onset) was re-run 
substituting GABA+ (either dlPFC or rACC, run separately, in place of clinical group) and its 
interaction with condition and sex as predictors (Hypothesis 4).  

 
Results 

Demographics 
The three groups (HC, MDD, and rMDD) did not differ significantly by sex assigned at 

birth, X2(2) = 0.19, p = .911, age, F(2,127) = 1.40, p = .249, race, two-tailed Fisher’s exact test, p 
= .404, or ethnicity, two-tailed Fisher’s exact test, p =. 809. See Table 1 in the main text for 
more information. 
 
Manipulation Checks & Habituation Effect 

A regression model predicting cortisol AUCis after the PRT stressor with sex and group 
was not significant, F(3,85) = 2.22, p = .092, nor was a model allowing sex by group 
interactions, F(5,82) = 1.31, p = .270. 
 
Figure S1. Cortisol Responses to Repeated Stressors 
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Note. AUCi, Area Under the Curve with respect to increase; HC, Healthy Control; MDD, Major Depressive 
Disorder; MIST/MAST, Montreal Imaging Stress Task and Maastricht Acute Stress Test; PRT, Probabilistic Reward 
Task; rMDD, Remitted Major Depressive Disorder. The above graph depicts the significant negative correlation 
between participants’ cortisol responses to the initial stressor (MIST/MAST) and the subsequent stressor (PRT 
stressor), t(86) = -4.04, p < .001, with separate lines of best fit by group. There was an interaction such that rMDD 
participants showed a significantly weaker negative relationship in cortisol response to the two stressors than the 
other groups, t(81) = 2.26, p = .027. Thus, those in the MDD and HC groups showed steeper “habituation” than 
those in the rMDD group. Outliers were removed based on Cook’s D values greater than 4/n. 
 
Dimensional Measures of Depressive Symptoms and Neurocognitive Factors 
Reward Learning  
 To specifically investigate possible associations between reward learning and 
dimensional measures of depression, including current anhedonia, we also ran secondary 
analyses utilizing the Snaith-Hamilton Pleasure Scale (SHAPS), QIDS, and HDRS total scores in 
analyses in lieu of diagnostic group. Across diagnostic groups, current anhedonia was not 
significantly associated with baseline reward learning, t(103) = 0.83, p = .408, nor was either 
dimensional measure of overall depression symptoms (QIDS-C and HDRS), ps > .545.  
 
Reward Learning Under Stress 

None of the dimensional measures of depressive symptoms interacted with condition 
(pre- versus post-stress) to predict response bias before and after stress (SHAPS, t(107) = -0.76, 
p = .447; QIDS, t(103) = -0.95, p = .343; HDRS, t(111) = -1.91, p = .058). 
 
GABA 
 We also tested whether anhedonia was associated with altered GABA+ in the rostral 
anterior cingulate cortex (rACC) or dorsolateral prefrontal cortex (dlPFC). Anhedonia (SHAPS) 
did not predict GABA+ in the rACC, t(96) = -1.21, p = .229, or dlPFC, t(102) = 0.88, p = .380. 
The HDRS depression measure was not associated with rACC GABA+, t(98) = -1.45, p =.150, 
nor with dlPFC GABA+, t(104) = 0.10, p = .924. The QIDS depression measure was not 
associated with GABA+ in the rACC, t(89) = -1.10, p = .274, or dlPFC, t(92) = 0.10, p = .919. 
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