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Abstract

Background. The association between major depressive disorder and motivation to invest
cognitive effort for rewards is unclear. One reason might be that prior tasks of cognitive
effort-based decision-making are limited by potential confounds such as physical effort and
temporal delay discounting.
Methods. To address these interpretive challenges, we developed a new task – the Cognitive
Effort Motivation Task – to assess one’s willingness to exert cognitive effort for rewards.
Cognitive effort was manipulated by varying the number of items (1, 2, 3, 4, 5) kept in spatial
working memory. Twenty-six depressed patients and 44 healthy controls went through an
extensive learning session where they experienced each possible effort level 10 times. They
were then asked to make a series of choices between performing a fixed low-effort-low-reward
or variable higher-effort-higher-reward option during the task.
Results. Both groups found the task more cognitively (but not physically) effortful when effort
level increased, but they still achieved ⩾80% accuracy on each effort level during training and
>95% overall accuracy during the actual task. Computational modelling revealed that a para-
bolic model best accounted for subjects’ data, indicating that higher-effort levels had a greater
impact on devaluing rewards than lower levels. These procedures also revealed that MDD
patients discounted rewards more steeply by effort and were less willing to exert cognitive
effort for rewards compared to healthy participants.
Conclusions. These findings provide empirical evidence to show, without confounds of other
variables, that depressed patients have impaired cognitive effort motivation compared to the
general population.

Introduction

Anhedonia, a key feature of major depressive disorder (MDD), is a multi-faceted symptom
comprised of various constructs with distinct neurobiological mechanisms. Anhedonic adults
may experience reduced motivation to work for rewards (i.e. motivational anhedonia), derive
weaker pleasure when imagining or looking forward to a reward (i.e. anticipatory anhedonia),
and/or enjoy rewarding activities less than before (i.e. consummatory anhedonia) (Treadway &
Zald, 2011). Of these, motivational anhedonia is the least understood.

Operationally, motivation can be defined as one’s willingness to overcome the effortful
costs in pursuit of rewards (Husain & Roiser, 2018). This definition emerged from a rich lit-
erature in non-human animals, which measured how much physical effort an animal is willing
to allocate to obtain a reward (Chong, Bonnelle, & Husain, 2016; Salamone & Correa, 2012).
For example, in the classic T-maze paradigm, rodents are trained to decide between one arm
that provides more food pellets but require high-effort to climb over a tall barrier v. another
arm that has fewer food pellets but is unobstructed (Salamone, Correa, Yang, Rotolo, & Presby,
2018). Based on the ‘effort-discounting’ principle, animals generally find effort aversive and
devalue rewards available by the effort costs required to obtain them (Walton, Kennerley,
Bannerman, Phillips, & Rushworth, 2006). Therefore, choices could be used as a proxy for
motivation, such that a more motivated animal would choose to invest more effort than a
less motivated animal for the same amount of reward. Inspired by the wealth of preclinical
studies, advances in our understanding of human motivation have also been made within
the framework of effort-based decision-making. Unsurprisingly, these studies have largely con-
centrated on the willingness to exert physical effort for rewards (e.g. Treadway, Buckholtz,
Schwartzman, Lambert, & Zald, 2009). However, effort can be experienced not only in the
physical domain (Chong et al., 2016; Husain & Roiser, 2018).

Motivation to invest cognitive effort is fundamental to everyday life as well. For example,
students have to decide how much cognitive effort to put into studying in order to achieve
their desired grades in an upcoming exam. Clinically, substantial evidence has implicated a
lack of cognitive effort in depression and associated it with serious functional consequences
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(Cohen, Lohr, Paul, & Boland, 2001; Ellis & Ashbrook, 1988;
Hammar & Ardal, 2009; Hartlage, Alloy, Vázquez, & Dykman,
1993; Hasher & Zacks, 1979; Zakzanis et al., 1998). Moreover,
impairments in cognitive effort motivation could significantly
hamper treatment in depression, e.g. psychotherapy requires the
frequent use of significant cognitive effort to re-orient distorted
negative thoughts. Despite its significance, research on the motiv-
ation to invest cognitive effort for rewards is in its infancy
(Husain & Roiser, 2018). Crucially, previous studies exploring
the relationship between depression and willingness to expend
cognitive effort have yielded mixed findings. Some investigators
have reported that depression was associated with reduced cogni-
tive effort for reward, but others have found no relationship
between them (see review by Horne, Topp, & Quigley, 2021).

A few laboratory-based tests are currently available to probe
cognitive effort-based decision-making (e.g. Chong et al., 2017;
Massar, Libedinsky, Weiyan, Huettel, & Chee, 2015; Soutschek,
Kang, Ruff, Hare, & Tobler, 2018; Westbrook, Kester, & Braver,
2013). However, these existing tasks are associated with important
interpretive challenges. For example, Westbrook et al. (2013)
adopted the N-back working memory task, where participants
monitored the identity of a series of visual stimuli and responded
when the current presented stimulus matched the one in the pre-
vious N trials. Cognitive effort was manipulated by varying N
from 1 to 6, and subjects made a series of choices between per-
forming a lower-effort option for lower-reward or a higher-effort
option for higher-reward. However, the task becomes difficult to
perform beyond N = 2 due to the rapid encoding, retrieval, updat-
ing, and discarding processes demanded of working memory
(Callicott, 1999; Owen, McMillan, Laird, & Bullmore, 2005).
Indeed, these investigators reported that the success rate in
patients with schizophrenia and healthy controls decreased
sharply, and their perceived likelihood of failing increased greatly,
from N = 2 onwards (Culbreth, Westbrook, & Barch, 2016;
Westbrook et al., 2013).

Another example is the letter cancellation task, where subjects
had to cross out all the letters ‘e’ in a text of random letters, pro-
vided the two letters before and after an ‘e’ were not vowels
(Soutschek et al., 2018). The different effort levels were to cancel
8, 16, 24, 32, or 40 lines of random text. However, even though
crossing out more lines required more cognitive effort, it also
expected larger physical effort. Moreover, more time is needed
to cancel more lines, thus resulting in greater delay in reward
delivery. Hence, participants may choose not to exert greater
effort during certain trials not because of the cognitive demand,
but because they think it is not worth spending more physical
effort and/or it is not worth spending longer time for the reward.
Put differently, cognitive effort discounting is potentially con-
founded by physical effort and temporal discounting.

To address these challenges, we developed the Cognitive Effort
Motivation Task (CEMT), a new paradigm that assessed willing-
ness to exert cognitive effort for rewards without the confounds of
probability, physical effort, and temporal discounting. Cognitive
effort was manipulated by varying the number of items kept in
spatial working memory, and participants had to make a series
of choices between performing a fixed low-effort option for low-
reward or a variable option that required higher-effort in
exchange for higher-reward. Importantly, before administering
the CEMT, we conducted an extensive learning session whereby
subjects experienced each possible effort level 10 times and were
allowed to proceed to the main task only if they could perform
each effort level with at least 80% accuracy. This ensured that

participants selected between options based on cognitive effort,
and not the probability of succeeding, during the CEMT.
Moreover, the amount of time required to execute each effort
level was the same, thus ensuring that choices were not influenced
by temporal delay. Finally, participants were required to exert the
same amount of physical effort regardless of which option they
chose, thus minimizing the influence of physical effort discount-
ing. Unlike most previous tasks, computational modelling was
also used to capture each individual’s decision pattern and object-
ively index their motivation to invest cognitive effort with a single
parameter (see Methods for details). Our main goals in this study
were to (1) investigate the utility and validity of the CEMT, and
(2) examine cognitive effort motivation in MDD patients without
putative interpretative confounds.

Methods

Participants

Forty-four healthy volunteers and 26 depressed patients took part
in this study (see Table 1 for participant characteristics). All
healthy subjects were recruited from the Boston metropolitan
area and underwent the Structured Clinical Interview for
DSM-IV-TR (SCID) (First, Williams, Karg, & Spitzer, 2015) to
confirm the absence of any current or past psychiatric disorders.
For the depressed group, 20 participants were recruited from the
Boston metropolitan area and fulfilled the SCID criteria for MDD;
six were inpatients at McLean Hospital who had a primary diag-
nosis of MDD. The exclusion criteria for MDD subjects were
history of psychosis or bipolar disorder, substance-related disorders,
active suicidality, lifetime history of electroconvulsive therapy, or
unstable medical conditions. Ethical approval for the study was
obtained from the Partners Human Research Committee. After
providing written informed consent, participants completed the
CEMT and a battery of questionnaires in a quiet testing room.

Cognitive Effort Motivation Task (CEMT)

The CEMT was programmed using PsychToolBox on MATLAB
(MathWorks) and administered on a Microsoft Surface Laptop.
This task manipulated cognitive effort by systematically varying
the number of items kept in working memory and comprised
of three main phases (Fig. 1):

(1) Decision phase: Participants were first asked to select, without
any time limit, between a fixed low-effort-low-reward (LE/
LR) option, which required them to remember 1 item for 1
point, and a variable higher-effort-higher-reward (HE/HR)
option that could reward them 2, 4, 6, or 8 points in return
for remembering 2, 3, 4, or 5 items. There were three blocks
of 32 trials (i.e. total of 96 trials) in the experiment. Every
block presented two samples of each HE/HR effort-reward
combination in a pseudorandomized sequence. Positions of
both options were pseudorandomized with half the trials pre-
senting LE/LR on the left (i.e. HE/HR on right) and the
remaining trials showing LE/LR on the right (i.e. HE/HR
on left).

(2) Remembering phase: After making a decision, the options dis-
appeared and participants saw the words ‘Remember the red
squares’ for 1000 ms. A 6-by-6 square grid was then pre-
sented. The chosen number of squares within the grid were
highlighted in red while the remaining squares were black.
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Subjects were given 2500 ms to remember the locations of the
red squares within the grid. The red squares then turned to
black (so all squares in the square grid looked the same)
and was followed after a 1000 ms interval by the testing phase.

(3) Testing phase: Subjects were tested on their memory of the red
squares five times. For each test, a target ‘T’ appeared for
2000 ms at a random square on the square grid. They had
to indicate via keypress (‘m’ or ‘n’, counterbalanced) whether
or not the target was presented in a red square during the
remembering phase. This was followed by a 200 ms interval
before the next test occurred. The number of points from
their chosen option (i.e. LE/LR or HE/HR) was rewarded if
at least four tests were correct, and zero points otherwise.
Participants were told that the total number of points earned
from five randomly selected trials would be converted into a
monetary bonus of up to US$5.

A learning session was administered before the CEMT.
Subjects performed the remembering phase and testing phase
for each effort level (i.e. 1, 2, 3, 4, 5 items) 10 times and pro-
ceeded to the CEMT only if they achieved 80% accuracy for
each level. When a participant had trouble reaching this criter-
ion, the task difficulty was reduced and re-administered with
smaller 5-by-5 or 4-by-4 grids. Importantly, they completed
the CEMT with the corresponding grid size. Forty-two HCs
as well as 22 MDD patients completed the 6-by-6 grid success-
fully. The remaining two HCs and four MDD patients could not
meet the criterion for the 6-by-6 grid, but successfully per-
formed the 5-by-5 grid. After completing this learning session
(but before starting the CEMT), subjects were also asked to
rate how cognitively and physical demanding each effort level
was on a visual analogue scale from 0 to 10 (higher score indi-
cating greater demand).

Computational modelling

Every subject’s choices during the decision phase was modeled
with a series of utility discounting functions using the softmax
equation. The probability of choosing option i from a set of
options {i, j} is P(i) = eb·SVi/(eb·SVj + eb·SVi ), where β refers to
the softmax parameter. SV represents the subjective value on
trial t and took on the following forms:

• Linear: SV(t) = R(t)− kE(t),

• Hyperbolic: SV(t) = R(t)
1+kE(t) ,

• Parabolic: SV(t) = R(t)− kE(t)2,

• Exponential: SV(t) = R(t)e−kE(t),

where R stands for the reward magnitude (1, 2, 4, 6, or 8), E refers
to the effort level (1, 2, 3, 4, or 5), and k is the parameter of inter-
est denoting how steeply reward is discounted as a function of
cognitive effort (higher k indicates greater discounting).

The models were computed by using expectation-
maximization to derive group priors and Laplace approximation
of posterior distributions for parameter estimation for each par-
ticipant (Huys et al., 2012; Suthaharan, Corlett, & Ang, 2021).
To avoid issues with non-Gaussianity, parameters were repre-
sented as logarithmic transformed variables (i.e. logβ, logk) with
support on the real line and normally distributed group priors.
The best-fitting model was determined with integrated group-
level Bayesian Information Criterion factors (iBIC), which cap-
tures the trade-off between model fit and complexity (Huys
et al., 2012). The difference between any two models’ iBIC values
(i.e. ΔiBIC) approximates their relative log Bayes factor and a
ΔiBIC > 10 represents strong evidence for the model with the
lower score. As a form of additional validation, 100 sets of surro-
gate data were simulated from the best-fitting model to examine
whether qualitatively similar patterns to the real data can be
reproduced based on the computed parameter estimates. The
maximum a posteriori parameters for each subject were computed
and used together with the original sequence of options to gener-
ate a novel sequence of choices for comparison with the raw data.

Clinical measures

Apathy Motivation Index (AMI) (Ang, Lockwood, Apps,
Muhammed, & Husain, 2017): This is an 18-item self-report meas-
ure of motivation in the behavioral, social, and emotional domains.
Each item was rated on a five-point Likert scale, with a higher total
score in each subscale indicating greater apathy (i.e. lower motiv-
ation). One MDD subject did not complete this measure.

Snaith Hamilton Pleasure Scale (SHAPS) (Snaith et al., 1995):
This is a 14-item self-report measure of consummatory anhedo-
nia. Each item was scored on a four-point Likert scale, with a
higher total score indicating lower ability to experience pleasure.
One MDD subject did not complete this scale.

Beck Depression Inventory (BDI-II) (Beck, Steer, & Brown,
1996): This is a 21-item self-report measure of depressive symp-
tom severity. Each item was scored on a four-point Likert scale,
with a higher total score indicating more severe levels of depression.

Statistical analyses

A linear mixed model was estimated with the restricted maximum
likelihood method to examine participants’ subjective ratings of

Table 1. Participant characteristics

HC (N = 44)
MDD

(N = 26) p value

Age in years [mean(S.D.)] 26.8 (5.9) 25.0 (7.9) 0.30

Gender (M:F) 13:31 12:14 0.16

Race (White:non-White) 26:18 15:11 0.91

Hispanic/Latino (yes:no) 8:36 5:21 0.91

Education in years [mean(S.D.)] 16.4 (3.6) 15.1 (3.1) 0.14

Medication (yes:no) – 12:14a –

BDI total [mean(S.D.)] 1.7 (3.0) 27.7 (9.5) <0.001

SHAPS total [mean(S.D.)] 20.2 (6.1) 30.2 (5.7) <0.001

AMI

BA [mean(S.D.)] 1.06 (0.55) 2.17 (0.64) <0.001

SM [mean(S.D.)] 1.31 (0.57) 2.30 (0.75) <0.001

ES [mean(S.D.)] 1.06 (0.42) 0.87 (0.77) 0.25

Total [mean(S.D.)] 1.15 (0.35) 1.78 (0.42) <0.001

HC, healthy control; MDD, major depressive disorder; BDI, Beck Depression Inventory;
SHAPS, Snaith Hamilton Pleasure Scale; AMI, Apathy Motivation Index; BA, behavioral
activation; SM, social motivation; ES, emotional sensitivity.
aNine patients were on SSRIs (selective-serotonin reuptake inhibitors), two patients were on
SNRIs (serotonin-norepinephrine reuptake inhibitors), and one patient was on SNRI and
SARI (serotonin receptor antagonists and reuptake inhibitors).
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cognitive and physical demand of each effort level. This model
contained fixed effects of group (MDD, HC), domain (cognitive,
physical), effort level (1, 2, 3, 4, 5 squares), group × domain,
group × effort level, domain × effort level, and group × domain ×
effort level, as well as random intercepts for each subject.
Pairwise comparisons with Bonferroni corrections were carried
out for significant effects.

Mixed ANOVA was used to examine potential group differ-
ences in how reward magnitude (regardless of effort level)

influenced the proportion of HE/HR option chosen. The
between-subject factor was group (MDD, HC) and within-subject
factor was reward (2, 4, 6, 8 points). To investigate the effect of
effort level (regardless of reward magnitude), a similar approach
was taken but using a within-subject factor of effort level (2, 3,
4, 5 squares) instead. Greenhouse–Geiser corrections were used
to adjust the degrees of freedom when the assumption of spher-
icity was violated. Bonferroni-corrected pairwise comparisons
were conducted on significant factors.

Pearson correlations were used to probe the associations
between the clinical measures and computational parameter k.
All variables were approximately normally distributed with no
significant outliers.

Finally, a linear mixed model was estimated with the restricted
maximum likelihood method to investigate participants’ accuracy
of execution at each effort level. This model contained fixed
effects of group (MDD, HC), effort level (1, 2, 3, 4, 5 squares),
and group × effort level, as well as random intercepts for each sub-
ject. Pairwise comparisons with Bonferroni corrections were car-
ried out for significant effects.

Results

Subjective ratings of cognitive and physical demand as effort
levels increased

There was a significant interaction effect of domain × effort level
[F(4,612) = 75.7, p < 0.001], indicating that subjects experienced a
greater increase in cognitive demand compared to physical
demand as the effort levels increased (Fig. 2). The group × domain
interaction was significant as well [F(1,612) = 21.2, p < 0.001]. MDD
patients reported greater mean cognitive demand than HCs

Fig. 1. Schematic of the cognitive effort motivation task. This task manipulated cognitive effort by systematically varying the number of items kept in working
memory. On every trial, participants had to first decide between a fixed low-effort-low-reward option, which awarded 1 point for remembering 1 item, and a vari-
able higher-effort-higher-reward option that gave either 2, 4, 6, or 8 points in return for remembering 2, 3, 4, or 5 items, respectively (decision phase). After selecting
an option, a square grid was presented in which the chosen number of squares within the grid were highlighted in red while the remaining squares were colored in
black. Subjects had 2.5 s to remember the locations of the red grids (remembering phase). Next, participants were tested on their memory of the red squares five
times (testing phase). For each test, a target ‘T’ appeared for 2000 ms at a random square on the square grid. They had to indicate via keypress whether or not the
target was presented in a previously red square. Finally, the number of points from their chosen option was rewarded if at least four tests were correct, and zero
points otherwise (feedback phase).

Fig. 2. Subjective ratings of cognitive and physical demands associated with each
effort level in healthy controls (HC) and patients with major depressive disorder
(MDD). The rating of cognitive demand in both groups increased more steeply than
physical demand as effort levels increased. MDD subjects also reported greater
mean cognitive demand than healthy controls across all effort levels, but there
was no group difference in self-rated physical demands.
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[t(90.0) = 2.53, p < 0.05] across all effort levels, but there was
no difference in mean physical demand between both groups
[t(90.0) = 0.82, p = 0.42]. There were also significant main effects
of effort level [F(4,612) = 217.2, p < 0.001] and domain [F(1,612) =
713.1, p < 0.001]. All other terms in the model did not reach stat-
istical significance ( p’s > 0.05).

Proportion of HE/HR option chosen as reward magnitude
increased

The main effect of reward was statistically significant [F(1.4,94.7) =
68.1, p < 0.001], indicating that subjects chose the HE/HR option
more often as the reward magnitude increased (regardless of effort
level) (Fig. 3a). We also observed a significant main effect of
group [F(1,68) = 13.2, p < 0.001], with MDD patients choosing
fewer HE/HR options on average across all reward levels com-
pared to HCs, but the group × reward interaction was not statistic-
ally significant [F(1.4,94.7) = 1.25, p = 0.28].

Proportion of HE/HR option chosen as effort level increased

There was a significant main effect of effort level [F(1.6,108.6) = 87.4,
p < 0.001], with subjects making fewer selections of the HE/HR
option as the effort level increased (regardless of reward magni-
tude) (Fig. 3b). We also found a significant main effect of group
[F(1,68) = 13.2, p < 0.001], indicating that MDD patients chose
the HE/HR option less frequently across all effort levels compared
to HCs. There was no group × effort interaction [F(1.6,108.6) = 1.06,
p = 0.34].

Parabolic model best explains participants’ choice data

The parabolic discounting model provided the most parsimoni-
ous account of participants’ choices during the decision phase,
with a ΔiBIC = 49 (overwhelming evidence) over the second-best
exponential model (linear: iBIC = 4338.7; hyperbolic: iBIC =
5000.4; parabolic = 4141.8; exponential: iBIC = 4190.7). Hence,

changes in effort at higher levels had a greater impact on dis-
counting reward than changes at lower levels. Surrogate data
simulated from the parabolic model also reproduced qualitatively
similar patterns in the MDD and HCs raw data to a reasonably
good extent (Fig. 4).

On a group level, patients with MDD [mean(S.D.) =−1.46
(1.27)] had significantly larger logk than HCs [mean(S.D.) =
−2.28(0.99)] [t(68) = 3.02, p < 0.005]. This suggests that depressed
individuals exhibited lower willingness to exert cognitive effort for
reward compared to healthy people. There was no group differ-
ences in the softmax parameter [MDD: mean(S.D.) = 0.001
(1.199); HC: mean(S.D.) = 0.338(1.077); t(68) = 1.22, p = 0.23].

Associations of logk with self-reported motivation, anhedonia
and depressive symptom severity in MDD patients and healthy
individuals

There was a trending correlation between logk and the AMI
behavioral activation subscale [r(23) = 0.39, p = 0.053, online
Supplementary Fig. S1a] in the MDD group, suggesting that
depressed patients who reported lower motivation in the behav-
ioral domain were less willing to invest cognitive effort for reward
on the CEMT. On the other hand, logk was not associated with
the social motivation [r(23) = 0.25, p = 0.22] or emotional sensitiv-
ity [r(23) = 0.07, p = 0.76] subscales of the AMI. Correlational
analyses also revealed that, among the MDD group, logk was
not related to total score on the SHAPS [r(23) = 0.05, p = 0.83]
and BDI [r(24) = 0.13, p = 0.54], suggesting that the willingness
to exert cognitive effort for reward on the task was not associated
with self-reported levels of consummatory anhedonia or severity
of depressive symptoms.

Within HCs, it was observed that logk was significantly corre-
lated with AMI behavioral activation subscale [r(42) = 0.346, p =
0.02, online Supplementary Fig. S1b] as well as SHAPS [r(42) =
0.351, p = 0.02, online Supplementary Fig. s1c]. This suggests
that healthy individuals who had lower behavioral motivation
and consummatory anhedonia exhibited lower willingness to

Fig. 3. (a) Proportion of higher-effort-higher-reward (HE/HR) option chosen as reward magnitude increased. Subjects chose the HE/HR option more often as the
reward magnitude increased (regardless of effort level). MDD patients also selected fewer HE/HR options on average across all reward levels compared to HCs, but
there was no group × reward interaction. (b) Proportion of HE/HR option chosen as effort level increased. Subjects made fewer selections of the HE/HR option as the
effort level increased (regardless of reward magnitude). Relative to HC, MDD patients also chose the HE/HR option less frequently across all effort levels, but there
was no group × effort interaction.
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exert cognitive effort for reward on the CEMT. In contrast, there
was no association between logk and social motivation [r(42) =
0.09, p = 0.55], emotional sensitivity [r(42) = 0.28, p = 0.07] in
the HC group.

No group difference in average decision time

There was no difference between MDD patients [mean(S.D.) = 1.75
(0.46)s] and HCs [mean(S.D.) = 1.96(0.79)s] in the average time
taken to choose an option during the decision phase [t(68) =
1.24, p = 0.22]. This suggests that both groups were equally
quick at deciding between the options.

No group difference in the overall accuracy of execution

Patients with MDD [mean = 95.6(4.1)%] did not differ from HCs
[mean = 95.8(4.0)%] in the overall percentage of trials successfully
executed during the testing phase [t(68) = 0.24, p = 0.81].

Association of execution accuracy with effort levels

There was a significant effect of effort level [F(4,330) = 14.2, p <
0.001]. Pairwise comparison analyses found that participants
had significantly lower execution accuracy when they had to
remember five squares compared to other effort levels, but there

were no significant differences in execution accuracy when
remembering between 1 and 4 squares (online Supplementary
Fig. S2). Nevertheless, the mean accuracy at the effort level of
five squares was still high at ∼87% [1 square: mean(S.D.) = 97.6
(7.2)%, two squares: mean(S.D.) = 97.1(4.9)%, three squares:
mean(S.D.) = 96.7(4.9)%, four squares: mean(S.D.) = 94.6(7.1)%,
five squares: mean(S.D.) = 87.1(19.8)%]. All other terms in the
model did not reach statistical significance ( p’s > 0.05).

Discussion

Here, we have introduced the CEMT – a novel behavioral para-
digm that assesses one’s willingness to exert cognitive effort in
order to obtain rewards. This task offers significant advantages
over previous tasks. First, a learning session was administered to
make sure that subjects could achieve at least 80% accuracy for
each effort level before proceeding to the CEMT. This extensive
learning ensured that during the decision phase, subjects were
selecting between options based on cognitive effort and not prob-
ability of succeeding on the trial. The impact of self-
handicapping, which is the process by which people avoid putting
in effort in order to prevent potential failure from hurting
self-esteem, is also minimized. Second, all trials lasted the same
duration, thereby ensuring that choices were not influenced by
temporal delay. Third, participants always had to make five

Fig. 4. Comparison between surrogate and actual data. Surrogate data simulated from the winning computational model reproduced qualitatively similar patterns
in the raw data for healthy controls and individuals with major depressive disorder (MDD) to a reasonably good extent.
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button presses regardless of which option they chose, thus equal-
izing the physical effort required. The goals of this study were to
investigate the feasibility and validity of the CEMT, as well as
compare cognitive effort motivation between MDD patients and
the healthy population. Several key findings emerged.

After completing the training, in both groups, rating of cogni-
tive demand increased more steeply than physical demand as
effort levels increased. MDD subjects also reported greater
mean cognitive demand than healthy controls across all effort
levels, but there was no group difference in self-rated physical
demands. Hence, the paradigm was working as expected – parti-
cipants perceived the task to be more cognitively (but not physic-
ally) effortful when the spatial working memory load increased,
yet they were still able to achieve ⩾80% accuracy on each effort
level during the training and >95% overall accuracy during the
actual task. On the other hand, a previous study utilizing the
N-back paradigm reported that even though subjects’ self-rated
cognitive demand increased as N got higher, their perceived like-
lihood of failure also elevated along with a decrease in actual suc-
cess rate (Westbrook et al., 2013).

During the decision phase of the CEMT, both MDD patients
and healthy people selected the HE/HR option more frequently
as the reward on offer increased, and less often as the effort
level increased. However, depressed patients made significantly
fewer HE/HR choices across all reward and effort levels, suggest-
ing that they were less motivated to invest cognitive effort for
reward compared to controls. Interestingly, these findings are
similar to earlier studies observing that MDD patients were sig-
nificantly less willing to exert physical effort for reward relative
to healthy individuals (Treadway, Bossaller, Shelton, & Zald,
2012), which suggests that poorer effort motivation in depression
might be consistent across domains. However, our results stand in
contrast to findings from a recent study, which also varied
cognitive effort in terms of working memory load but surprisingly
reported no difference between MDD patients and healthy
individuals in the amount of HE/HR choices (Tran, Hagen,
Hollenstein, & Bowie, 2021). This discrepancy might have
occurred due to a combination of reasons. First, these investiga-
tors used the N-back paradigm, which measured working
memory for a sequence of letters whereas our task measured
spatial working memory instead. Second, their task included an
additional manipulation whereby even if the participant
successfully completed the trial, there was only a 12, 50, or 88%
chance of reward delivery. This complicates the decision process
because besides the cognitive demand associated with both
options, participants also had to consider that reward was not
guaranteed regardless of each option they choose. Second,
their task contained only two different effort levels, but had 11
different reward magnitudes. Hence, it is likely to be tapping more
into reward, rather than effort, sensitivity. On the other hand, the
CEMT examines an equal number of effort and reward levels.

Design of the CEMT also allowed us to model participants’
trial-by-trial choice data and derive a subject-specific k parameter
that denotes how steeply the reward on offer was discounted by
the required effort level. Thus, k served as a proxy of cognitive
motivation level as a higher k reflected lower willingness to invest
cognitive effort for rewards (and vice versa). A parabolic model
provided the most parsimonious account of subjects’ data and
indicated that higher effort levels had a greater impact on devalu-
ing rewards than lower effort levels. Moreover, surrogate datasets
generated by using the derived parameters to simulate the experi-
ment reproduced the raw data and general pattern of behavior to

a good degree, thus providing an additional form of model valid-
ation. MDD patients also exhibited significantly higher k values
than healthy participants, which is consistent with the group-level
choice data analyses. Together, these findings suggest that compu-
tational modeling could serve as a reliable way to objectively
quantify individual levels of cognitive motivation.

Finally, depressed patients and healthy individuals who were
more motivated to exert cognitive effort for reward (based on
the computational parameter k) also self-reported greater levels
of behavioral motivation (albeit at a trend level of significance
for patients). However, k was not associated with self-report mea-
sures of social and emotional motivation and depressive symptom
severity. Interestingly, there was a significant correlation between
k and consummatory anhedonia (based on the SHAPS) among
the healthy controls, but not MDD patients. This might be due to
the relatively small patient sample size, which results in reduced stat-
istical power to detect significant effects. Future studies could evalu-
ate these relationships in a larger group of patients. It is also worth
noting that the SHAPS is a global assessment of hedonic tone and
future investigations could adopt more modern scales such as the
Positive Valence Systems Scale (Khazanov, Ruscio, & Forbes,
2020), which was developed based on the NIMH RDoC framework
and measures different positive valence systems subdomains.

In clinical outcome research, the CEMT could provide more
objective and sensitive measures of motivational disturbances in
anhedonia. This will supplement conventional clinical and
interview-based measures, which might suffer from influences
that can complicate assessment such as lack of willingness in dis-
closure and absence of insight. Future directions include using the
task to investigate the neural mechanisms underlying cognitive
effort motivation in depression, which could lead to greater diag-
nostic precision of anhedonia within the clinic and contribute
toward personalized treatment for anhedonic patients with MDD.

Several limitations should be acknowledged. First, although
participants in the current study were all able to achieve at least
80% accuracy, it is possible that patients with more severe illness
might not be able to meet this cutoff and have to be excluded,
thus reducing the generalizability of our findings. Second, inde-
pendent measures of baseline cognitive functioning were not
obtained. Hence, it is unclear whether HCs and MDD patients
were matched on cognitive abilities. Third, although we ensured
that all participants were able to obtain at least 80% accuracy
for each of the effort levels during training, it was still observed
that the actual task execution accuracy when having to remember
five squares (∼87%) was significantly lower than the other effort
levels (∼95–98%). Hence, while potential effects of probability
discounting have been significantly lessened with our task design,
they might not have been completely eliminated.

Conclusion

Motivation to invest cognitive effort for rewards is fundamental to
everyday life, but its association with MDD remains unclear. Here,
we have introduced the CEMT – a novel behavioral paradigm that
assessed willingness to exert cognitive effort for rewards without the
confounds of probability, physical effort, and temporal discounting
– and combined it with computational modeling to provide empir-
ical evidence that patients with MDD were impaired on cognitive
effort motivation compared to the general population.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291722000964.
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