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Brain-based graph-theoretical predictive modeling to map the
trajectory of anhedonia, impulsivity, and hypomania from the
human functional connectome
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Clinical assessments often fail to discriminate between unipolar and bipolar depression and identify individuals who will develop
future (hypo)manic episodes. To address this challenge, we developed a brain-based graph-theoretical predictive model (GPM) to
prospectively map symptoms of anhedonia, impulsivity, and (hypo)mania. Individuals seeking treatment for mood disorders
(n= 80) underwent an fMRI scan, including (i) resting-state and (ii) a reinforcement-learning (RL) task. Symptoms were assessed at
baseline as well as at 3- and 6-month follow-ups. A whole-brain functional connectome was computed for each fMRI task, and the
GPM was applied for symptom prediction using cross-validation. Prediction performance was evaluated by comparing the GPM to a
corresponding null model. In addition, the GPM was compared to the connectome-based predictive modeling (CPM). Cross-
sectionally, the GPM predicted anhedonia from the global efficiency (a graph theory metric that quantifies information transfer
across the connectome) during the RL task, and impulsivity from the centrality (a metric that captures the importance of a region)
of the left anterior cingulate cortex during resting-state. At 6-month follow-up, the GPM predicted (hypo)manic symptoms from the
local efficiency of the left nucleus accumbens during the RL task and anhedonia from the centrality of the left caudate during
resting-state. Notably, the GPM outperformed the CPM, and GPM derived from individuals with unipolar disorders predicted
anhedonia and impulsivity symptoms for individuals with bipolar disorders. Importantly, the generalizability of cross-sectional
models was demonstrated in an external validation sample. Taken together, across DSM mood diagnoses, efficiency and centrality
of the reward circuit predicted symptoms of anhedonia, impulsivity, and (hypo)mania, cross-sectionally and prospectively. The GPM
is an innovative modeling approach that may ultimately inform clinical prediction at the individual level.
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INTRODUCTION
A major challenge in the treatment of mood disorders is to
distinguish between unipolar and bipolar depression and, specifi-
cally, to predict future bipolar symptoms. Current assessments often
fail to recognize the risk of developing manic symptoms in
individuals seeking treatment during a depressive episode [1, 2]. It
has been documented that up to 25% of individuals with major
depressive disorder (MDD) might actually have an undiagnosed
bipolar disorder (BD) [3], with rates reaching 50% in treatment-
resistant depression [4]. This misdiagnosis can be dangerous, as
standard pharmacotherapy (i.e., SSRIs) for unipolar depression can
trigger or exacerbate manic symptoms [5]. Given that manic
episodes can result in devastating financial, legal, and professional
consequences as well as poor prognosis [1], there is a crucial need
to identify pathophysiological mechanisms that predict the
development of bipolar symptoms.
Predictive modeling, i.e., data-driven machine-learning models,

can provide a powerful approach for predicting clinical symptoms

at the individual level. The major advantage of predictive
modeling over standard correlational/regression analyses is that
they utilize cross-validation, where the model is built on a
subsample of the data (training set), and prediction is done on a
separate subsample (testing set). This method is crucial for
increasing generalizability and reducing overfitting [6]. For
psychiatric research especially, the generalization of findings to
unseen patients is essential for clinical translation, e.g., for
developing robust biomarkers. Brain-based biomarkers can be
tailored based on circuit-level functional measures and used as
targets for therapeutic interventions, including transcranial
magnetic stimulation and neurofeedback [7, 8].
The connectome-based predictive modeling (CPM) [9] is a

cross-validation model that maps phenotype measures (e.g.,
behavior, cognition) to whole-brain patterns of functional
connections (hereafter “functional connectomes”). The CPM
utilizes a unique method for feature selection, where the
functional connections that are most strongly correlated with
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the phenotype are summed together to one brain metric. The
CPM was primarily used in healthy populations [10–12] but has
been increasingly shown to successfully model clinical conditions,
including autism [13], childhood aggression [14], and cocaine
abstinence [15].
Here, we propose a new brain-based predictive modeling

approach and apply it to prospectively predict the trajectory of
symptoms of anhedonia, impulsivity, and (hypo)mania among
treatment-seeking patients with mood disorders. By employing
graph theory to define brain predictors, our brain-based graph-
theoretical predictive modeling (GPM) critically extends the CPM.
Graph theory is a mathematical framework that enables char-
acterization of complex networks (here, the organization of the
brain) by quantifying both integrative processes and local
specialization of communities (here, of brain regions) [16].
Notably, graph-theoretical metrics have been shown to track key
clinical features of mood disorders, including depression severity
[17, 18], rumination [19], suicidal ideation [20], and treatment
response [21, 22]. Furthermore, graph-theoretical metrics have
been found to differentiate between depressed individuals with
BD and MDD [23, 24]. However, to date, most prior research
adopted a classification approach and did not attempt to predict
symptom development in individuals.
The rationale for developing the GPM comes from the

observation that complex network measures, which are derived
using theoretically-based mathematical definitions, inherently
encompass summations of connections [25]. For example, global
efficiency is a fundamental graph-theoretical metric that captures
the level of integration across the network and is based on a
summation of distances between regions. By using graph-
theoretical metrics as brain predictors, the feature selection step
of the CPM (which sums connections) can be replaced with a
theoretically driven and biologically meaningful summation of
functional connections. Importantly, the specific graph-
theoretical metric which is identified to have predictive utility
from a diverse set of possible measures can further inform the
type of brain network dysfunction that is associated with a given
symptom.
Our study goals included the following. First, using the GPM,

we aimed to predict reward-related symptoms in individuals
with mood disorders, cross-sectionally and prospectively, from
baseline neuroimaging functional connectomes. Our a priori
focus was on transdiagnostic symptoms of anhedonia, impulsiv-
ity, and (hypo)mania. Notably, most neuroimaging predictive
studies are cross-sectional, where symptoms and neuroimaging
data are both collected at baseline. However, to have clinical
utility, it is essential for a model to be able to predict the
development of future symptoms (while accounting for base-
line). To address this gap, a longitudinal clinical evaluation was
conducted.
Second, in light of the difficulty to separate between unipolar

and bipolar depression, we utilized a Research Domain Criteria
(RDoC) [26] approach. In the RDoC framework, psychiatric illness is
conceptualized as a continuum across behavioral, psychological,
and biological measurements. Thus, DSM diagnoses were not
considered in our predictive models and treatment-seeking
individuals were enrolled based on their performance on a
reward-learning task, to allow high variability in reward-related
phenotypes. Third, we aimed to examine the influence of the
cognitive state on symptom prediction. Since it has been
suggested that functional connectomes acquired during tasks
can improve prediction performance [27], we hypothesized that a
reinforcement-learning (RL) task would increase the success of
predicting reward-related symptoms. Last, we hypothesized that
network measures of the reward circuit would better predict
reward-related symptoms compared to whole-brain global
measures.

MATERIALS AND METHODS
Participants
A sample of 80 individuals with mood disorders was recruited. The sample
included 58 individuals with unipolar mood pathology (MDD, dysthymia,
MDD in partial remission) and 22 individuals with bipolar mood pathology
(BD type I or II, depressed, mixed, or hypomanic). Participants were
treatment-seeking, although none were acutely manic or suicidal. A
demographically matched sample of 32 healthy controls was also recruited
to this study but were not included in analyses in light of the study’s goal
of modeling and predicting symptoms among treatment-seeking patients.
Participants were enrolled according to their reward-learning performance
as characterized by the probabilistic reward task [28], such that each
quantile of the normative distribution of reward-learning was equally
represented (see [29] for details). Clinical diagnoses and eligibility were
evaluated using the Structured Clinical Interview for DSM-IV [30]
(Supplementary Methods). Stable antidepressants or mood stabilizing
medication were allowed. The study was approved by the Partners Human
Research Committee and participants provided written informed consent.

Study design and evaluation of reward-related symptoms
Participants underwent an fMRI scan, including (i) resting-state and (ii) an
RL task [31]. The RL dataset was previously presented [29, 32], however,
resting-state datasets were not analyzed or published before. Symptoms of
anhedonia, impulsivity, and (hypo)mania were measured at baseline in a
separate visit before the fMRI scan and at 3- and 6-month follow-ups.
Anhedonia was assessed using the Anhedonic Depression subscale of the
62-item Mood and Anxiety Symptom Questionnaire (MASQ-AD) [33],
impulsivity was assessed using the Barratt Impulsiveness Scale (BIS) [34],
and (hypo)mania was assessed using the Mania subscale of the Bipolar
Inventory of Symptoms Scale (BISS-mania) [35].

MRI data acquisition and preprocessing
MRI data were collected at McLean Imaging Center on a 3 T Siemens Tim
Trio using a 32-channel head coil. Preprocessing of fMRI data was done
using fMRIPrep [36] and CONN [37] (Supplementary Methods).

Whole-brain functional connectomes
A whole-brain functional connectome was computed for each individual
and paradigm (RL task, rest). Note that the three runs of the RL task were
conjugated to compute one connectome. The cortex was parcellated using
the Schaefer 200-node atlas [38] and the subcortex was parcellated using
the Harvard-Oxford (HO) atlas [39]. Pearson’s correlations were computed
between the average BOLD time series from all pairs of nodes and Fisher’s
transforms were applied.

Graph-theoretical analysis
Graph theoretical analyses were carried out on the weighted positive
functional connectome matrices using the Brain Connectivity Toolbox [25].
Negative functional connections were not included since most graph
measures can be calculated only for positive weights. For each individual
and state, global measures were computed across the entire network, in
addition to local measures which were calculated for each of the reward
circuit’s regions: anterior cingulate cortex (ACC), caudate, putamen,
nucleus accumbens (NAc), lateral and medial orbitofrontal cortex (OFC).
(i) Global measures: characteristic path length, global efficiency, mean
clustering coefficient, mean local efficiency, mean betweenness centrality.
(ii) Local measures: clustering coefficient, local efficiency, betweenness
centrality (Supplementary Methods).

Brain-based graph-theoretical predictive modeling (GPM)
The GPM is illustrated in Fig. 1 and includes the following steps for
symptom prediction: (i) calculation of whole-brain functional connectomes;
(ii) computation of graph-theoretical metrics from functional connectomes
(measures of integration, segregation, centrality); (iii) feature selection:
choosing the graph metric (only one) which is most strongly associated
with the clinical symptom. Note that this can be either a global metric, e.g.,
global efficiency, or a metric of a specific region, e.g., centrality of the left
caudate; (iv) model building: mapping between graph metric and clinical
symptom; (v) model prediction: applying the model to previously unseen
data. The GPM utilized leave-one-out cross-validation (LOOCV). In LOOCV,
the data are divided in each iteration into a training set (N-1 subjects,
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where N is the sample size) and a testing set (remaining subject). The
model is built on the training set (steps i-iv) and prediction is done on the
testing set (step v). This procedure is repeated N times to obtain a
predicted score for all participants. Note that similar results were obtained
with 10-fold cross-validation (Supplementary Results).
Model building was accomplished using multiple regression while

controlling for all other baseline symptoms and psychotropic medication
load [40]. For example, when predicting anhedonia at baseline, (hypo)
mania and impulsivity at baseline were covaried. For predicting symptom
severity at follow-up, symptom severity (for all symptom scales) at baseline
was covaried. For the prediction of (hypo)manic symptoms, due to the
skewed distribution of scores, a log (x+ 1) transform was used. DSM
categories (MDD, BP) were not considered in the model.
The model’s predictive performance (the correspondence between

predicted and observed scores) was evaluated by the mean squared error
(MSE) and compared to a null model. The null model was defined as the
same model without the graph-theoretical brain predictor, including only
baseline symptoms and psychotropic medication load. To formally
compare models, the corrected repeated k-fold cv test was used [41].
Pearson’s correlation was computed, and p values were obtained using
permutation testing with 10,000 repetitions (Supplementary Methods).
The GPM’s feature-selection step implements a “winner-take-all”

approach, i.e., only the best graph-theoretical metric is included in the
predictive model. As an alternative approach, we tested the inclusion of
several graph-theoretical metrics by utilizing an elastic-net algorithm to
generate the predictive model [42, 43] (Supplementary Methods). Finally,
to further evaluate if predictions are transdiagnostic and not driven by one
patient group over the other, we split the sample to unipolar and bipolar
disorders, trained the GPM on the unipolar disorders group and tested on
the bipolar disorders group. Due to smaller sample sizes for follow-ups, this
analysis was conducted for baseline symptoms.

External validation analysis
The generalizability of our models was tested on an independent sample
of 96 individuals (ages: 18-48; 77 female), including 44 MDD and 52 HC
[44, 45]. Impulsivity scores were available for a subset of 53 individuals (25
MDD, 28 HC). Models were built on the primary sample and prediction was
tested on the external sample. Note that for this sample, data were
collected during the Monetary Incentive Delay task (MID) [46] instead of
the RL task [31]. Thus, for anhedonia, the model was built on the RL task
and prediction was tested on the MID. Anhedonia was predicted for
individuals with MDD and impulsivity was predicted across MDD and HC.
Full details are provided in the Supplementary Methods.

Comparison with the CPM
The CPM was applied for symptom prediction using available code [47].
The CPM was run on the functional connectome including negative
weights, as originally done [9], and on the positive-only connectome. A

threshold of p= 0.01 was applied for edge selection. Apart from inherent
differences between the GPM and CPM, all methodological choices were
kept identical (Supplementary Methods).

RESULTS
Clinical characteristics and symptom trajectories
The clinical and demographic characteristics of the sample are
presented in Table 1. Eight and 13 participants, respectively,
were lost to follow-up at 3- and 6-month. BIS scores at baseline
were missing from 6 participants. In addition, BISS-mania scores at
3- and 6-month were missing from 1 participant; BIS and MASQ-
AD scores were missing from 1 participant at 3-month follow-up
and from 2 participants at 6-month follow-up. The distributions of
anhedonia, impulsivity, and (hypo)mania symptoms across base-
line, 3- and 6-month follow-ups are shown in Fig. 2. Supplemen-
tary Table 1 includes the list of medications used by participants
and Supplementary Table 2 presents the cross-correlations among
symptoms over time.

GPM symptom prediction at baseline
At baseline, the GPM predicted anhedonia from the global
efficiency of the functional connectome during the RL task
(Fig. 3A) [N= 61; GPM: r= 0.317, p= 0.028 permutation testing,
MSE= 152.60; null model: r= 0.070, p= 0.161 permutation
testing, MSE= 172.15]. Decreased global efficiency was associated
with greater anhedonia. The GPM outperformed the null model
(t= 4.02, p < 10−4 corrected repeated k-fold CV test) and had an
11.35% lower MSE relative to the null model.
The GPM predicted impulsivity from the centrality of the left

ACC during resting-state (Fig. 3B) [N= 73; GPM: r= 0.310,
p= 0.020 permutation testing, MSE= 119.52; null model:
r= 0.025, p= 0.226 permutation testing, MSE= 136.78]. Increased
ACC centrality was associated with greater impulsivity. The GPM
outperformed the null model (t= 5.03, p < 10−4 corrected
repeated k-fold CV test) and had a 12.62% lower MSE relative to
the null model. In a post-hoc analysis, we tested whether specific
subtypes of impulsivity (as measured by the six subscales of the
BIS, using a Bonferroni corrected threshold of p < 0.008) could be
predicted from the centrality of the left ACC. The GPM predicted
the non-planning/self-control subscale of the BIS [N= 73; GPM:
r= 0.406, p= 3·10−4 permutation testing, MSE= 11.72; null
model: r= 0.170, p= 0.052 permutation testing, MSE= 13.82].
The GPM outperformed the null model (t= 25.30, p < 10−4

Fig. 1 Illustration of the brain-based graph-theoretical predictive modeling (GPM). The GPM utilizes cross-validation and includes the
following steps: (i) calculation of whole-brain functional connectomes for each individual; (ii) computation of graph-theoretical metrics from
brain connectomes; (iii) feature selection: choosing the graph metric most strongly associated with the clinical symptom; (iv) model building:
mapping between graph metric and clinical symptom; (v) model prediction: applying the model to previously unseen data. The model is built
on the training set (steps i-iv) and prediction is done on the testing set (step v).
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corrected repeated k-fold CV test) and had a 15.17% lower MSE
relative to the null model.

GPM symptom prediction at 6-month follow-up
At 6-month follow-up, the GPM predicted (hypo)mania from the
local efficiency of the left NAc during the RL task (Fig. 4A) [N= 51;
GPM: r= 0.487, p= 0.002 permutation testing, MSE= 0.708; null
model: r= 0.400, p= 0.003 permutation testing, MSE= 0.785].

Increased NAc efficiency was associated with greater (hypo)mania.
The GPM outperformed the null model (t= 6.36, p < 10−4

corrected repeated k-fold CV test) and had a 9.82% lower MSE
relative to the null model. The GPM predicted anhedonia at
6-month follow-up from the centrality of the left caudate during
resting-state (Fig. 4B) [N= 64; GPM: r= 0.523, p= 2.1·10−4

permutation testing, MSE= 164.23; null model: r= 0.418,
p= 7.4·10−4 permutation testing, MSE= 187.16]. Increased cen-
trality of the caudate was associated with greater anhedonia. The
GPM outperformed the null model (t= 4.75, p < 10−4 corrected
repeated k-fold CV test) and had a 12.25% lower MSE relative to
the null model.

GPM prediction using elastic-net
The inclusion of several graph-theoretical predictors by utilizing
elastic-net did not result in an overall better predictive perfor-
mance than the “winner-take-all” approach (Supplementary
Results).

GPM using data-splitting: training on unipolar disorders and
predicting for bipolar disorders
The GPM predicted anhedonia at baseline from the global
efficiency of the functional connectome during the RL task [train
(unipolar): N= 45; test (bipolar): N= 16; GPM: MSE= 172.59; null
model: MSE= 247.90]. The GPM had a 30.38% lower MSE relative
to the null model. The GPM predicted impulsivity at baseline from
the centrality of the right ACC during resting-state [train (unipolar):
N= 53; test (bipolar): N= 20; GPM: MSE= 177.53; null model:
MSE= 202.27]. The GPM had a 12.23% lower MSE relative to the
null model. Notably, these results are similar to the ones obtained
on the whole transdiagnostic sample using cross-validation.

GPM external validation
For anhedonia at baseline, the GPM model defined on the
primary sample’s RL task data (using the global efficiency)
predicted anhedonia scores for the validation sample during
the MID task (Supplementary Fig. 1A) [N= 37; r= 0.435
p= 0.007]. For impulsivity at baseline, GPM model defined on
the primary sample’s resting-state (using the centrality of the left
ACC) predicted impulsivity scores for the validation sample
during resting-state (Supplementary Fig. 1B) [N= 51; r= 0.348
p= 0.012].

CPM symptom prediction
Baseline anhedonia was predicted from the CPM’s negative-
feature set during the RL task [N= 61; CPM: r= 0.281, p= 0.020
permutation testing, MSE= 164.34; null model: r= 0.070,
p= 0.161 permutation testing, MSE= 172.15]. The CPM out-
performed the null model (t= 3.66, p= 1.3·10−4 corrected
repeated k-fold CV test) with a 4.54% lower MSE relative to the
null model. Compared to the GPM, the CPM had a 7.69% higher
MSE suggesting decreased performance, however, the difference
between the models was not significant (t= 1.19, p= 0.116
corrected repeated k-fold CV test). Similar results were obtained
with the positive-only weighted connectome (Supplementary
Results). The CPM did not predict any other symptoms at baseline
or follow-up.

DISCUSSION
Here, we developed and optimized a new brain-based model –
the GPM – to predict symptoms in treatment-seeking individuals
with mood disorders. Within the GPM, prediction was based on
graph-theoretical measures of brain functional organization. We
found that the efficiency and centrality of the reward circuit,
specifically the ACC, caudate, and NAc, predicted symptoms of
anhedonia, impulsivity, and (hypo)mania, cross-sectionally and
prospectively. Importantly, cross-sectional predictive models

Table 1. Clinical and demographic characteristics of the sample.

Unipolar
disorders
(n= 58)

Bipolar
disorders
(n= 22)

Demographics

Age, years, mean ± SD
(range)

28.0 ± 8.6 (18-60) 31.7 ± 13.2 (18-57)

Female, n (%) 41 (71.7) 12 (54.5)

Education, years,
mean ± SD (range)

16.0 ± 2.8 (10-25) 16.0 ± 3.0 (10-24)

White, n (%) 40 (69.0) 19 (86.4)

Hispanic, n (%) 6 (10.3) 1 (4.5)

Clinical diagnoses, n (%)

Current MDD 49 (84.5) –

Current dysthymia 1 (1.7) –

MDD in partial
remission

8 (13.8) –

BD-I depressed – 7 (31.8)

BD-I mixed – 0 (0.0)

BD-I hypomanic – 2 (9.1)

BD-II depressed – 9 (40.9)

BD-II mixed – 1 (4.6)

BD-II hypomanic – 3 (13.6)

Medication, n (%)

Antidepressants 19 (32.8) 3 (13.6)

Mood stabilizers or
anticonvulsants

1 (1.7) 9 (40.9)

Reward-related symptoms, mean ± SD (range)

Anhedonia (MASQ-AD)

Baseline 81.5 ± 11.9
(49–101)

74.3 ± 12.9
(39–98)

3-month follow-up 76.1 ± 16.0
(37–102)

65.3 ± 14.7
(29–87)

6-month follow-up 73.1 ± 14.1
(38–104)

64.4 ± 14.5
(39–90)

Impulsivity (BIS)

Baseline 67.5 ± 10.6
(45–90)

68.0 ± 13.2
(44–94)

3-month follow-up 67.7 ± 11.5
(48–93)

69.3 ± 14.8
(41–95)

6-month follow-up 67.2 ± 11.7
(44–93)

66.9 ± 13.7
(46–91)

Mania (BISS-mania)

Baseline 5.1 ± 3.9 (0–19) 13.6 ± 10.1 (0–37)

3-month follow-up 4.5 ± 3.8 (0–18) 6.8 ± 9.6 (0–38)

6-month follow-up 3.7 ± 3.5 (0–16) 7.9 ± 11.2 (0–40)

BD-I/II bipolar disorder type I/II, BIS Barratt Impulsiveness Scale, BISS-mania
Bipolar Inventory of Symptoms Scale Mania subscale, MASQ-AD Anhedonic
Depression subscale of the 62-item Mood and Anxiety Symptom
Questionnaire, MDD major depressive disorder.
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generalized to an external validation sample, across different
reward tasks, imaging protocols, and clinical characteristics.
Anhedonia at baseline was predicted by the GPM from the

global efficiency of the functional connectome during the RL task.
Greater anhedonia was associated with decreased global effi-
ciency across the brain. Notably, a data-splitting analysis indicated
that the prediction was cross-diagnostic: anhedonia in individuals
with bipolar disorders was predicted after training the GPM on
individuals with unipolar disorders. Anhedonia is one of the two
cardinal symptoms of depression and is defined as a loss of
pleasure, motivational drive, or lack of reactivity to pleasurable
stimuli [48]. Global efficiency is a core network measure of
integration and reflects the network’s ability to pass information
through short paths, which are considered important for the flow
of signals and communication [49]. To the best of our knowledge,
this is the first demonstrated link between anhedonia and global
efficiency or integration. In agreement with our results, decreased
global integration was reported in MDD [50].
Anhedonia at 6-month follow-up was predicted by the GPM

from the centrality of the left caudate during resting-state. Greater
anhedonia was associated with increased centrality of the
caudate. Measures of centrality characterize the contribution of
a brain region to the cohesiveness of the network [51]. There is
emerging evidence associating anhedonia with increased cen-
trality of the caudate. Specifically, a recent study found that
centrality of the ventral striatum was positively associated with
anhedonia at baseline, 2- and 4-year follow-ups [52].
Conversely, impulsivity was predicted at baseline by the GPM

from the centrality of the left ACC during resting-state. Greater
impulsivity was associated with increased ACC centrality. Critically,
evidence of transdiagnostic generalization emerged: the GPM
derived from individuals with unipolar disorders (centrality of the
right ACC during resting-state) predicted baseline impulsivity

among individuals with bipolar disorders. Impulsivity is a feature
of several psychiatric disorders and can be defined as the
tendency to act without adequate forethought or conscious
judgment [53]. Several models have suggested that impulsivity is
a heterogeneous construct composed of different dimensions. For
example, the BIS divides impulsivity into three components: motor
(acting without thinking), attentional (lack of focus on the task),
and non-planning (orienting toward the present instead of the
future).
The ACC has been suggested to play a key role in impulsivity,

due to its involvement in diverse higher-order cognitive processes
related to executive functioning [54]. In patients suffering from
focal brain injuries, greater impulsivity was associated with lesions
to the ACC [55]. Difficulties in perseverance, a subtype of
impulsivity, were correlated with greater functional connectivity
of the ACC with prefrontal regions [56]. In accordance with our
findings, neuroimaging studies have supported the involvement
of the ACC in the non-planning impulsivity subtype [57, 58].
(Hypo)mania at 6-month follow-up was predicted by the GPM

from the local efficiency of the left NAc during the RL task, with
greater (hypo)mania associated with increased NAc efficiency.
Mania can be described as a distinct period of abnormally and
persistently elevated, expansive, or irritable mood [30]. Notably,
the NAc has been strongly implicated in manic symptoms. For
example, transient (hypo)mania is the most commonly observed
side effect after deep brain stimulation to the NAc [59–61].
Recently, preliminary evidence associated mania with increased
structural connectivity [62] and functional connectivity [63] of
the NAc.
For clinical translation, it is important to identify the cognitive

state that maximizes the predictive accuracy of the GPM. Contrary
to our hypothesis, the RL task did not amplify prediction, but
rather a similar number of predictions was made from the RL task

Fig. 2 Trajectories of anhedonia, impulsivity, and (hypo)mania symptoms. The distributions (using violin plots), scatter plots, and boxplots
of A anhedonia, B impulsivity, and C (hypo)mania symptoms are presented for baseline, 3-month (3M) and 6-month (6M) follow-ups. A
demographically matched group of 32 healthy controls (HC) (age= 28.40 ± 7.72, 17 female) is included for comparison.
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and resting-state. However, we note that the data for the two
states were collected using different imaging sequences: single-
band for the RL vs. multiband for the resting-state, and differed in
scan duration and number of volumes. Thus, future investigations
are needed to delineate more clearly the contribution of
cognitive activities to the predictive accuracy of reward-related
symptoms.
Most symptom predictions were based on regional network

measures of the reward circuit, and not global ones, in accordance
with our hypothesis. This finding resonates with numerous
evidence for the pivotal role of the reward circuit in the
pathophysiology of mood disorders [64] and extends previous
literature by demonstrating the predictive utility of its network
attributes. Importantly, different network measures were found to
predict baseline symptoms and future ones. Since the ultimate
goal of predictive modeling in psychiatry is to map future
symptoms (and not baseline ones, which are generally known and
can be assessed directly), our finding underscores the critical

importance of longitudinal studies which monitor symptom
trajectories. In addition, we note that the GPM outperformed
the CPM for symptom prediction. This result was found when
applying the CPM to either the functional connectome including
negative weights, or the positive-only functional connectome.
Brain-based predictive modeling holds the cardinal promise to

transcend the current paradigm of psychiatric assessments which
are based solely on a patient’s subjective report. An accurate,
reproducible, predictive model can support important clinical
decision making, such as selecting among possible treatments,
initiating preventive strategies, and risk monitoring. While our
study took a step toward achieving that goal, clearly more large-
scale neuroimaging studies in individuals with mood disorders,
with greater sample sizes, are essential to establish the predictive
utility of the GPM. Nevertheless, our findings highlight several
brain metrics that can be further tested as potential biomarkers,
particularly for identifying individuals with depression that are at
risk for developing bipolar symptoms. Although taking the leap

Fig. 3 The GPM predicted anhedonia and impulsivity at baseline. Predicted clinical scores (y axis) are presented as a function of the
observed clinical scores (x axis). For each symptom, the predictions of the GPM are presented on the left panel and the predictions of
the corresponding null model (without the brain predictor) are presented on the right panel. A Anhedonia was predicted by the GPM from
the global efficiency of the functional connectome during the reinforcement-learning task. B Impulsivity was predicted by the GPM from the
centrality of the left anterior cingulate cortex during resting-state. All p values were computed using permutation testing. Prediction was done
while controlling for other baseline symptoms and medication load.
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toward translational neuroscience is still rarely done, a few studies
have directly investigated the clinical utility of neuroimaging
biomarkers. For example, Kelley et al. assigned treatment for
patients with MDD based on fluorodeoxyglucose positron
emission tomography activity in the insula [65].
Several limitations should be noted. First, our samples were

moderate in size and thus the findings should be carefully
validated with larger datasets (though we obtained validation in
an independent, external dataset). Second, the range of manic
symptoms was relatively narrow and included mainly hypomania
symptoms. Third, symptoms at 3-month follow-up were not
predicted from brain measures due to high similarity with
baseline scores (i.e., variance at 3 months was captured mostly
by baseline scores). Moreover, impulsivity was quite stable across
the 3 time-points. This may be due to the BIS capturing
predominantly trait impulsivity. We note that a follow-up period
of 6 months was chosen to facilitate the retention of participants,
however, symptoms might change more substantially with
longer follow-ups. Fourth, we did not test the influence of
preprocessing choices or the parcellation atlas on predictive
performance. Finally, alternative approaches to estimating
functional connectomes may yield complementary information,
e.g., aggregating fMRI data across paradigms (task and rest) [66],
but were outside the scope of this investigation and merit future
study. The optimal neuroimaging setting for detecting individual
differences that are clinically relevant remains an ongoing
research topic and an important direction for future research in
psychiatry.

CONCLUSIONS
The GPM is an innovative tool that can map between clinical
symptoms and network neuroimaging markers at the individual
level. Across mood disorders, the GPM successfully predicted
symptoms of anhedonic depression, impulsivity, and (hypo)mania,
cross-sectionally and prospectively, from network features of the
reward circuit. Ultimately, these results may have implications for
prognostic indicators of mood symptoms. The clinical need is
acute since a timely and effective treatment for individuals
suffering from mood disorders, especially bipolar mood pathol-
ogy, is crucial to reduce morbidity and mortality [67].
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Supplemental Methods 

Inclusion/exclusion criteria 

Non-psychotic individuals seeking treatment for mood pathology were recruited from the Depression 

Clinical and Research Center and the Bipolar Clinical and Research Center at Massachusetts General 

Hospital, as well as the Center for Depression, Anxiety and Stress Research at McLean Hospital.  

Clinical diagnoses and eligibility were evaluated using the Structured Clinical Interview for DSM-IV 

conducted by master’s or Ph.D.-level clinical interviewers. 

Inclusion criteria: 

1. Ability to provide written, informed consent 

2. Normal or corrected-to-normal vision and hearing 

3. Fluency in written and spoken English 

4. Depressive or hypomanic symptoms severe enough to cause distress or impairment, and warrant 

intervention 

5. The depressive or hypomanic symptoms are not secondary to another Axis-I DSM-IV psychiatric 

disorder, or due to the effects of a substance 

6. Absence of psychotropic medication for at least two weeks or stable antidepressant or mood stabilizing 

medication over the past 8 weeks 

Exclusion criteria:  

1. Left-handed or ambidextrous 

2. Current drug use (cocaine, cannabis, opiates, amphetamines, benzodiazepines, barbiturates), as 

indicated by a positive urine drug screen on the day of testing 

3. Current use of medications with potent dopaminergic effects, including stimulants or antipsychotics, or 

any use of antidopaminergic medications in the past 6 months 

4. Recent use of any medication that affects blood flow or pressure  

5. Current use of antibiotics 

6. Pregnancy (as indicated by urine pregnancy test on the day of the MRI scan) 
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7. Serious unstable medical illness 

8. Self-reported hypothyroidism 

9. History or current diagnosis of dementia 

10. A score of < 25 on the Mini Mental State Exam 

11. History of chronic migraine (>15 days/month) or seizure disorder 

12. History of significant head injury or loss of consciousness for 2 minutes or longer  

13. MRI contraindications 

14. A current diagnosis of obsessive-compulsive disorder (OCD), bulimia, alcohol dependence, substance 

abuse, or substance dependence 

15. A history or current diagnosis of a psychotic disorder, stimulant dependence , or anorexia 

16. Suicidal ideation where outpatient treatment is determined unsafe by the study clinical interviewer 

17. Electroconvulsive therapy within the past two years 

 

MRI data acquisition 

Reinforcement-learning (RL) task data were acquired using a single-band gradient-echo echo-planar 

imaging (GE-EPI) sequence with the following parameters: TR=3 sec, TE=30 ms, image matrix=64×64, 

in-plane field of view=224x224 mm, flip angle=75°, voxel size=3.5x3.5x2 mm, 57 interleaved slices with 

a GRAPPA factor of 2. The RL task included three runs, each consisting of 210 measurements. Resting-

state data were acquired using a multiband GE-EPI sequence with the following parameters: TR=0.5 sec, 

TE=30 ms, image matrix=64×64, in-plane field of view=220x220 mm, flip angle=43°, voxel 

size=3.4x3.4x3 mm, 48 interleaved slices with a multiband factor of 16, and 800 measurements. All 

functional images were acquired with a 30-degree titled slice acquisition to mitigate signal loss in regions 

affected by susceptibility artifacts. Anatomical images were acquired using a high-resolution T1-weighted 

multi-echo MPRAGE sequence with TR=2.2 sec, TE= 1.54, 3.36, 5.18, 7ms, in-plane field of 

view=230x230 mm, voxel size=1.2x1.2x1.2 mm, 144 slices. The T1-weighted images were acquired for 

coregistration and normalization of the functional images.  
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MRI data preprocessing 

Preprocessing of MRI data (anatomical, RL task, resting-state) was done in fMRIPrep 20.2.1 [1]. The 

following description of the preprocessing steps was taken from the custom language generated by 

fMRIPrep, which is recommended for use in publications and has been released under the CC0 license. 

Anatomical data preprocessing: The T1-weighted (T1w) image was corrected for intensity non-uniformity 

(INU) with N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et al. 2008), 

and used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with a 

Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as 

target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-

matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9, Zhang, Brady, and Smith 

2001). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, Dale, Fischl, and Sereno 1999), 

and the brain mask estimated previously was refined with a custom variation of the method to reconcile 

ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (Klein et 

al. 2017). Volume-based spatial normalization to two standard spaces (MNI152NLin2009cAsym, 

MNI152NLin6Asym) was performed through nonlinear registration with antsRegistration (ANTs 2.3.3), 

using brain-extracted versions of both T1w reference and the T1w template. The following templates were 

selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et 

al. (2009), TemplateFlow ID: MNI152NLin2009cAsym], FSL’s MNI ICBM 152 non-linear 6th Generation 

Asymmetric Average Brain Stereotaxic Registration Model [Evans et al. (2012), TemplateFlow ID: 

MNI152NLin6Asym]. 

Functional data preprocessing: The following preprocessing was performed for all functional 

images. First, a reference volume and its skull-stripped version were generated by aligning and averaging 

1 single-band references (SBRefs). A deformation field to correct for susceptibility distortions was 

estimated based on fMRIPrep’s fieldmap-less approach. The deformation field is that resulting from co-

registering the BOLD reference to the same-subject T1w-reference with its intensity inverted (Wang et al. 

2017; Huntenburg 2014). Registration is performed with antsRegistration (ANTs 2.3.3), and the process 
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regularized by constraining deformation to be nonzero only along the phase-encoding direction and 

modulated with an average fieldmap template (Treiber et al. 2016). Based on the estimated susceptibility 

distortion, a corrected EPI (echo-planar imaging) reference was calculated for a more accurate co-

registration with the anatomical reference. The BOLD reference was then co-registered to the T1w 

reference using bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl 

2009). Co-registration was configured with six degrees of freedom. Head-motion parameters with respect 

to the BOLD reference (transformation matrices, and six corresponding rotation and translation parameters) 

are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. 2002). BOLD 

runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde 1997). First, a reference 

volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. The BOLD 

time-series were resampled onto the following surfaces (FreeSurfer reconstruction nomenclature): 

fsaverage. The BOLD time-series (including slice-timing correction when applied) were resampled onto 

their original, native space by applying a single, composite transform to correct for head-motion and 

susceptibility distortions. The BOLD time-series were resampled into standard space, generating a 

preprocessed BOLD run in MNI152NLin2009cAsym space. 

 

fMRI data denoising 

Further denoising of the fMRI data (RL task and rest) was done in CONN toolbox [2]. The anatomical 

component-based noise correction (aCompCor) [3] was used to regress out potential confounds. These 

included: (i) outlier scans, removed by censoring [4]. Outlier scans were identified based on the amount of 

subject in-scanner motion as measured by the framewise displacement (FD) and global BOLD signal. 

Acquisitions with FD > 0.9mm or global BOLD signal changes > 5 standard deviations were considered 

outliers and removed by regression. (ii) First 5 principal components (PCAs) of  the CSF and white matter 

signals: were regressed out to minimize the effects of physiological non-neuronal signals such as cardiac 

and respiratory signals. (iii) Estimated subject-motion parameters and their first-order derivatives (a total 

of 12 parameters). (iv) Session effects: The potential effects of the beginning of the session were removed 
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by a step function convolved with the hemodynamic response function, in addition to the linear BOLD 

signal trend. Note that global signal regression was not performed. After regression of all potential 

confounding effects, temporal band-pass filtering (0.008-0.09 Hz) was performed. 

 One participant was excluded from both paradigms (RL task, rest) due to  lack of fMRI data (lost 

to follow-up after baseline clinical session). For the RL task, 18 participants were excluded due to: in-

scanner motion, i.e., >20% outlier volumes (n=15), missing data (n=2), and falling asleep during the task 

(n=1). All participants passed QA for the resting-state. The final analyzed sample included 79 participants 

(57 with unipolar disorders, 22 with bipolar disorders) for the resting-state and 61 participants (45 with 

unipolar disorders, 16 with bipolar disorders) for the RL task. Note that one individual with bipolar disorder 

was excluded in previous work [5,6] due to lack of RL task data, and another individual with bipolar 

disorder was included in previous analyses [5,6] but excluded here due to lack of fMRI data. 

 

Graph theory measures 

Graph theoretical measures can be grouped into measures of integration, segregation, and centrality [7]. (i) 

Integration: the ability to rapidly combine information across remote brain regions. It includes the 

characteristic path length which is the average shortest path length between all pairs of nodes and global 

efficiency which is the average inverse shortest path length. (ii) Segregation: quantifies the presence of 

densely interconnected brain regions and includes the clustering coefficient and local efficiency. The 

clustering coefficient is the fraction of a node’s neighbors (nodes that are directly connected to the node) 

that are also neighbors of each other. The local efficiency is the efficiency of the subgraph of a node that 

contains only its neighbors. (iii) Centrality: the importance of a region for efficient communication. It 

includes betweenness centrality, which is the fraction of the shortest paths that pass through a node. 

 

Assessment of predictive performance 

Predictive performance (the correspondence between predicted and observed scores) was evaluated by the 

mean squared error (MSE). The MSE is defined as the average sum of the squared difference between the 
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observed and predicted values and measures the variance of the residuals, with a smaller MSE indicating a 

better model. To quantify the contribution of the graph-theoretical brain predictor beyond that of baseline 

symptoms, we compared the GPM to a corresponding cross-validated null model. The null model was 

defined as the same model without the graph-theoretical brain predictor, including only baseline symptoms 

and psychotropic medication load. To formally compare between the GPM and null models, the corrected 

repeated k-fold cv test was used [39]. In addition, the relative difference in the MSE between the models 

was derived as follows: MSE_diff=(MSE_null-MSE_GPM)/MSE_null. The same procedure was used to 

evaluate the predictive accuracy of the CPM. Last, since correlation is the most commonly reported metric 

of prediction performance in fMRI literature, we computed Pearson’s correlation between predicted and 

observed scores. The statistical significance of correlation was assessed using permutation testing, i.e., the 

observed scores were randomly shuffled between participants, and the prediction process was repeated 

10,000 times to generate a null distribution. 

 

GPM utilizing elastic-net algorithm 

As an alternative approach to the feature-selection step of the GPM, we tested the inclusion of several 

graph-theoretical metrics by utilizing an elastic-net algorithm to generate the predictive model. Elastic-net 

is a hybrid of ridge regression and lasso regularization and can be used to select the important predictors 

among a large set [8]. Elastic-net was implemented using Glmnet package for MATLAB 

(http://hastie.su.domains/glmnet_matlab/) [9]. Hyper-parameters were optimized using cross-validation for 

all possible combinations of alpha (elastic net penalty, ranging from 0 to 1 in steps of 0.05) and lambda 

(controls the overall strength of penalty). The model with the best alpha-lambda pair that minimized the 

cross-validated error was selected. 

 

  

http://hastie.su.domains/glmnet_matlab/
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GPM external validation analysis 

The generalizability of cross-sectional models was tested on an independent sample of 96 unmedicated 

individuals (ages: 18-48; 77 female), including 44 MDD and 52 HC. This sample combined two datasets 

that used the same imaging sequences [10,11]. Impulsivity scores were available for a subset of 53 

individuals (25 MDD, 28 HC). (Hypo)mania symptoms were not assessed. Functional MRI data were 

collected for two conditions: (i) resting-state and (ii) a reward processing task: the Monetary Incentive 

Delay task (MID) [12]. Models were built on the primary sample and prediction was tested on the external 

sample. Note that since the clinical measures used to compute the null model (i.e., other baseline symptoms 

and medication load) were mostly not available for this sample, a null model was not computed, and thus 

prediction success was assessed using Pearsons’s correlation and p values. The MSE is a relative number 

and is more informative when comparing between models (i.e., GPM and null models).  Further details are 

provided below: 

Assessment of symptoms 

Symptoms were evaluated using the same clinical scales administered to the primary sample. Namely, 

anhedonia was assessed using the Anhedonic Depression subscale of the 62 -item Mood and Anxiety 

Symptom Questionnaire (MASQ-AD) [13] and impulsivity was assessed using the Barratt Impulsiveness 

Scale (BIS) [14]. 

MRI data acquisition 

MRI data were collected at the McLean Imaging Center on the same MRI scanner used for the primary 

sample, i.e., a 3T Siemens Tim Trio using a 32-channel head coil. MID task data were acquired using the 

same single-band GE-EPI sequence used for the RL task of the primary sample, with a total of 461 

measurements. Resting-state data used a different sequence than that of the primary sample, i.e., a single-

band GE-EPI sequence with the following parameters: TR=3 sec, TE=30 ms, image matrix=72×72, in-

plane field of view=216x216 mm, flip angle=85°, voxel size=3x3x3 mm, 47 interleaved slices, with a total 

of 124 measurements. Anatomical images were acquired with the same multi-echo MPRAGE sequence 

used for the primary sample. 
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MRI data preprocessing 

Preprocessing of MRI data followed the same pipeline used for the primary sample. 

Dopamine/placebo manipulation 

Before the onset of the MRI scan, the external sample underwent a pharmacological manipulation in a 

double-blind placebo-controlled design, where participants received either a single dose of 50 mg 

amisulpride (hypothesized to increase dopaminergic signaling via autoreceptor blockade) or a placebo pill. 

Validation analysis was conducted on the external sample across pharmacological conditions (dopamine, 

placebo). 

Prediction of anhedonia 

Due to the bimodal distribution of anhedonia scores across the MDD and HC samples, prediction of 

anhedonia was done only for individuals with MDD. Six individuals with MDD were excluded due to in-

scanner motion (>20% outlier volumes) and 1 participant was further identified as an outlier in their graph 

metric scores and removed, yielding a final analyzed sample of 37 individuals with MDD. Impulsivity 

scores were not accounted for since they were available for only a subsample of 22 individuals with MDD. 

Note that for the external sample, data were collected during the MID instead of the RL task used for the 

primary sample [15]. Since both tasks probe reward processing, the model was built on the RL task and 

prediction was tested on the MID.  

Prediction of impulsivity 

Impulsivity scores were distributed normally across individuals with MDD and HC, thus, prediction was 

done using the whole sample. This choice was made to increase the sample size, since impulsivity scores 

were available for only a subset of the external sample (53 individuals; 25 MDD, 28 HC). Two individuals 

with MDD were excluded due to in-scanner motion (>20% outlier volumes), yielding a final analyzed 

sample of 51 individuals (23 MDD, 28 HC). Anhedonia scores were available for all individuals and 

accounted for in the predictive model.  
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Illustration of the differences between the GPM and CPM 

Below are illustrations of the GPM and the CPM, to enable a visual comparison of their similarities and 

differences. Note that the models differ in steps 2 and 3 (highlighted by the red frame).  

(i) The CPM 

 

 

 

 

 

 

 

 

 

 

The Figure was modified after Shen et al. [16] 

(ii) The GPM 
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Supplemental Results 

Supplemental Table 1. List of medications used by participants 

Each row refers to a single participant. The rest of the sample was not taking medications.  

Unipolar disorders 
Lithium (300 mg/day) 
Sertraline (50 mg/day); Wellbutrin (200 mg/day) 
Celexa (5 mg/day) 
Celexa (20 mg/day); Remeron (15 mg/day) 
Zoloft (50 mg/day) 
Klonopin (2 mg/day); Effexor (150 mg/day) 
Prozac (20 mg/day) 
Vilazodone (10 mg/day); Wellbutrin (300 mg/day) 
Sertraline (200 mg/day) 
Celexa (20 mg/day) 
Cymbalta (60 mg/day); Wellbutrin (200 mg/day) 
Fluvoxamine (300 mg/day); Trazadone (25 mg/day) 
Sertraline (150 mg/day) 
Lexapro (20 mg/day) 
Sertraline (200 mg/day) 
Wellbutrin (200 mg/day) 
Prozac (20 mg/day) 
Lexapro (10 mg/day) 
Paxil (30 mg/day) 
Zoloft (150 mg/day) 
Bipolar disorders 
Depakote (1250 mg/day); Bupropion (450 mg/day); Seroquel (400-500 mg/day) 
Trileptal (600 mg/day) 
Lithium (1200 mg/day); Celexa (20 mg/day) 
Wellbutrin (300 mg/day); Lamotrigine (50 mg/day) 
Lithium (900 mg/day); Paroxetine (40 mg/day) 
Lamictal (150mg/day); Ativan (0.5mg/day) 
Zoloft (150mg/day) 
Lamotrigine (50 mg/day) 
Lamotrigine (350 mg/day); Bupropion (300 mg/day); Fluoxetine (20 mg/day) 
Wellbutrin (200 mg/day) 
Venlafaxine (150 mg/day) 
Lamictal 300mg/day 
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Supplemental Table 2. Correlations among symptoms over time 

The table below presents the Pearson’s correlations between Anhedonic Depression subscale of the 62-item 

Mood and Anxiety Symptom Questionnaire (MASQ-AD), Barratt Impulsiveness Scale (BIS), and Bipolar 

Inventory of Symptoms Scale - Mania subscale (BISS-mania) for the three time points (baseline, 3-month 

follow-up (3M), 6-month follow-up (6M)), as well as their correlations with the medication load. 

 MASQ-

AD 

baseline 

MASQ-

AD  

3M 

MASQ-

AD  

6M 

BIS 

baseline 

BIS 

3M 

BIS 

6M 

BISS-

mania 

baseline 

BISS-

mania 

3M 

BISS-

mania 

6M 

Medication 

load 

MASQ-AD 

baseline 
1.000 0.697 0.518 0.116 0.259 0.203 -0.192 -0.038 -0.251 -0.154 

MASQ-AD  

3M 
0.697 1.000 0.673 0.030 0.227 0.195 -0.283 -0.126 -0.251 -0.115 

MASQ-AD  

6M 
0.518 0.673 1.000 0.079 0.241 0.345 -0.046 0.069 -0.044 -0.051 

BIS 

baseline 
0.116 0.030 0.079 1.000 0.827 0.766 0.196 0.282 0.411 -0.034 

BIS 3M 0.259 0.227 0.241 0.827 1.000 0.835 0.206 0.266 0.443 -0.103 

BIS 6M 0.203 0.195 0.345 0.766 0.835 1.000 0.151 0.214 0.514 -0.071 

BISS-

mania 

baseline 

-0.192 -0.283 -0.046 0.196 0.206 0.151 1.000 0.669 0.444 0.000 

BISS-

mania 

3M 

-0.038 -0.126 0.069 0.282 0.266 0.214 0.669 1.000 0.268 -0.085 

BISS-

mania 

6M 

-0.251 -0.251 -0.044 0.411 0.443 0.514 0.444 0.268 1.000 0.094 

Medication 

load 
-0.154 -0.115 -0.051 -0.034 -0.103 -0.071 0.000 -0.085 0.094 1.000 

 

  



Dan et al.   Supplement 
 

13 
 

GPM prediction using 10-fold cross-validation 

The same procedure was used with a 10-fold cross-validation instead of LOOCV. Since the performance 

reported from a single k-fold cross-validation run can be noisy, we conducted repeated 10-fold cross-

validation with 1000 repetitions. Prediction performance was assessed using the mean MSE across 

repetitions, and the mean ± standard deviations of the MSE across repetitions are reported below.  

• GPM symptom prediction at baseline 

At baseline, the GPM predicted anhedonia from the global efficiency of the functional connectome during 

the RL task [N=61; GPM: MSE=161.29±12.75; null model: MSE=174.03±6.34]. The GPM had a 7.32% 

lower mean MSE relative to the null model. In addition, the GPM predicted impulsivity from the centrality 

of the left anterior cingulate cortex (ACC) during resting-state [N=73; GPM: MSE=125.40±7.94; null 

model: MSE=137.98±4.87]. The GPM had a 9.11% lower mean MSE relative to the null model. 

• GPM symptom prediction at 6-month follow-up 

At 6-month follow-up, the GPM predicted (hypo)mania from the local efficiency of the left nucleus 

accumbens (NAc) during the RL task [N=51; GPM: MSE=0.72±0.04; null model: MSE=0.79±0.04]. The 

GPM had a 9.29% lower MSE relative to the null model. In addition, the GPM predicted anhedonia at 6-

month follow-up from the centrality of the left caudate during resting-state [N=64; GPM: 

MSE=173.09±12.13; null model: MSE=188.97±6.71]. The GPM had an 8.41% lower MSE relative to the 

null model.  

  



Dan et al.   Supplement 
 

14 
 

GPM prediction using elastic-net (“GPM elastic-net”) 

• GPM elastic-net symptom prediction at baseline 

At baseline, the GPM elastic-net predicted anhedonia from the RL task functional connectome [GPM 

elastic-net: MSE=158.46; null model: MSE=176.67]. The GPM elastic-net had a 10.31% lower mean MSE 

relative to the null model. A hyper-parameter of alpha=0 was chosen, namely, elastic net approached ridge 

regression and the entire set of graph metrics and baseline symptoms was included in the predictive model. 

Note that in contrast to the GPM, the GPM elastic-net did not predict impulsivity at baseline. 

• GPM elastic-net symptom prediction at 6-month follow-up 

The GPM elastic-net predicted anhedonia at 6-month follow-up from the resting-state functional 

connectome [GPM elastic-net: MSE=168.36; null model: MSE=174.91]. The GPM elastic-net had a 3.74% 

lower MSE relative to the null model. A hyper-parameter of alpha=1 was chosen indicating that elastic net 

approached lasso regression with most of the coefficients set to zero (i.e., a small number of variables was 

used in the predictive model). The centrality of the left caudate, local efficiency of left anterior cingulate 

cortex, and anhedonia at baseline were included in the predictive model.  

 The GPM elastic-net predicted impulsivity at 6-month follow-up from the RL task functional 

connectome [GPM elastic-net: MSE=65.24; null model: MSE=75.40]. The GPM elastic-net had a 13.48% 

lower MSE relative to the null model. A hyper-parameter of alpha=1 was chosen indicating that elastic net 

approached lasso regression. The following variables were selected to be included in the predictive model: 

the clustering coefficient of the left and right caudate, local efficiency of the left nucleus accumbens, 

centrality of the right anterior cingulate cortex, local efficiency of the right medial orbitofrontal cortex, 

centrality of the left medial orbitofrontal cortex, as well as anhedonia and impulsivity at baseline. Note that 

the GPM elastic-net did not predict mania at 6-month follow-up. 
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Supplemental Figure 1. GPM external validation 

 

Models were built on the primary sample of individuals with MDD and BP and prediction was done on an 

external validation sample. The external validation sample comprised individuals with MDD for predicting 

anhedonia, and a combined sample of individuals with MDD and HC, for predicting impulsivity. 
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CPM prediction from the positive-only functional connectome 

Baseline anhedonia was predicted from the CPM’s negative-feature set during the RL task [CPM: r=0.286, 

p=0.019 permutation testing, MSE=162.60; null model: r=0.070, p=0.161 permutation testing, 

MSE=172.15]. The CPM had a 5.54% lower MSE relative to the null model. Compared to the GPM, the 

CPM had a 6.55% higher MSE. Note that these results are similar to the ones obtained with the 

unthresholded functional connectome (including both positive and negative weights, see Results in the main 

text). 
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