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Abstract

Background. Adolescence is characterized by profound change, including increases in nega-
tive emotions. Approximately 84% of American adolescents own a smartphone, which can
continuously and unobtrusively track variables potentially predictive of heightened negative
emotions (e.g. activity levels, location, pattern of phone usage). The extent to which built-
in smartphone sensors can reliably predict states of elevated negative affect in adolescents
is an open question.
Methods. Adolescent participants (n = 22; ages 13–18) with low to high levels of depressive
symptoms were followed for 15 weeks using a combination of ecological momentary
assessments (EMAs) and continuously collected passive smartphone sensor data. EMAs probed
negative emotional states (i.e. anger, sadness and anxiety) 2–3 times per day every other week
throughout the study (total: 1145 EMA measurements). Smartphone accelerometer, location
and device state data were collected to derive 14 discrete estimates of behavior, including activity
level, percentage of time spent at home, sleep onset and duration, and phone usage.
Results. A personalized ensemble machine learning model derived from smartphone sensor
data outperformed other statistical approaches (e.g. linear mixed model) and predicted states
of elevated anger and anxiety with acceptable discrimination ability (area under the curve
(AUC) = 74% and 71%, respectively), but demonstrated more modest discrimination ability
for predicting states of high sadness (AUC = 66%).
Conclusions. To the extent that smartphone data could provide reasonably accurate real-time
predictions of states of high negative affect in teens, brief ‘just-in-time’ interventions could be
immediately deployed via smartphone notifications or mental health apps to alleviate these states.

Adolescence is a developmental period characterized by profound change across multiple
domains, including emotional experience. Studies reveal that the frequency of negative emo-
tional states increases during adolescence (Bailen, Green, & Thompson, 2019; Frost, Hoyt,
Chung, & Adam, 2015; Griffith, Clark, Haraden, Young, & Hankin, 2021; Larson, Moneta,
Richards, & Wilson, 2002). Relatedly, studies of personality trait development have also shown
that neuroticism (i.e. negative emotionality) increases during adolescence, in particular for
girls (Borghuis et al., 2017; Soto, 2016; Soto, John, Gosling, & Potter, 2011). Given longitudinal
research indicating that neuroticism is a robust risk factor for the development of depression
and anxiety disorders (Vinograd et al., 2020; Zinbarg et al., 2016), increases in this trait during
adolescence may help account for the developmental surge in emotional disorders during
this same time period (in particular among girls) (Avenevoli, Swendsen, He, Burstein, &
Merikangas, 2015). Accordingly, there is an acute need to develop data-driven approaches
to reliably predict and ultimately interrupt states of markedly elevated negative emotions as
they occur in the daily lives of teens. In addition to the immediate benefits of alleviating
acute states of affective distress, reducing the frequency and duration of episodes of high
negative affect (HNA) may serve to reduce the risk of future onset of emotional disorders.

Relevant in this context, approximately 84% of American adolescents own a smartphone
(Rideout & Robb, 2019), which has the ability to continuously and unobtrusively track vari-
ables predictive of shifts in affect, including activity levels, location, phone/screen use and
proxies of social interaction, while doing so in real-time in the daily lives of teens. A key bene-
fit of data acquired from these ‘passive’ built-in smartphone sensors is that no user input is
required. When adolescents are immersed in a negative emotional state, they may be less likely
to report on their experiences via conventional (and more burdensome) self-report measures.

The extent to which built-in smartphone sensors can reliably predict states of elevated
negative affect (e.g. high sadness, anxiety, or anger) in adolescents is an open question. As ado-
lescents transition into a negative emotional state, they may display distinct behavioral and
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interpersonal changes that can be detected via smartphone sen-
sors, including decreased activity levels (measured via actigraphy),
increased time spent at home (GPS and actigraphy), sleep disturb-
ance (phone use patterns and actigraphy) and interpersonal
avoidance (decreased initiation and response to calls and texts).
Prior research indicates that smartphone sensors can predict states
of elevated negative affect, and depressive and anxiety symptoms
(e.g. Cao et al., 2020; Jacobson & Chung, 2020; Sequeira et al.,
2020; Shah et al., 2021). However, the bulk of this research has
been conducted in adults rather than adolescents.

The present study addressed several gaps in the existing litera-
ture. First, we recruited a sample of adolescents enriched for
heightened experiences of negative emotional states (i.e. adoles-
cents with elevated depressive symptoms). Second, there is likely
substantial heterogeneity between adolescents in their behavioral
patterns that signal the onset of negative emotional states. For
example, teens experiencing heightened anxiety may exhibit
decreased v. increased activity levels, or increased v. decreased
interaction with one’s smartphone. Thus, the likely idiosyncratic
behavioral patterns associated with states of HNA highlight the
need for a person-specific (idiographic) modeling approach. At
the same time, certain predictive relationships may be shared
across individuals or subgroups of adolescents. Accordingly,
we used a novel statistical approach (Ren, Patil, Dominici,
Parmigiani, & Trippa, 2021) which integrates person-specific
models (i.e. developing a unique model for each individual)
with a data-driven search for the optimal weighting across all
subject-specific models (i.e. ‘borrowing’ information from predic-
tion models for other individuals in the sample). This statistical
approach allowed us to estimate the combination of subject-
specific models that optimizes predictive performance and to
answer the following question: Does a predictive model that is
exclusively trained on one’s own data outperform a weighted
model which incorporates information from other individuals’
models? Third, recent advances in machine learning (ML) pro-
vide statistical approaches well-suited to model complex
smartphone-acquired passive data and their association with
negative affect. For example, several decision-tree-based algo-
rithms (e.g. random forest) and multiple kernel learning algo-
rithms (e.g. support vector machines) can (1) handle large
numbers of predictors (whether continuous or categorical), (2)
have robust performance in the presence of multicollinearity,
(3) handle non-linear associations and complex interactions
and, critically, can (4) be tuned to prevent overfitting (i.e. tend
to generalize well to new samples; Boehmke & Greenwell, 2019;
Squeglia et al., 2016). In the present study, an ML ensembling
method was implemented, which assigns weights to a set of pre-
selected ML approaches to develop a consolidated predictive
algorithm which optimizes cross-validated predictive perform-
ance. A key benefit of this approach is that it can achieve
improved prediction performance by combining a range of ML
approaches which rely on very different algorithms to generate
predictions (e.g. variants of conventional regression such as elastic
net v. tree-ensemble approaches such as a random forest). Given
the substantial differences across algorithms (e.g. in the selection
and weighting of variables, in testing nonlinear relations and
higher-order interactions), it is likely that they would capture dif-
ferent aspects of the relationship between the outcome of interest
and predictors. Thus, a combination of these diverse models tends
to be more flexible than any of the individual models and has the
potential to attain better prediction performance. Here, we tested
whether the consolidated approach weighting these different

algorithms outperforms each of the individual ML approaches,
as well as conventional statistical approaches (i.e. linear mixed
model). We hypothesized that an ensemble ML approach would
outperform common modeling approaches in predicting states
of elevated negative affect. In addition, we expected that the
former ensemble ML approach (i.e. searching for the optimal
combination of subject-specific models) would outperform a
fully idiographic ML model (i.e. person-specific models that do
not borrow any information from other individuals’ models).
Finally, we expected our final model would predict states of
elevated negative emotions with acceptable accuracy (area under
the curve (AUC)⩾ 0.70).

Method

Participants

Adolescents ages 13–18 were recruited from the greater Boston
area. Given that the sample in this study was derived from a larger
ongoing trial focused on adolescents with anhedonia, participants
in this study had high (Anhedonic, AH; n = 13) or low (Typically
Developing, TD; n = 9) levels of anhedonia. The following
exclusion criteria were applicable to both groups: history of
head trauma with loss of consciousness > 2 min, history of seizure
disorder, serious or unstable medical illness, or current use of
cocaine, stimulant, or dopaminergic drugs. The AH group were
required to have elevated anhedonia according to the Snaith
Hamilton Pleasure Scale (SHAPS) (total score⩾ 3, as assessed
by the original binary [0–1] scoring (Snaith et al., 1995)) and the
Schedule for Affective Disorders and Schizophrenia for School-Age
Children Present and Lifetime Version (K-SADS-PL) (Kaufman
et al., 2013) clinical interview (anhedonia item score > 1). TD
participants were required to have a SHAPS score = 0 (i.e. no
anhedonia). See online Supplement for additional information on
exclusion criteria.

Procedure

All procedures were approved by the Mass General Brigham
(MGB) IRB. All participating parents provided written informed
consent and all children provided assent. Participants completed
an initial assessment session with self-report measures, including
assessments of anhedonia (SHAPS) (Snaith et al., 1995) and
depressive symptom severity (Center for Epidemiologic Studies
Depression Scale; CES-D) (Radloff, 1977). The K-SADS-PL for the
DSM-5 was subsequently administered (see online Supplement for
additional details). Following the initial assessment, participants
completed an average of 15 weeks (mean = 106.2 days; S.D. = 16.1)
of ecological momentary assessment (EMA) surveys. Surveys
were triggered 2–3 times a day via the Metricwire smartphone
application. Throughout this study period, passive data were col-
lected from participants’ smartphones using the Beiwe application
(see Passive Smartphone Measures below) (Rahimi-Eichi et al.,
2021; Torous, Kiang, Lorme, & Onnela, 2016).

Measures

Ecological Momentary Assessment measures
EMA surveys assessing current affect were triggered on partici-
pant’s smartphones 2–3 times per day, every other week, resulting
in 1145 measurements (mean of 52 EMA surveys per participant).
Similar to previous EMA studies in adolescents (Forbes et al.,
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2009, 2012; Webb et al., 2021), items were derived from the
Positive and Negative Affect Schedule for Children (Laurent
et al., 1999) and surveys were triggered Thursday through
Monday to sample affect on weekdays and weekends (see online
Supplement for additional details on the EMA protocol). At
each EMA survey, participants were asked to rate how much
they were experiencing a given emotion immediately prior to
receiving the EMA survey notification. Items were rated on a
5-point Likert scale from 1 (Very slightly/not at all) to 5
(Extremely). The present study was focused on the prediction of
negative affect items: ‘Sad’, ‘Nervous’, and ‘Angry’.

Passive smartphone measures
The following fourteen variables were included as predictors
of emotional states: (1) Phone Accelerometer Score: Hourly activ-
ity score of the phone accelerometer data, calculated from the
standard deviation of the triaxial accelerometer data, root mean
squared and scored as 1 when less than 70% (percentile), 2
when between 70% and 90%, and 3 when greater than 90%
(Rahimi-Eichi et al., 2021). The scores are recorded for every
minute and then averaged to calculate the hourly values; (2)
Phone Use (MinsHr): The number of minutes the phone is
used (unlocked) during each hour; (3) Phone Use (MinsDay):
Number of minutes that the phone has been used (unlocked) dur-
ing the day; (4) Phone Use (Hr): Number of hours during the day
that the phone has been used (unlocked) at least for a minute dur-
ing that hour; (5) Sleep Onset Time: Beginning of a sleep episode
(hh:mm) (see online Supplement for details on the calculation of
sleep episodes); (6) Wake Time: End of sleep episode (hh:mm);
(7) Sleep Duration: Difference between Sleep Onset Time and
Wake Time per day (min); (8) Daily Percent Home: Percentage
of time the participant spends at home which could be the
Home (the most visited POI of the study) if visited on that day
or otherwise, the most visited POI of the day (therefore, when
the individual is traveling for several days the home location is
adjusted). POIs: Maximum 50 points of interest that were
detected by spatial clustering of the temporally filtered GPS coor-
dinates visited by the participant during the entire study; (9)
Distance from Home: The farthest distance from Home visited
by the participant during the day (km); (10) Daily Mobility
Area: The radius of a circle that encompasses all visited locations
during the day (km); (11) Places Visited Daily: Number of POIs
other than Home that the participant has visited during the
day; (12) Places Visited Hourly: The number of places that the
participant has visited during each hour; (13) GPS Available:
Number of hours the GPS signal is available (not missing) in
24 h; (14) Time of Day [Morning (5am-11:59am), Afternoon
(noon-5:59pm) or Evening/Night 6pm-4:59am].

Data analytic plan

Missing data imputation
We imputed missing observations of predictors using multiple
imputation by chained equations (MICE package in R) (van
Buuren & Groothuis-Oudshoorn, 2011) on the merged dataset
across subjects. We excluded outcome variables (i.e. anger, sad-
ness, and nervousness) from the imputations to avoid overfitting
of the final prediction models.

Definition of high negative affect (HNA) states
The goal of this study was to predict when adolescents were in
states of relatively high sadness, anxiety, or nervousness. For

simplicity, we henceforth refer to these states as HNA states.
We define HNA states based on deviations from the person-
specific average emotion score for a given adolescent. More specif-
ically, for each emotion, if the observed score of a participant at
time t exceeds their overall average by at least 1/2 point, we define
this as an HNA state of that emotion (see Table 1 and Results).
Note that there is a tradeoff between the cutoff value and the pro-
portion of HNA states. High cutoff values lead to more confident
identification of HNA states but as a result, the proportion of
HNA states might be too low to train any generalizable classifica-
tion algorithm. On the other hand, low cutoff values provide us
with more HNA states for predictive modeling, but a number
of these identified states might be questionable (i.e. too low to
be considered states of ‘high’ negative affect). A sensitivity analysis
with an alternative definition of HNA based on subject-specific
quantiles yielded similar results (see online Supplement).

Personalized predictions of HNA states
HNA states were predicted using passive smartphone data (see
passive measures above) from the same day. We constructed the
subject-specific prediction models using two approaches. The
first was a generalized linear mixed-effects regression (GLMER),
which captured the heterogeneity across subjects with random
effects and predicted the person-specific outcomes (HNA states)
by combining the estimated fixed effects with the random effects.
The second model used a recently developed ensemble learning
approach (Ren et al., 2021) that prioritizes predictive performance
at the individual level while borrowing information across indivi-
duals to supplement idiosyncratic prediction models. Specifically,
this approach utilizes an ensemble of idiosyncratic prediction
models f li (x), i = 1, . . . , K , l = 1, . . . , L, where K is the number
of subjects and L is the number of different learning algorithms
(e.g. logistic regression). f li (x) is trained on data from subject i
with algorithm l. The personalized ensemble model (PEM) fi(x;w

i)
for subject i is a linear combination of all idiosyncratic models (IM):

fi(x; w
i) =

∑K
i′=1

∑L
l=1

wi
i′ ,l f

l
i′ (x)

and the combination weights wi= (wi
i′ ,l ; i

′ =1, . . .K ,l = 1, . . . , L)
with the constraints that

∑
i′ ,l

wi
i′ ,l = 1 and wi

i′ ,l ≥ 0 for all i, i
′
∈

{1,…, K} and l∈ {1,…, L} are selected to minimize a cross-validated
loss function:

ŵi = argminw
∑ni
j=1

L yi,j;
∑
i′=i,l

wi
i′ ,lf

l
i′ (xi,j)+ wi

i,lf
l
i,−j(xi,j)

( )
,

where ni is the number of observations for subject i and f li,−j(x) is the
IM trained on all data from subject i except for the j-th observation

Table 1. Summary statistics of high negative affect (HNA) states for each
negative emotion

HNA proportion
(%)

Average elevation above
subject-specific mean

Anger 27.56 1.12

Sadness 32.18 1.06

Nervousness 32.28 1.25
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(or a fold containing the j-th observation) with algorithm l. L is a
loss function and here we use log-loss for binary outcomes. In sum-
mary, this ensemble approach develops a unique model for each
individual through a data-driven search for the optimal weighting
of IMs (i.e. ‘borrowing’ information from the prediction models
for other individuals in the sample in an effort to improve predictive
performance). A summary of the PEM workflow is illustrated in
online Supplementary Fig. S1.

For the GLMER approach, we used a subject-specific random
intercept and for the PEM approach, we conducted 10-fold cross-
validation to estimate the combination weights ŵi and considered
three different learning algorithms: support vector machine
(SVM), GLM with elastic net penalty (ENet) and random forest
(RF). We used them individually (L = 1) in three separate ensem-
ble (PEM) models and in combination (L = 3) (i.e. a total of 4 sep-
arate ensemble models were tested). We refer to the PEMs with
L = 3 as personalized double ensemble models (PDEM). See
online supplement for additional details. R code for all analyses
is available online (https://github.com/csfm269/PEM-emotion).

Evaluating prediction performance
We used 10-fold cross-validation (CV) at the individual level to
evaluate the subject-specific performance of the PEMs and report
the average prediction accuracy derived from the 10-fold CV
across all participants. We used Area Under the Receiver
Operating Characteristic (AUROC) curve as the metric of accur-
acy and visualize the average ROCs across subjects for different
models.

Decision curve analysis
Decision curves (Perry et al., 2021; Vickers, van Calster, &
Steyerberg, 2019) are plotted to show how the prediction models
could benefit adolescents if used to inform the timing of
smartphone-delivered interventions for elevated negative emo-
tions. Ultimately, the goal of developing prediction models for
HNA states is to provide just-in-time (JIT) intervention for ado-
lescents. Specifically, if the predicted probability of a HNA state
for an individual is larger than a pre-defined threshold p*, a JIT
smartphone-based intervention could be automatically triggered
(e.g. via a smartphone notification or suggested exercise via a
mental health app). However, since such predictions cannot be
perfect, there will be false positives (FP; i.e. the model falsely pre-
dicts that an individual is currently in a HNA state, which triggers
an unneeded smartphone-based intervention) and false negatives
(FN; i.e. the model falsely predicts that an individual is not in a
HNA state, and thus no intervention is triggered when one
could be helpful) associated with a given prediction model.
Individuals likely differ substantially in how much weight they
personally place on avoiding FP v. FN: some put more weight
on avoiding FN over FP, which suggests the individual is relatively
more tolerant of receiving smartphone-triggered interventions,
even if some of the interventions are unnecessary; whereas
other individuals may place more weight on avoiding FP and
thus interventions should only be delivered when models predict
HNA states with high confidence. These differences in preference
can be quantified by the threshold probability p*: p* < 0.5 corre-
sponds to individuals who place more weight on avoiding FN
over FP, while p* > 0.5 corresponds to individuals who place rela-
tively more weight on avoiding FP. We use a decision curve to
capture the utility of a prediction model when the relative impact
of FN v. FP varies, as captured by p*. Consistent with prior studies
(Vickers, Calster, & Steyerberg, 2016), we define the benefit of a

prediction model at a specific p* as

Benefit = #TP
n

− #FP
n

× p∗

1− p∗
,

where #TP is the number of true positives, #FP is the number of
false positives and n is the total number of events to be consid-
ered. The prediction model with the highest benefit at a particular
threshold probability p* has the highest clinical value.

Results

Depressive symptom scores ranged from none to severe (CES-D
range = 1–51) with a mean of 6.3 (S.D. = 3.5) for the TD group
and 40.7 (S.D. = 7.6) for the AH group. Fifty-nine percent of the
sample had clinically significant levels of depressive symptoms
(CES-D ⩾ 16) (Chwastiak et al., 2002). Anhedonia (SHAPS)
scores ranged from 14 to 48 with a mean of 17.3 (S.D. = 3.5) for
the TD group and 37.0 (S.D. = 6.5) for the AH group. There are
no established norms for severity ranges for the SHAPS.
However, a recent meta-analysis of 168 studies (n > 16 000)
revealed that a score of 25 represented the 99th percentile for
healthy controls (Trøstheim et al., 2020). Fifty-five percent of
our sample had a SHAPS score > 25 (see Table 2 for demographic
and clinical characteristics of the sample).

Personalized predictions of HNA states

The mean proportion of HNA states across participants, as well
as the mean difference between the observed emotion scores of
HNA states and the person-specific mean emotion score are listed
in Table 1. We can see that the HNA states were present in
28–32% of all EMA survey timepoints. On average, HNA states
were approximately 1.06 to 1.25 points above their person-specific
mean emotion score. Given that the mean within-person standard
deviation (S.D.) of emotions ranged from 0.79 (anger) to 1.00
(nervousness), HNA states were, on average, approximately 1.2
to 1.4 S.D. above an individual’s mean negative emotion score.

As described above, we considered four PEMs (ENet, SVM, RF
and PDEM) as well as GLMER to predict HNA states for each
emotion separately. The ROCs for all models and emotions are
shown in Fig. 1 and the corresponding AUCs are listed in
Table 3. The table also lists the accuracy of each model at their
optimal cut-off values, defined as the values that minimize the
Euclidean distance between (specificity, sensitivity) and (1, 1),
i.e. the point on the ROC that is closest to the top left corner
(Unal, 2017). PDEM and PEM-RF have superior predictive per-
formance in comparison to the other three models. The linear
mixed model (GLMER) had the poorest performance across all
models.

Idiosyncratic (subject-specific) models (IMs) v. personalized
ensemble models (PEM)

In Fig. 2, we plot the difference in Brier scores and AUCs between
PEMs and IMs when applied to predict outcomes for each subject.
We prioritize Brier scores since they capture both the calibration
and discrimination aspects of a prediction model (Steyerberg
et al., 2010). In addition, the Brier score is more reliable than
AUC when the number of observations is relatively small
(Steyerberg et al., 2010). The boxplot displays the distribution
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Table 2. Demographics and clinical characteristics of the sample

Sample characteristics

Anhedonic N % Typically developing N %

Biological Sex Biological Sex

Female 12 92.3 Female 6 66.7

Male 1 7.6 Male 3 33.4

Race Race

American Indian or Alaska Native 0 0.0 American Indian or Alaska Native 0 0.0

Asian 1 7.6 Asian 0 0.0

Black or African American 1 7.6 Black or African American 0 0.0

Native Hawaiian or Other 0 0.0 Native Hawaiian or Other 1 11.1

Pacific Islander White 11 84.6 Pacific Islander White 8 88.9

Ethnicity Ethnicity

Hispanic or Latino. 1 7.6 Hispanic or Latino 1 11.1

Not Hispanic or Latino. 12 92.3 Not Hispanic or Latino. 8 88.9

Current Diagnoses (DSM-V) Current Diagnoses (DSM-V)

Major Depressive Episode 10 76.9 Major Depressive Episode 0 0.0

Generalized Anxiety Disorder 4 30.8 Generalized Anxiety Disorder 0 0.0

Social Anxiety Disorder 2 15.4 Social Anxiety Disorder 0 0.0

Panic Disorder 0 3.5 Panic Disorder 0 0.0

Specific Phobia 0 3.5 Specific Phobia 0 0.0

Attention-Deficit/Hyperactivity Disorder 1 7.6 Attention-Deficit/Hyperactivity Disorder 0 0.0

Oppositional Defiant Disorder 0 3.5 Oppositional Defiant Disorder 0 0.0

Medication Medication

SSRI 4 30.8 SSRI 0 0.0

M S.D. M S.D.

Age (in years) 15.9 1.8 Age (in years) 17.0 1.0

Family Income (dollars) 122 727 85 801 Family Income (dollars) 154 777 77 748

SHAPS Score 37.0 6.5 SHAPS Score 17.3 3.5

CES-D Score 40.7 7.6 CES-D Score 6.3 3.5

Fig. 1. Receiver operating characteristic (ROC) curve of different models for the prediction of high negative affect (HNA) states for each emotion.

5150 Boyu Ren et al.

https://doi.org/10.1017/S0033291722002161 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291722002161


of the difference across all subjects. From the plots we see that, for
each emotion, PEM was associated with superior Brier scores over
IM for most subjects (i.e. scores above the horizontal dotted line).
The most consistent improvement is observed for PEMs combin-
ing IMs trained with SVM (green boxplots). The improvement in
subject-specific AUCs however is not as pronounced as the Brier
scores, which is due to bias and instability of AUC estimates
derived from cross-validation in small sample scenarios (Airola,
Pahikkala, Waegeman, De Baets, & Salakoski, 2009).

To see more explicitly the difference between a PEM and the
corresponding IMs, we plot the combination weights for every
PEM-RF in online Supplementary Fig. S5. Each row in the plot
displays (with red shading) the weights assigned to each IM.
Notice that if IMs yielded the best predictive performance, all
weights (red) would be assigned to the squares along the diagonal
dotted line (i.e. all weights assigned to the target individual’s IM).
However, we find that subject k’s PEM-RF typically assigns non-
trivial weights to other subjects’ IMs. In summary, these findings
combined with the results summarized in Fig. 2 suggest that per-
sonalized predictions for a given participant benefit from borrow-
ing information from other individuals.

Decision curve analysis

In Fig. 3, we illustrate the decision curves of different prediction
models, as the threshold p* varies. We can see that for anger,
all PEMs will benefit individuals when their concern over FP
does not outweighs FN too much (p* < 0.9). PEM-RF and
PDEM have the largest benefit overall and PDEM outperform
PEM-RF when p* < 0.4. For sadness, none of the prediction mod-
els will benefit individuals if their concern over FP outweighs FN
(p* > 0.5). For nervousness, PEMs have positive benefit when p* <
0.75 and PEM-RF and PDEM are the best performing models
with indistinguishable decision curves. The advantages of the
best performing PEMs over other models are maximized when
p*≈ 0.3 (i.e. a predicted probability of 0.3 or greater is used to
define the presence of a HNA state) for all three emotions.

Discussion

In the present study, passive smartphone sensor-derived variables
were submitted to a novel personalized ML approach to predict
states of heightened negative affect in adolescents. Models

Fig. 2. Differences in Brier score (BS) and area under the curve (AUC) of idiosyncratic models (IM) v. personalized ensemble models (PEM). The boxplot displays the
distribution of the difference across all subjects.

Table 3. Prediction performance of different models when predicting HNA states for each of the three emotions

Method

AUC Accuracy

Anger Sadness Nervousness Anger Sadness Nervousness

GLMER 0.64 0.59 0.60 0.63 0.56 0.58

PEM-ENet 0.69 0.61 0.67 0.67 0.59 0.63

PEM-SVM 0.70 0.60 0.67 0.64 0.57 0.63

PEM-RF 0.73 0.66 0.70 0.69 0.63 0.66

PDEM 0.74 0.66 0.71 0.71 0.65 0.67

Note: GLMER, Generalized linear mixed-effects regression; PEM-ENet, Personalized ensemble model with Elastic net; PEM-SVM, PEM with support vector machine; PEM-RF, PEM with random
forest; PDEM, Personalized double ensemble model. AUC, area under the curve. Accuracies (right three columns) are based on optimal cut-off values (0.3–0.4 across models).
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predicted states of elevated anger with the highest accuracy
(71%; AUC = 0.74), with relatively more modest accuracy for
predicting states of high anxiety (67%; AUC = 0.71) or sadness
(65%; AUC = 0.66). To the extent that these findings are replicated
– and importantly, predictive performance further improved by
incorporating additional smartphone-derived features potentially
predictive of heightened negative affect (e.g. call/text metadata, pat-
terns of social media usage, or peripheral measures of physiological
arousal from wearables) – these predictive models could ultimately
be used to trigger brief ‘just-in-time’ (JIT) interventions via smart-
phone notifications or mental health apps to alleviate heightened
negative emotions in real-time in the daily lives of teens.

Several notable findings emerged. First, our ML model out-
performed a conventional statistical approach (GLMER) in
predicting each negative emotion. In contrast, there are other
examples in which ML does not improve predictive performance
over conventional statistical approaches, such as ordinary least
squares (OLS) regression and GLMER (Christodoulou et al.,
2019; Webb & Cohen, 2021). ML approaches, such as random
forest, are more likely to outperform conventional statistical
approaches when a relatively large number of predictor variables
are included and complex predictor-outcome associations are pre-
sent in the data, including non-linear relations and higher-order
interactions (Kessler & Luedtke, 2021), which may be the case
with respect to the association between affective states and
smartphone-derived variables such as activity level (accelerom-
eter) and locations visited (GPS). Second, our ML approach (i.e.
which involved a data-driven search of the optimal combination
of subject-specific models) outperformed a fully idiographic
model (i.e. person-specific models that do not borrow any infor-
mation from other individuals’models) (Fig. 2). Idiographic mod-
els are becoming increasingly popular in clinical psychological
science (Fisher, Medaglia, & Jeronimus, 2018; Wright & Woods,
2020), in line with the intuitive notion that every individual is dif-
ferent and thus requires a personalized modeling approach.
Conventional (e.g. regression models) statistical approaches
ignore this fact by aggregating across individuals (Fisher et al.,
2018). The ensemble ML approach in this study used a data-
driven search to identify the combination of subject-specific mod-
els that yielded the best predictive performance. If it were the case
that the models that yielded the best predictive performance were
the fully idiographic models, then we would expect the ensemble
approach to assign all model weights to the individual’s own
model (i.e. in online Supplementary Fig. S5, all weights (red shad-
ing) would be assigned to the squares along the diagonal dotted

line). Instead, as seen in this figure, the data-driven search applied
non-zero weights to the subject-specific models of other indivi-
duals, indicating that predictive performance was improved by
‘borrowing’ information from other individual’s models. In
other words, these findings suggest that there is meaningful
shared signal between individuals in the predictive relationships
between smartphone sensor data and negative affective states.

As seen in online Supplementary Fig. S4, averaging across all
participants, activity level (‘accelerometer score’) was the top pre-
dictor for all three emotions. Given the person-specific modeling
approach, individuals could have very different rankings of which
variables contributed most strongly to the predictions of negative
emotional states. Activity level ranked among the top three stron-
gest predictors in 64% (outcome: anger), 79% (outcome: sadness)
and 72% (outcome: nervousness) of participants. However, and in
support of personalized modeling approaches, there were substan-
tial differences across individuals in the directionality of the asso-
ciation between predictors and outcome.

The fact that predictive performance differed meaningfully
across affect variables (highest for anger and lowest for sadness)
suggests that some negative emotions may be relatively more
strongly linked to passive smartphone features such as activity
level, location and phone use patterns. In addition, these findings
suggest that it may be important for future studies to examine
sadness, nervousness and anger separately rather than averaging
them into a single negative affect variable, as is commonly done
in studies. No clear pattern emerged in terms of which variables
were most predictive of each negative emotion. Thus, it is unclear
why differences in predictive performance emerged between emo-
tions. Additional research is needed to test whether our pattern of
findings is replicated.

Ultimately, prediction models could be used to trigger inter-
ventions directly to an adolescent’s smartphone during states of
HNA. Research is needed to test which brief smartphone-
delivered interventions (e.g. app-based mindfulness exercise or
behavioral activation) would be beneficial for an adolescent
experiencing a particular negative emotional state (high anger v.
sadness v. nervousness). A decision curve analysis was conducted
as an initial step to estimate under what conditions (i.e. rate of
false positive (FN) v. false negatives (FN), and their relative
weighting by an individual) such a predictive model could be
beneficial. Decision curves revealed that the prediction models
developed in this study would be most beneficial for adolescents
with a relatively high tolerance for FP (i.e. the model predicts
that an adolescent is in a state of HNA when they are not) relative

Fig. 3. Decision curve analysis: Benefit of decision rules based on different prediction models for all three emotions. The solid black lines reflect the decision rule
that always predicts HNA states at every timepoint and the dashed black lines corresponds to the decision rule that predicts none of the time points to be HNA.
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to FN (i.e. falsely predicting that an adolescent is not in a state of
HNA). In other words, our prediction models would not be bene-
ficial for those adolescents who are relatively sensitive to FP (i.e.
receiving a smartphone-delivered intervention when they are
not in a state of HNA). As noted above, we did not assess parti-
cipants’ individual tolerance for FP relative to FN. A future study
could assess these personal preferences and could individually
titrate the threshold (i.e. predicted probability of being in a
HNA state) which triggers a smartphone intervention. Namely,
users could be given the option to adjust the threshold over
time based on their personal preferences (e.g. via a dial on an
app which controls the user-specific threshold needed to be
reached to trigger an intervention).

There were several limitations to this study. First, predictions
of affect were based on a limited set of smartphone-derived vari-
ables. Other relevant features extracted from smartphones may
improve predictive performance (e.g. meta-data on calls/texts,
social media use, recorded vocal tone/characteristics). Future
studies could consider how these variables and others (e.g. per-
ipheral measures of physiological arousal from wearables) could
improve predictions of heightened negative affect, in particular
for sadness which was associated with the poorest predictive per-
formance. Furthermore, although this study focused on within-
person predictions, the sample size was small. Finally, a denser
EMA sampling strategy with participants completing more affect
surveys per day would provide more granularity in assessments of
affect fluctuations and a larger within-person dataset to use for
modeling. These limitations notwithstanding, the present findings
provide preliminary support for the use of passively collected
smartphone data to predict states of affective distress in adoles-
cents, which could ultimately be translated into timely interven-
tions to alleviate these states and, perhaps, reduce future risk of
affective disorder onset.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291722002161.
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