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ABSTRACT
BACKGROUND: The National Institute of Mental Health Research Domain Criteria (RDoC) initiative aims to establish a
neurobiologically valid framework for classifying mental illness. Here, we examined whether the RDoC construct of
reward learning and three aspects of its underlying neurocircuitry predicted symptom trajectories in individuals with
mood pathology.
METHODS: Aligning with the RDoC approach, we recruited individuals (n = 80 with mood disorders [58 unipolar and
22 bipolar] and n = 32 control subjects; 63.4% female) based on their performance on a laboratory-based reward
learning task rather than clinical diagnosis. We then assessed 1) anterior cingulate cortex prediction errors using
electroencephalography, 2) striatal reward prediction errors using functional magnetic resonance imaging, and 3)
medial prefrontal cortex glutamatergic function (mPFC Gln/Glu) using 1H magnetic resonance spectroscopy.
Severity of anhedonia, (hypo)mania, and impulsivity were measured at baseline, 3 months, and 6 months.
RESULTS: Greater homogeneity in aspects of brain function (mPFC Gln/Glu) was observed when individuals were
classified according to reward learning ability rather than diagnosis. Furthermore, mPFC Gln/Glu levels predicted
more severe (hypo)manic symptoms cross-sectionally, predicted worsening (hypo)manic symptoms longitudinally,
and explained greater variance in future (hypo)manic symptoms than diagnostic information. However, rather than
being transdiagnostic, this effect was specific to individuals with bipolar disorder. Prediction error indices were
unrelated to symptom severity.
CONCLUSIONS: Although findings are preliminary and require replication, they suggest that heightened mPFC Gln/
Glu warrants further consideration as a predictor of future (hypo)mania. Importantly, this work highlights the value of
an RDoC approach that works in tandem with, rather than independent of, traditional diagnostic frameworks.

https://doi.org/10.1016/j.bpsc.2021.01.004
The Diagnostic and Statistical Manual of Mental Disorders
(DSM) (1) and International Classification of Diseases (2) clas-
sify major depressive disorder (MDD) and bipolar disorder (BD)
as separate conditions distinguishable by a history of
(hypo)mania, with evidence supporting a disease-specific
treatment approach (3,4). Although these nosological sys-
tems provide a useful common language for clinicians and
researchers, their value for understanding mood disorder
pathophysiology remains limited. Accordingly, the Research
Domain Criteria (RDoC) (5,6) was proposed as a strategic
change in scientific inquiry and seeks to classify psychiatric
disorders according to measurable variability within and across
different domains of functioning. Subsequently, the Positive
Valence Systems domain—in particular, the subdomain of
reward learning—has emerged as an especially promising target
for understanding the mechanisms underpinning mood symptoms.

Reward learning refers to the ability to adaptively modulate
behavior as a function of positive reinforcement. Abnormalities
in reward learning and underlying neurocircuitry have been
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strongly implicated in mood disorders (7,8). For example,
performance on behavioral reward learning paradigms has
been shown to 1) differentiate patients with MDD or BD from
control subjects during symptomatic and asymptomatic states
(9,10), 2) predict anhedonia severity and treatment outcome
(11), 3) change following pharmacological dopaminergic ma-
nipulations (12,13), 4) be linked to striatal dopamine transporter
function and frontostriatal functional connectivity (14), and 5)
be heritable (15). Decades of research in laboratory animals
has identified the neurobiological processes underpinning
reward learning (16). Therefore, examining how these pro-
cesses vary across the mood disorder spectrum represents a
fruitful avenue for identifying the neurobiological basis under-
pinning mood disorder heterogeneity.

Imaging and computational studies suggest that the brain
employs distinct hierarchical systems to support learning
(17,18), and to date the neural circuitry involved in learning
from positive reinforcement has been especially well charac-
terized (19–21). Importantly, individuals with MDD or BD have
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been found to exhibit dysregulation in three key aspects of this
neurocircuitry. First, a fundamental mechanism that supports
reward learning is the reward prediction error (RPE), which is a
striatal dopamine-based signal that encodes violations of
reward expectancies (22). Individuals with MDD have been
found to have blunted striatal RPE signals during learning
(23–25), and this blunting has been linked to a more recurrent
depressive illness course (23). Similar abnormalities have been
observed in individuals with BD, although the direction of ef-
fects often diverges from those observed in studies of unipolar
MDD. Relative to healthy control subjects, euthymic individuals
with BD or individuals with subthreshold hypomania have been
found to have elevated striatal activation during reward antic-
ipation (26) and reward outcome (27). Similarly, manic in-
dividuals with BD show striatal responses that fail to
differentiate between receipt and omission of rewards, sug-
gestive of abnormal RPE signaling (28).

Second, event-related potential (ERP) studies highlight the
reward positivity (RewP) as another important reward circuit
component linked to mood pathology (29). The RewP is a
frontocentral electroencephalographic (EEG) deflection that is
elicited by RPEs and is thought to originate from the anterior
cingulate cortex (ACC) and striatum (30). Smaller RewP am-
plitudes, as well as weaker RewP-related ACC activation,
predict poorer reward learning (31,32). Furthermore, abnormal
RewP amplitudes have been observed in individuals with hy-
pomania (33) and those with MDD (34), and they have been
found to predict future depression onset in healthy individuals
(35). Critically, the source of these RewP signals is believed to
be distinct from that of striatal dopaminergic RPEs (36); hence,
they offer complementary information to functional magnetic
resonance imaging (fMRI)-based RPE studies in terms of un-
derstanding the biological basis of reward learning
dysfunction.

Finally, while the reward learning literature has historically
emphasized the role of dopamine, the hedonic effects of
dopamine are thought to be partially mediated by its in-
teractions with glutamatergic signals originating in the medial
prefrontal cortex (mPFC) (37). In line with this notion, in animal
studies disrupted glutamate signaling between mPFC and
striatal regions impairs reward motivation (38), and in psychi-
atrically healthy humans mPFC glutamate levels (measured
using magnetic resonance spectroscopy [MRS]) predict
reward-based decision making (39). Human MRS studies often
focus on the glutamine/glutamate ratio (Gln/Glu) because
glutamate is released into the synaptic cleft, taken up by glial
cells, converted into glutamine, and cycled back into neurons
(40), making mPFC Gln/Glu a proxy measure of the integrity of
the glutamatergic synapse. Of note, meta-analyses of MRS
studies have highlighted mPFC glutamate abnormalities in
MDD and BD, albeit in opposite directions, with glutamatergic
transmission being reduced in MDD (41) but elevated in BD
(42) across manic (43), depressive (44), and euthymic (45)
mood states.

Taken together, these studies suggest that striatal and
ACC-mediated PE signals, along with mPFC Gln/Glu, are
promising biomarkers of reward learning that may be impli-
cated in mood pathology. Therefore, the aim of this study was
to determine whether variation in reward learning neurocircuit
function predicts variability in symptom trajectories in
Biological Psychiatry: Cognitive Neuroscience and
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individuals with mood disorders. In line with the grant mech-
anism supporting this study (RFA-MH-14-050; Dimensional
Approaches to Research Classification in Psychiatric Disor-
ders), we recruited individuals based on their performance on a
well-validated behavioral reward learning task rather than on
the basis of specific DSM diagnoses. We then examined
whether neurobiological indices of reward learning predicted
cross-sectional and longitudinal variation in three reward-
relevant symptom domains, namely anhedonia, (hypo)mania,
and impulsivity. We predicted that potentiated striatal and
ACC-mediated PEs, and elevated mPFC Gln/Glu, would pre-
dict worsening (hypo)mania and impulsivity. In contrast, we
predicted that blunted striatal and ACC-mediated PEs, and
reduced mPFC Gln/Glu, would predict worsening anhedonia.
Importantly, we assessed whether these reward learning bio-
markers provided superior predictive validity in determining
symptom trajectories relative to clinical diagnostic information
alone.

METHODS AND MATERIALS

Participants

Subjects in the mood pathology group were required to have
depressive, mixed, or hypomanic symptoms severe enough to
cause distress/impairment. Participants could pursue treat-
ment but were excluded from further testing if they initiated
one of the exclusionary treatments (see Supplemental
Methods). Psychotropic medication load was quantified us-
ing previously established procedures (Supplemental
Methods). Subjects in the control group had no lifetime psy-
chiatric disorders or psychotropic medication use. This study
was approved by the Partners Human Research Committee.
Participants provided written informed consent prior to
participating.

Study Design and Recruitment

Figure 1A shows the study design. Recruitment occurred as
follows. Healthy control subjects and treatment-seeking in-
dividuals with mood disorders were screened on a probabilistic
reward task (PRT) (10,46). Screening continued until two con-
ditions were met: 1) a sample of 32 healthy control subjects
with valid PRT data, and who met study eligibility criteria, was
recruited and 2) a sample of 80 individuals with mood pa-
thology whose PRT performance spanned the full range of a
normative distribution, and who met study eligibility criteria,
was recruited. For the 80 individuals with mood pathology, we
focused on equally populating quintiles of reward learning (nw
16/quintile) (Figure 2) that were defined using cutoffs derived
from a prior normative sample of 572 control subjects who had
performed the PRT in prior studies. In total, 272 individuals
needed to be screened on the PRT to reach these two criteria
(see Figure S1 for study flow diagram).

For participants who were screened on the PRT and had
valid data, study eligibility criteria and clinical diagnoses were
further evaluated via a Structured Clinical Interview for DSM-IV
(47) conducted by master’s- or Ph.D.-level interviewers. Par-
ticipants were also screened with the Young Mania Rating
Scale (48) to ensure that at least one third of the mood pa-
thology sample exhibited (hypo)manic symptoms. Eligible
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Figure 1. Study methods overview. (A) Summary
of the study flow. Participants were screened on a
probabilistic reward task (PRT), and the patient
group was recruited so that patients’ scores on the
PRT spanned the entire range of possible scores on
a preexisting normative distribution. If eligible, a
clinical assessment was conducted and then par-
ticipants returned for two baseline neuroimaging
visits (electroencephalography [EEG] and functional
magnetic resonance imaging [fMRI]/magnetic reso-
nance spectroscopy [MRS] sessions) as well as 3-
and 6-month follow-up assessments. (B) Source
localization analyses demonstrated that scalp-
recorded reward positivity (RewP) amplitude corre-
lated with current source density in the dorsal ante-
rior cingulate cortex (ACC) (p , .005 uncorrected;
x = 23), validating RewP amplitude as a marker of
ACC-mediated activation. (C) Bilateral nucleus
accumbens (NAc) region of interest (y = 10) from
which striatal reward prediction errors (RPEs) were
extracted. (D) The 2 3 2 3 2-cm voxel placed in the
medial prefrontal cortex (mPFC) (x = 0) from which
glutamine/glutamate (Gln/Glu) metabolites were
extracted. BIS, Barratt Impulsiveness Scale; BISS-
Mania, Mania subscale of the Bipolar Inventory of
Symptoms Scale; ERP, event-related potential;
MASQ AD, Anhedonic Depression subscale of the
Mood and Anxiety Symptom Questionnaire.
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participants completed five study visits: 1) behavioral testing
and clinical assessment, 2) a baseline EEG/ERP recording, 3) a
baseline MRI scan, 4) a 3-month follow-up clinical assessment,
and 5) a 6-month follow-up clinical assessment. Participants
received $15/hour in compensation plus earnings on the
behavioral and imaging tasks.
Primary Outcomes

Anhedonia was measured using the Anhedonic Depression
subscale of the 62-item Mood and Anxiety Symptom Ques-
tionnaire (MASQ-AD) (49), and impulsivity was assessed using
the Barratt Impulsiveness Scale (BIS) (50). (Hypo)mania was
measured using the Mania subscale of the Bipolar Inventory of
Symptoms Scale (BISS-mania), which was chosen over the
Young Mania Rating Scale because it measures an extended
708 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
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range of (hypo)manic symptoms (51) and showed greater
variance across both unipolar and bipolar groups. These
measures were completed at baseline and again at 3- and 6-
month follow-up assessments. All three scales demonstrated
good internal consistency (Supplemental Methods).
PRT: Quantifying Reward Learning

Reward learning was assessed using a well-validated com-
puter-based PRT (46). On each trial, a fixation cross (500 ms)
was followed by a schematic mouthless face (500 ms). Next, a
short (11.5-mm) or long (13-mm) mouth appeared (100 ms).
Participants indicated whether the mouth was long or short.
There were 3 blocks of 100 trials, and for each block 40 correct
trials were rewarded (“Correct!! You won 20 cents”). Although
long and short mouths were presented at equal frequency,
Figure 2. Recruitment based on behavioral
reward learning. (A) Number of participants with
mood pathology whose probabilistic reward task
performance fell in each quintile of reward learning
performance according to the normative distribution.
(The normative distribution was based on a separate
existing sample of N = 572 healthy control subjects.)
The dotted line indicates the a priori target of n = 16
per quintile that was set to ensure that we recruited
individuals who spanned the entire range of reward
learning performance. This target was met in all but
the lowest quintile; however, this quintile was still
adequately represented with a sample of n = 13. (B)
Frequency histograms of reward learning perfor-
mance across the control, unipolar, and bipolar
groups.
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unbeknownst to participants, correct identification of one
mouth (the rich stimulus) was rewarded 3 times more than the
other mouth (the lean stimulus).

Following quality control (Supplemental Methods), we used
signal detection analysis (52) to compute response bias (the
tendency to bias responding to the rich stimulus) using the
following formula:

log b¼ 1
2

log
�
Richcorrect 3 Leanincorrect
Richincorrect 3 Leancorrect

�

To allow calculation of response bias for cases that included
a zero in the formula, 0.5 was added to each cell of the matrix
(53). Reward learning was defined as the increase in response
bias from block 1 to block 3.

Scalp-Recorded RewP Amplitude: Quantifying ACC
PEs

The RewP was computed from 128-channel scalp-recorded
EEG acquired while participants performed a counterbalanced
version of the PRT. After preprocessing, temporospatial principal
components analysis (PCA) was used to decompose the time
domain ERP (54). Temporal variance in the averaged ERP
waveforms was examined using temporal PCA and infomax
rotation. Based on the scree plot used to determine the factors
to retain in a PCA analysis, 12 temporal factors were retained for
rotation. The spatial distribution of these temporal factors was
then examined using spatial PCA and infomax rotation, with a
spatial PCA being conducted for each temporal factor. Eight
spatial factors were retained for each temporal factor. Analyses
focused on the PCA component with timing and topography
most consistent with the RewP (TF8/SF2; see Supplemental
Methods). Furthermore, source localization (55) confirmed that
the RewP had a source in the dorsal ACC (Figure 1B). Our pri-
mary variable of interest was the difference in RewP amplitude
following feedback on lean versus rich trials (DRewP), which
captures the degree to which the ACC tracks reward probability
across different contexts.

fMRI-Based Learning Task: Quantifying Striatal
RPEs

Striatal RPE signals were assessed using a well-validated
explicit reinforcement learning paradigm (19,56) that required
participants to learn reward contingencies through trial and
error. On each trial, participants were asked to choose be-
tween 2 symbols, where each symbol in the pair was associ-
ated with an 80%/20% probability of a given outcome (gain:
$1/$0; loss: $0/2$1; neutral: gray square/nothing). We used Q-
learning to calculate the RPE (19) from participants’ behavioral
data and then imaging analyses focused on a parametric
modulation contrast for RPE signals (Supplemental Methods).

Anatomically defined regions of interest in the left and right
nucleus accumbens (NAc) were selected from prior research
showing links between dopamine transporter function and reward
learning (14) (Figure 1C). Beta weights from RPE contrasts were
extracted from these regions of interest. A one-sample t test
confirmed that the RPE in both regions of interest was .0 [left:
t106 = 3.07, p = .003; right: t106 = 4.12, p , .001], so beta values
were averaged to create a single NAc RPE beta weight that was
used for subsequent analyses. A positive RPE beta value signified
Biological Psychiatry: Cognitive Neuroscience and
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higher activation for unexpected reward and lower activation for
unexpected omission of rewards during gain trials.

MRS: Quantifying mPFC Glutamate
1H-MRS was used to assess mPFC Gln/Glu. A 2 3 2 3 2-cm
voxel was placed in the mPFC, midsagittally, anterior to the
genu of the corpus collosum (Figure 1D). The voxel was auto-
matically shimmed, with further manual shimming performed as
needed. A modified J-resolved protocol (57) was used to resolve
glutamatergic metabolites. This sequence involved the collection
of 22 echo time (TE)-stepped spectra with a TE ranging from 35
to 250 ms in 15-ms increments (repetition time = 2 s, f1 acqui-
sition bandwidth = 67 Hz, spectral bandwidth = 2 kHz, readout
duration = 512 ms, number of excitations = 16/TE step,
approximate scan duration = 12 min).

To quantify glutamate and glutamine with the modified
J-resolved protocol data, the 22 TE-stepped free in-
duction decay series was zero filled out to 64 points,
Gaussian filtered, and Fourier transformed using gamma-
simulated J-resolved basis sets modeled for 2.89T. Every
J-resolved spectral extraction within a bandwidth of 67 Hz
was fit with the spectral-fitting package LCModel (http://
s-provencher.com/pages/lcmodel.shtml) and its theoreti-
cally correct template. The integrated area under the
entire 2D surface for each metabolite was calculated by
summing the raw peak areas across all 64 J-resolved
extractions (Supplemental Methods). Our primary outcome
was the Gln/Glu ratio.

Statistical Analysis

Multivariable regression analyses examined whether
DRewP, NAc RPE, or mPFC Gln/Glu predicted anhedonia,
(hypo)mania, or impulsivity in the clinical sample cross-
sectionally and longitudinally. Separate regression models
were run for each outcome (MASQ-AD, BISS-mania, and
BIS). Models included covariates (age, sex, and medication
load), mood polarity/diagnosis (group: dummy coded with 0 =
unipolar and 1 = bipolar), the three neural predictors (DRewP,
NAc RPE, and mPFC Gln/Glu), and a group 3 predictor
interaction term for each neural predictor. Models predicting
follow-up symptom severity also controlled for baseline
symptom severity.

RESULTS

Sample Characteristics

The sample was 63.4% female (n = 71), with a mean age of
28.6 years (SD = 9.1, range = 18–60). Of the patient group,
72.5% (n = 58) had unipolar mood pathology (MDD/dysthymia
or MDD in partial remission), 27.5% (n = 22) had bipolar mood
pathology (BD type I or II, depressed, mixed, or hypomanic),
and 40% (n = 32) took medication (see Table 1 and
Supplemental Methods for details). Sample sizes for each of
the analyses varied when a participant had missing data on
one or more of the neural indices and/or follow-up measures.
Accordingly, sample sizes ranged from 25 to 32 for the control
group, from 38 to 58 for the unipolar group, and from 12 to 22
for the bipolar group (sample sizes for the various analyses are
specified below).
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Table 1. Demographic and Clinical Characteristics of Sample

HC (n = 32) Unipolar (n = 58) Bipolar (n = 22) Test p

Demographic Characteristics

Age, years, mean (6SD) 28.4 (67.7) 28.0 (68.6) 30.5 (612.1) F = 0.59 .56

Female, n (%) 17 (53.1) 41 (71.7) 13 (59.1) c2 = 2.96 .23

Education, years, mean (6SD) 17.0 (63.2) 16.0 (62.8) 15.6 (63.1) F = 1.77 .18

White, n (%) 21 (65.6) 40 (69.0) 19 (86.4) c2 = 10.02 .26

Hispanic, n (%) 2 (6.3) 6 (10.3) 2 (9.1) c2 = 0.43 .81

Clinical Diagnoses, n (%)

Current MDD – 49 (84.5) – – –

Current dysthymia – 1 (1.7) – – –

MDD in partial remission – 8 (13.8) – – –

BD-I depressed – – 7 (31.8) – –

BD-I mixed – – 0 (0.0) – –

BD-I hypomanic – – 2 (9.1) – –

BD-II depressed – – 9 (40.9) – –

BD-II mixed – – 1 (4.6) – –

BD-II hypomanic – – 3 (13.6) – –

Comorbidities, n (%)

Alcohol abuse – 0 (0.0) 2 (9.1) c2 = 5.41 .02

EDNOS or BED – 2 (3.4) 2 (9.1) c2 = 1.07 .30

GAD – 3 (5.2) 2 (9.1) c2 = 0.42 .52

Panic disorder – 1 (1.7) 0 (0.0) c2 = 0.38 .54

PTSD – 3 (5.2) 2 (9.1) c2 = 0.42 .52

Social phobia – 8 (13.8) 3 (13.6) c2 = 0.00 .99

Specific phobia – 3 (5.2) 2 (9.1) c2 = 0.42 .52

Medication, n (%)

Antidepressants – 19 (32.8) 4 (18.2) c2 = 1.65 .20

Mood stabilizer or anticonvulsant – 1 (1.7) 7 (31.8) c2 = 16.05 ,.001

Anticonvulsants – 0 (0.0) 1 (4.5) c2 = 2.67 .10

All tests are two tailed.
BD-I/II, bipolar disorder type I/II; BED, binge eating disorder; EDNOS, eating disorder not otherwise specified; GAD, generalized anxiety disorder;

HC, healthy control group; MDD, major depressive disorder; PTSD, posttraumatic-traumatic stress disorder.

Reward Learning Circuitry in Mood Disorders
Biological
Psychiatry:
CNNI
Correlations Among Units

Pearson correlations were used to determine the degree to
which the three neural indices mapped onto behavioral reward
learning (see Tables S1 and S2; differences in units of analysis
between diagnostic groups are reported in the Supplemental
Results and Figure S2). Across the sample, higher mPFC
Gln/Glu correlated with better reward learning (r = .27, p = .007;
n = 102) (Figure S3A). This was consistent with the linear trend
shown in Figure S3A, where mPFC Gln/Glu values increased
across the learning quintiles. Furthermore, the quintiles
explained a greater proportion of the variance in mPFC Gln/Glu
relative to diagnosis (5% vs. 2%; R2 change = .05, F change =
5.25, p = .02).

AlthoughDRewP andNAcRPEwere not correlated with our a
priori–defined learningmeasure (block 3minus block 1 response
bias), they were correlated with the total overall response bias.
Specifically, heightened NAc RPE (r = .37, p = .04; n = 32)
(Figure S3B) and DRewP (r = .41, p = .04; n = 25) (Figure S3C)
correlated with greater overall response bias in control subjects
but not in patients (p . .10, n = 75). Furthermore, across the
whole sample, heightened NAc RPE was associated with faster
learning in block 1 (r = .23, p = .02; n = 107).
710 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
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Elevated mPFC Gln/Glu Correlates With More
Severe (Hypo)manic Symptoms Cross-Sectionally

Standardized values for each outcome measure across the
reward learning quintiles are shown in Figure S4 (patients only).
Multimodal regression models assessed whether the three
reward circuit markers were associated with symptom severity
cross-sectionally.

A significant group 3 mPFC Gln/Glu interaction (b = .28,
p = .04; n = 57) emerged from the model predicting
baseline (hypo)mania severity (BISS-mania), indicating that
the effect of mPFC Gln/Glu on baseline (hypo)mania
severity differed across the unipolar and bipolar groups
(Table 2). To unpack this interaction, we examined the
correlation between mPFC Gln/Glu and baseline BISS-
mania scores (both residualized for other variables in the
model) in each group. mPFC Gln/Glu was associated with
higher BISS-mania scores in the bipolar group (r = .56,
p = .045; n = 13) but not in the unipolar group (r = 2.24,
p = .12; n = 45).

In contrast, none of the neural indices predicted anhedonia
severity (MASQ-AD) or impulsivity (BIS) (all ps . .05) cross-
sectionally.
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Table 2. Models Predicting (Hypo)manic Symptom Severity
on the BISS-mania Scale

B SE b t p

Dependent Variable: Baseline (Hypo)manic Symptom Severity

(Constant) 9.14 2.33 3.92 ,.001

Age 20.09 0.08 2.13 21.18 .24

Sex 22.77 1.52 2.20 21.82 .08

Medication load 20.71 0.42 2.19 21.71 .09

Group 10.46 1.60 .69 6.52 ,.001

DRewP 20.70 1.24 2.07 20.56 .58

NAc RPE 0.03 0.57 .01 0.05 .96

mPFC Gln/Glu 29.33 16.39 2.07 20.57 .57

Group 3 DRewP 21.48 2.27 2.09 20.65 .52

Group 3 NAc RPE 2.11 1.90 .13 1.11 .27

Group 3 mPFC Gln/Glu 68.06 31.51 .28 2.16 .04

Dependent Variable: 3-Month (Hypo)manic Symptom Severity

(Constant) 3.49 1.93 1.81 .08

Age 0.06 0.06 .15 0.99 .33

Sex 22.14 1.19 2.27 21.80 .08

Medication load 20.29 0.32 2.12 20.90 .37

Baseline BISS-mania 0.16 0.11 .28 1.54 .13

Group 21.15 1.61 2.13 20.71 .48

DRewP 21.02 0.99 2.16 21.03 .31

NAc RPE 20.04 0.43 2.01 20.10 .92

mPFC Gln/Glu 238.43 14.30 2.46 22.69 .01

Group 3 DRewP 1.03 1.93 .08 0.53 .60

Group 3 NAc RPE 20.07 1.35 2.01 20.05 .96

Group 3 mPFC Gln/Glu 96.92 24.90 .70 3.89 ,.001

Group was dummy coded (0 = unipolar, 1 = bipolar).
BISS-mania, Mania subscale score of Bipolar Inventory of

Symptoms Scale; RewP, reward positivity; NAc RPE, nucleus
accumbens reward prediction error; mPFC Gln/Glu, medial prefrontal
cortex ratio of glutamine to glutamate.
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Elevated mPFC Gln/Glu Correlates With More
Severe (Hypo)manic Symptoms Longitudinally

Next, we examined whether, after controlling for baseline
(hypo)manic severity, the reward circuit markers were associ-
ated with 3- and 6-month follow-up symptom severity (see
Figure S5 for mean symptom severity across time). A group 3

mPFC Gln/Glu interaction (b = .70, p , .001; n = 49) emerged
for the model predicting 3-month BISS-mania scores (Table 2).
To unpack this interaction, we again examined the correlation
between mPFC Gln/Glu and 3-month BISS-mania scores
(residualized for other variables in the model) in each group.
Increased mPFC Gln/Glu was associated with less severe
hypomanic symptoms in the unipolar group (r = 2.35, p = .03;
n = 38) but with more severe hypomanic symptoms in the
bipolar group (r = .85, p , .001; n = 12) (Figure 3) at 3 months.

In contrast, the reward learning markers did not predict 6-
month follow-up BISS-mania scores or 3- or 6-month
MASQ-AD or BIS scores (all ps . .05) (see Supplemental
Results for exploratory unimodal analyses).

Predictive Value of mPFC Gln/Glu

Next, we compared a simple model containing covariates (age,
sex, medication load, and baseline BISS-mania) and
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diagnostic information (group) with a model containing
terms for mPFC Gln/Glu and group 3 mPFC Gln/Glu. The
simple model explained 15.8% of the variance in 3-month
(hypo)manic symptom severity, F5,44 = 1.65, p = .17. Howev-
er, adding the mPFC Gln/Glu terms explained an additional
24.3% of the variance in 3-month hypomanic symptom
severity, F7,42 = 4.01, p = .002, and this change in R2 was
significant (F change = 8.49, R2 change = .24, p = .001). This
indicates that mPFC Gln/Glu explained greater variance in
future hypomanic symptom severity relative to baseline diag-
nosis alone. Furthermore, we confirmed that mPFC Gln/Glu
explained a greater proportion of the variance in 3-month
(hypo)manic symptom severity relative to behavioral reward
learning alone (F change = 3.91, R2 change = .09, p = .03)
(Table S3), indicating that adding this biomarker enhanced
predictive power over and above behavioral data.
DISCUSSION

Using a novel recruitment method, a transdiagnostic sam-
ple, and a multimodal longitudinal design, we examined
whether variation along the RDoC Positive Valence Systems
domain of reward learning and the underlying neurocircuitry
predicted variability in three reward-related mood symp-
toms: anhedonia, (hypo)mania, and impulsivity. In doing so,
we focused on three components of reward learning neu-
rocircuitry linked to mood disorder pathophysiology that
span distinct units of analysis across physiology (ACC-
mediated PEs), circuits (striatal RPEs), and molecules
(mPFC Gln/Glu).

As predicted, the three neural components correlated
with aspects of behavioral reward learning on the PRT. In
terms of symptoms, elevated mPFC Gln/Glu predicted
more severe cross-sectional and longitudinal (hypo)manic
symptoms in those with bipolar pathology. Importantly,
baseline mPFC Gln/Glu levels explained a greater propor-
tion of the variance in (hypo)manic symptoms at 3 months
relative to diagnosis alone. These findings extend prior
case-control MRS studies (41,42) by showing that elevated
mPFC Gln/Glu is also associated with (hypo)mania severity
dimensionally.

We replicated prior findings linking blunted DRewP ampli-
tude with greater anhedonia in exploratory unimodal analyses
(see Supplement); however, neither DRewP nor NAc RPE
signals were associated with symptom severity when entered
into a multimodal model with mPFC Gln/Glu. Although the lack
of a relationship between NAc RPE and anhedonia in our
unimodal analyses contrasts with recent findings showing that
striatal RPEs predicted improvement in anhedonic symptoms
(58), we used a more complex instrumental fMRI learning
paradigm designed to assess striatal RPEs in the context of
learning as opposed to a more traditional guessing-type
paradigm (which maximizes the RPE signal yet involves mini-
mal learning).

It is important to consider what these findings mean for an
RDoC approach to mood disorder classification that remains
agnostic to DSM diagnoses. On the one hand, mPFC Gln/Glu
correlated with reward learning across diagnoses, providing
converging evidence that mPFC Gln/Glu is a transdiagnostic
marker of this RDoC domain. In addition, in a heterogeneous
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DC

BA Figure 3. Group 3 medial prefrontal cortex
(mPFC) glutamine/glutamate (Gln/Glu) interaction for
longitudinal (hypo)manic symptom severity. Resi-
dualized scatter plots show the relationship between
mPFC Gln/Glu and (hypo)manic symptom severity
(Mania subscale scores of the Bipolar Inventory of
Symptoms Scale [BISS-mania]) at baseline (A, B)
and at the 3-month follow-up assessment (C, D) in
the unipolar and bipolar mood disorder groups.
Residualized values on each axis control for the
other variables in the model, which were age, sex,
baseline BISS-mania subscale scores, change in
reward positivity amplitude, and nucleus accumbens
reward prediction error beta weights.
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sample, more homogeneity in neurobiology (mPFC Gln/Glu
levels) was observed within groups when groups were
defined on the basis of reward learning versus diagnostic
categories. This is consistent with the RDoC’s assumption
that dimensions of functioning are more proximal to neuro-
biology than to diagnostic categories. Furthermore, dimen-
sional increases in this reward learning biomarker (i.e., mPFC
Gln/Glu levels) predicted dimensional increases in symptoms
characterized by excessive reward responsiveness (i.e., hy-
pomania) rather than membership in a specific diagnostic
category. This echoes one of the RDoC’s central theses that
abnormalities in circuits and associated constructs likely un-
derpin specific features of mental illness rather than explain
any single disorder in its entirety. Together, these findings
partly align with a diagnosis-agnostic approach to mood
disorder classification.

However, our results also highlight the considerable value of
diagnostic information in predicting symptom trajectories.
Specifically, although mPFC Gln/Glu correlated with reward
learning transdiagnostically, the link between mPFC Gln/Glu
and (hypo)manic symptom severity was disease specific and
diagnostic information remained an integral component of the
final predictive model. If we assume that these findings could
inform novel interventions based on neurobiological un-
derpinnings (a key driver of the RDoC approach), then target-
ing mPFC Gln/Glu may affect reward learning in a similar
manner across disorders but have different effects on symp-
toms in distinct mood disorder subtypes. The degree to which
the RDoC framework predicts purely dimensional variability
712 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
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across disorders versus a blend of transdiagnostic and
disorder-specific effects remains an important topic of debate.
Our findings indicate that while information about reward cir-
cuit function could improve the prediction of risk for reward-
related clinical symptoms (an important finding in its own
right), it would do so in tandem with, rather than independent
of, existing diagnostic frameworks.

This study has several strengths. By examining neurobio-
logical mechanisms of reward learning across multiple units
of analysis, we could probe reward learning circuitry with
superior spatiotemporal resolution and at both micro and
macro scales, which cannot be achieved with a single unit or
modality alone. Furthermore, we tested whether these units
of analysis enhanced the ability to predict clinical course over
and above information already used in routine clinical care
(diagnosis and baseline symptom severity). Because mPFC
Gln/Glu levels can be obtained using MRS in as little as 6
minutes with good test–retest reliability (intraclass correlation
coefficient = .803) (59), mPFC Gln/Glu warrants further
investigation as a potential screening method for individuals
at suspected risk for BD.

However, some limitations of this study must also be noted.
First, mPFC Gln/Glu predicted worse (hypo)manic symptoms
specifically in individuals with bipolar mood pathology.
Because the instance of (hypo)manic symptoms was lower in
the unipolar group at follow-up, this may have restricted the
variance in symptoms that could be explained by mPFC Gln/
Glu. Second, although our three neural indices were selected
based on their established association with reward learning,
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only mPFC Gln/Glu was associated with our a priori reward
learning measure and the three neural indices were not
correlated with one another. Although stronger associations
may have been evident in a larger sample, the lack of asso-
ciation could also reflect an issue with the construct validity of
these units of analysis. For example, it is possible that similar
impairments in reward learning may have distinct etiologies
(often referred to as equifinality), particularly when considering
individuals with very divergent forms of psychopathology. How
equifinality is accounted for remains an important conceptual
issue for the RDoC framework. Finally, reductions in sample
size for longitudinal analyses (resulting from participant attri-
tion and the need to obtain good quality data across all three
neural indices) mean that reduced statistical power is a limi-
tation of our study and may explain several null findings. The
replicability of these results must be interpreted in light of
concerns around the generalizability and reproducibility of
neuroimaging findings obtained using small samples (60).
Accordingly, rather than being definitive, we interpret these
findings as novel yet preliminary insights that warrant replica-
tion in larger samples.

In sum, we showed that a key component of reward learning
neurocircuitry—mPFC Gln/Glu—predicted worse (hypo)manic
symptoms. This marker enhanced the ability to predict future
(hypo)mania risk over and above diagnostic information alone.
Using this marker to improve precision in the diagnosis and
treatment of mood pathology therefore represents an impor-
tant avenue for future research, with a focus on larger well-
powered samples.
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Mapping Disease Course Across the Mood Disorder Spectrum 
Through a Research Domain Criteria Framework 

 
Supplementary Information 

 

 
Supplementary Methods 

Inclusion/exclusion criteria 

Participants seeking treatment for mood pathology were recruited from the Depression 

Clinical and Research Center and the Bipolar Clinical and Research Center at Massachusetts 

General Hospital, as well as from the Center for Depression, Anxiety and Stress Research at 

McLean Hospital. Healthy controls were recruited from the community.  

General inclusion criteria for all participants: 

1) Ability to provide written, informed consent 

2) Right-handed 

3) Normal or corrected-to-normal vision and hearing 

4) Fluency in written and spoken English 

General exclusion criteria for all participants: 

1) Left-handed or ambidextrous 

2) Current drug use (cocaine, cannabis, opiates, amphetamines, benzodiazepines, 

barbiturates), as indicated by a positive urine drug screen on the day of testing 

3) Current use of medications with potent dopaminergic effects, including stimulants or 

antipsychotics, or any use of antidopaminergic medications in the past 6 months 

4) Recent use of any medication that affects blood flow or pressure 

5) Current use of antibiotics 

6) Pregnant women (as indicated by urine pregnancy test on the day of the MRI scan)  

7) Serious unstable medical illness  

8) Self-reported hypothyroidism 

9) History or current diagnosis of dementia 

10) History of chronic migraine (>15 days/month) or seizure disorder 

11) A history of significant head injury or loss of consciousness for 2 minutes or longer 
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12) MRI contraindications 

13) A score of < 25 on the Mini Mental State Exam at screening 

Inclusion criteria specific to the healthy control group: 

1) Absence of any past or current use of psychotropic medication 

2) Absence of any past or current DSM-IV psychiatric disorders  

3) Absence of first-degree relatives with a mood or psychotic disorder 

4) No Beck Depression Inventory-II score greater than 9 

Exclusion criteria specific to the healthy control group: 

1) Use of any other drug or herbal supplement with well-characterized psychotropic effects 

(e.g., prednisone or St. John’s Wort) within the past three weeks 

2) Use of any medications within the past 24 hours (e.g., antihistamines, pain relivers, or over-

the-counter medication) 

Inclusion criteria specific to the mood pathology group: 

1) Non-psychotic individual seeking treatment for mood-related symptoms at the 

Massachusetts General Hospital (MGH) Depression Clinical and Research Program, MGH 

Bipolar Clinical and Research Program or McLean Hospital 

2) Depressive or hypomanic symptoms severe enough to cause distress or impairment, and 

warrant intervention 

3) The depressive or hypomanic symptoms are not secondary to another Axis-I DSM-IV 

psychiatric disorder, or due to the effects of a substance 

4) Stable antidepressant or mood stabilizing medication over the past 8 weeks, or an absence 

of any psychotropic medication for at least two weeks 

Exclusion criteria specific to the mood pathology group: 

1) A current diagnosis of obsessive compulsive disorder (OCD), bulimia, alcohol 

dependence, substance abuse or substance dependence 

2) A history or current diagnosis of a psychotic disorder, stimulant dependence or anorexia 

3) Suicidal ideation where outpatient treatment is determined unsafe by the study clinical 

interviewer 

4) Electroconvulsive therapy within the past two years   
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Screening procedures 

Consent and initial screening 

The flow of participants into the study is shown in Figure S1. After providing written 

informed consent, all participants answered a series of screening questions about their medical 

history, current medication and drug use, and the presence of any MR contraindications. Next, 

participants performed a urine drug screen, after which the experimenter administered the Mini 

Mental State Exam (1). Participants deemed eligible to continue were then asked to complete the 

Probabilistic Reward Task (PRT) (2). Participants were permitted to seek treatment while enrolled 

in the study, as long as the treatment was not listed on the exclusion criteria. Participants received 

$15/hr in compensation plus earnings on the behavioral and imaging tasks. 

Initial assessment of reward learning 

Following completion of the PRT, data were immediately scored and quality control 

checking was performed (as described previously; 2) while the participant waited. Trials with 

reaction time faster (RT) than 150 ms or slower than 2500 ms were excluded, as were trials where 

the RT fell outside of  3SD from the mean (after applying a logarithmic transformation). 

Participants were excluded if more than 20 trials in any block were invalid (up to 10 of these trials 

could be reaction time outliers). Additionally, participants were required to perform at above 

chance accuracy (55%) to ensure that they were exposed to the intended asymmetrical (3:1) 

reinforcement schedule (the minimum ratio of rich to lean rewards accepted was 2.5:1). If their 

data passed quality control, healthy controls then underwent clinical assessment using the SCID-

IV (3). For individuals with mood pathology who had valid PRT data, their performance was 

compared to an existing normative distribution in order to determine who would be invited to 

proceed with the rest of the study (see below). 

Matching of reward learning to normative sample 

For the mood pathology participants, following quality control checking, the reward 

learning metric (i.e., response bias in block 3 minus block 1) was computed and compared to an 

existing normative database of PRT performance in healthy controls (N=572). Recruitment 

occurred such that we aimed to test an equal number of individuals in each quintile of reward 

learning performance (i.e., n=16), according to this normative distribution. Participants were 

excluded from participating further if the quintile in which their reward learning performance fell 
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was already full. If their reward learning performance fell in a non-full quintile, participants then 

proceeded to the clinical assessment. 

 

Testing sites 

Participants completed five study visits: 1 screening session, 2 imaging visits, and 2 follow-

up visits at 3 and 6 months. The first visit was conducted at the Center for Depression, Anxiety 

and Stress Research at McLean Hospital, the Depression Clinical and Research Program and 

Massachusetts General Hospital, or the Bipolar Clinical and Research Program at Massachusetts 

General Hospital. The remaining visits were conducted at McLean Hospital. 

 

Baseline clinical assessments 

Participants underwent clinical assessment with the Structured Clinical Interview for 

DSM-IV to assess for the presence of lifetime Axis I psychiatric disorders (3). The interview was 

carried out by Masters- or PhD-level trained clinical interviewers. A series of clinician-

administered and self-report scales were also administered at baseline to assess clinical symptoms. 

Anhedonia severity was assessed using the Anhedonic Depression subscale of the Mood and 

Anxiety Symptom Questionnaire (MASQ-AD) (4). Initial screening for the presence of depressive 

symptoms was conducted using the Beck Depression Inventory-II (5). This was primarily used to 

determine eligibility for the healthy control group, who were required to score 9 or lower in order 

to take part in the study. In addition, (hypo)manic symptoms were screened using the clinician-

administered Young Mania Rating Scale (YMRS) (6). For individuals who were invited to take 

part in the neuroimaging sessions, a more comprehensive assessment of (hypo)manic symptom 

severity was also performed using the clinician-administered mania subscale of the Bipolar 

Inventory of Symptoms Scale (BISS-mania) (7). Self-reported impulsivity was also measured 

using the Barratt Impulsiveness Scale (BIS) (8). In the current study, the MASQ-AD subscale, 

BISS-mania subscale, and BIS had good internal consistency (Cronbach’s alpha values at baseline: 

MASQ-AD=0.98; BISS-mania=0.85; BIS=0.88). 

 

Quantifying psychotropic medication load 

Medication type, dosage and duration of use were obtained at the baseline clinical 

assessment. Using this information, medication load was calculated using a previously established 
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method (9) that quantifies the potency of antidepressant medications, as well as the equivalent 

potency of other psychotropic medications (e.g., mood stabilizers, anticonvulsants, 

benzodiazepines) and non-pharmacological antidepressant interventions (e.g., electroconvulsive 

therapy, phototherapy, herbal supplements). This method yielded a single continuous score for 

each participant that reflected the antidepressant potency of the medication (and other potential 

interventions) they were taking at the time of assessment.  

 

Follow-up clinical assessments 

Participants completed the MASQ-AD, BISS-mania and BIS again at 3- and 6-month 

follow-up sessions to track changes in clinical symptoms. In addition, diagnosis was re-confirmed 

using the Longitudinal Interval Follow-up Evaluation (10), and any changes in medication or 

treatment were recorded. 

 

EEG acquisition and preprocessing 

Scalp EEG was recorded using a 128-channel Hydrocel Geodesic Sensor Net system 

(Electrical Geodesics, Inc.) and sampled at 250Hz (bandwidth, 0.1-100Hz; impedances < 100k). 

Signals were referenced to the vertex (Cz) at acquisition. Data were preprocessed offline using 

BrainVision Analyzer 2.0 (Brain Products GmbH). First, horizontal eye movements, vertical eye 

movements and electrocardiographic artifacts were removed using independent components 

analysis (11) and noisy channels were interpolated using a spherical spline interpolation (12). 

Second, data were re-referenced to the average reference, filtered (0.1-30Hz) and epochs extracted 

from –500ms to 1000ms around presentation of reward feedback on correct rich and correct lean 

trials. Third, each epoch was visually inspected, and remaining artifacts were removed. Artifacts 

were rejected using a semi-automated procedure with a maximal allowed voltage step of 50μV 

between sample points, a maximal voltage difference of 150μV within a 100ms interval, and a 

minimum allowed voltage of 0.5μV within a 100ms interval. Fourth, epochs were baseline-

corrected (-250ms to -50ms) and averaged. 

 

Temporo-spatial principal components analysis of ERP data 

A temporo-spatial principal components analysis was used to decompose the time-domain 

ERP. Temporal variance in the averaged ERP waveforms was examined using temporal PCA and 
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Infomax rotation. Based on the resulting scree plot, 12 temporal factors were retained for rotation. 

The spatial distribution of these temporal factors was then examined using spatial PCA and 

Infomax rotation, with a spatial PCA being conducted for each temporal factor. Eight spatial 

factors were retained for each temporal factor. Analyses focused on the PCA component most 

representative of the RewP (TF8/SF2). 

 

Confirmation of ACC source generator for the RewP 

Standardized low-resolution electromagnetic tomography (sLORETA) (13) was used to 

identify the neural generators of the RewP. To do this, we extracted the peak amplitude of the 

RewP PCA component on rich trials (the peak occurred from 248-252ms post-feedback) and used 

sLORETA to regress this value on mean current source density across the whole brain from -20ms 

to +20ms around this peak on rich trials. This analysis revealed voxels where variation in RewP 

amplitude correlated with variations in current source density. Images were thresholded at p<0.005 

uncorrected. As shown in Figure 1A in the main text, results revealed a cluster in Brodmann area 

32 (corresponding to the dorsal ACC), where current source density was correlated with RewP 

amplitude. These findings are therefore consistent with our hypothesis that the RewP reflects an 

ACC-mediated prediction error signal. 

 

fMRI-based instrumental reinforcement learning task 

To assess RPE signals, participants completed a well-validated reinforcement learning 

paradigm (14) during fMRI scanning. On each trial, participants were instructed to choose between 

two symbols (letters from the Agathodaimon font) displayed on a screen. On every run there were 

three symbol pairs that were each associated with an 80%/20% probability of a given outcome: 

Gain ($5/Nothing), Loss (Nothing/-$5), Neutral ($0/Nothing). For each trial, one symbol pair was 

randomly presented, with one symbol being displayed above and one below a central fixation cross 

(counterbalanced). Participants were instructed to choose the upper symbol by pressing a key, or 

to refrain from responding in order to choose the bottom symbol. After a jittered delay interval, 

participants received outcome feedback: “Gain”, “Loss”, “Nothing” or a grey square with no 

monetary value for neutral trials. To win money, participants had to learn, by trial and error, the 

stimulus-outcome contingency. There were three runs across the experiment each lasting 

approximately 10.5 minutes, consisting of 72 trials (24 per condition), and containing new pairs 
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of symbols. Participants were told that one of the runs would be randomly selected for the total 

winnings (in reality, all participants were given the same fixed amount of $40). 

 

Computational model (Q-learning) 

A standard Q-learning algorithm was used to calculate the prediction error based on 

participant’s choice and feedback history (15). For each trial, the model estimated the expected 

value of A (QA) and B (QB), each of which corresponded to the reward that was expected to be 

obtained by choosing a particular cue. Q values were set to zero at the beginning of each run. After 

every trial, QA(t) or QB(t) were updated based on the feedback participants received in that trial, 

R(t), per the following rule: 

Qchosen_cue (t+1) = Qchosen_cue (t) +  (t), 

 

where  is the learning rate parameter and  is the prediction error.  

 

The prediction error is defined as the difference between the expected reward [Qchosen_cue (t)] and 

the actual reward received [R(t)], i.e.: 

 

(t) = R(t) = Qchosen_cue (t), 

 

where R is assigned a value of 1 for reward and 0 for no reward during gain trials, and a value of 

0 for no punishment and -1 for punishment during loss trials.  

 

Based on the Q values on any given trial, the probability of choosing a particular symbol was 

calculated using the softmax rule, such that the probability of choosing symbol A was: 

 

PA(t) = exp (QA(t)/)/[exp (QA(t)/) + exp (QB(t)/)] 

 

We chose a fixed learning rate of alpha=0.4 and beta=0.1 because this most closely 

approximated the average alpha (MSD=0.390.17) and beta (0.140.17) across all subjects and 

runs of the task. 
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fMRI acquisition 

Data were acquired at the McLean Imaging Center using a 3-Tesla Siemens Tim Trio 

scanner with a 32-channel head coil. Trial presentation was synchronized to the initial volume 

acquisition. Functional MRI data were acquired using a gradient echo T2*-weighted echo planar 

imaging sequence with 30 degree titled slice acquisition to mitigate signal loss in regions affected 

by susceptibility artifacts, with the following acquisition parameters: repetition time (TR) = 

3000ms; echo time (TE) = 30ms; field of view (FOV) = 224mm; voxel dimensions = 3.5 × 3.5 × 

2.0mm3; 57 interleaved axial slices and a GRAPPA acceleration factor of 2.  

The scanning protocol also included acquisition of a high-resolution T1-weighted 

magnetization-prepared rapid acquisition with gradient multi echo (MPRAGE) imaging sequence 

with the following acquisition parameters: TR = 2200ms; TE = 1.54, 3.36, 5.18, and 7ms; FOV = 

230mm; voxel dimensions = 1.2 × 1.2 × 1.2mm3; 144 slices.  

 

fMRI preprocessing 

Images were preprocessed and analyzed using Statistical Parametric Mapping software 

(SPM12; http://www.fil.ion.ucl.ac.uk/spm). Raw images were first visually inspected for major 

artifacts and signal dropout. Next, functional data were realigned to the mean image of the series, 

slice-time corrected, and co-registered to the individual’s structural image using the normalized 

mutual information approach. We used a unified segmentation approach for spatial normalization. 

Briefly, the co-registered structural image was segmented into different classes of tissue based on 

the tissue probability maps, bias corrected, and affine registered to the MNI152NLin64sym 

template (default in SPM). Finally, using the deformation field created in the prior step, the slice-

time corrected functional images were spatially normalized to the MNI template using non-linear 

4th degree B-spline interpolation, resampled to 2 × 2 × 2mm MNI template, and smoothed with a 

4mm Gaussian kernel.   

 

fMRI analysis 

The first-level general linear model included six regressors (cue and outcome onsets during 

gain, loss and neutral trials). In addition, outcome onset times for rewards only (punishments were 

not analyzed for this study) were parametrically modulated by model-derived reward prediction 

error, and convolved with a hemodynamic response function. Covariates of no interest included 
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the cue and outcome during neutral trials, six motion realignment parameters, and a constant term 

that modelling the baseline of unchanged neural activity. Prediction error beta weights were 

extracted from anatomically-defined regions-of-interest in the left and right NAc, defined from the 

AAL atlas, which is publicly available as an SPM12 toolbox, 

 http://www.gin.cnrs.fr/en/tools/aal/. A positive RPE beta value signified higher activation for 

unexpected reward and lower activation for unexpected omission of rewards during gain trials. 

 

MRS acquisition and analysis 
1H-MRS acquisition used a modified protocol similar to that described in prior studies 

conducted at the McLean Imaging Center on a 3T Tim Trio Siemens scanner (16-18). Briefly, a 2 

× 2 × 2cm voxel was placed in the mPFC, midsagittally, anterior to the genu of the corpus 

callosum. The voxel was first shimmed using a machine automated shimming routine, and 

additional manual shimming was performed as needed. A modified J-resolved protocol (2D-

JPRESS), which has been found to show good test-retest reliability (19), was used. This sequence 

involved the collection of 22 TE-stepped spectra with an echo time ranging from 35ms to 250ms 

in 15ms increments (TR = 2s, f1 acquisition bandwidth = 67Hz, spectral bandwidth = 2kHz, 

readout duration = 512ms, NEX = 16/TE-step, approximate scan duration = 12min) providing 

enough J-resolved bandwidth (67Hz) to resolve glutamate and glutamine.  

To quantify glutamate and glutamine with the JPRESS data, the 22 TE-stepped free-

induction decay series (FIDS) was zero-filled out to 64 points, Gaussian-filtered, and Fourier-

Transformed using GAMMA-simulated J-resolved basis sets modeled for 2.89 T. Every J-

resolved spectral extraction within a bandwidth of 67Hz was fit with the spectral-fitting package 

LCModel (20) and its theoretically-correct template. The integrated area under the entire 2D 

surface for each metabolite was calculated by summing the raw peak areas across all 64 J-resolved 

extractions for each metabolite as in prior publications (16, 17, 21). In this study, our 

primary outcome of 1H-MRS measurements was the ratio of glutamine to glutamate (Gln/Glu). 
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Supplemental Results 

Differences in reward learning and associated circuitry as a function of mood disorder 

polarity 

Mean reward learning, ∆RewP, NAc RPE and mPFC Gln/Glu in the healthy control, 

unipolar-presenting and bipolar-presenting groups are shown in Figure S2. In terms of behavioral 

reward learning, a main effect of Block emerged from the Group (control, unipolar, bipolar) x 

Block (1,2,3) ANOVA for PRT response bias, F(2,218)=4.11, p=0.02, ηp
2=0.04. Bonferroni-

corrected post hoc tests showed that response bias was significantly higher in block 3 than in block 

1 (p=0.03), indicating that the asymmetrical reinforcement ratio was effective at inducing a 

behavioral response bias across the sample. However, neither the main effect of Group, nor the 

Group x Block interaction was significant (both ps>0.05), indicating that response bias did not 

significantly differ across control, unipolar and bipolar groups.  

Similarly, the main effect of Group was not significant for the ∆RewP, F(2,88)=0.45, 

p=0.64, ηp
2=0.01 or mPFC Gln/Glu ratio, F(2,99)=1.07, p=0.35, ηp

2=0.02. Likewise, no main 

effects or interactions emerged from the Group x Hemisphere ANOVA for NAc RPE (all ps>0.05). 

 

Bivariate associations between ∆RewP, NAc RPE and mPFC Gln/Glu, and symptom severity 

Although the primary aim of the study was to conduct a multimodal investigation of the 

links between reward learning neurocircuitry and mood symptoms, we also conducted exploratory 

bivariate analyses to determine whether each of the neural markers, when examined individually, 

was associated with baseline anhedonic, (hypo)manic and impulsive symptom severity. To ensure 

consistency with the multimodal regression models reported in the main manuscript, we controlled 

for age, sex and medication load, and restricted analyses to the two patient groups. 

When examined individually (rather than in a multimodal model) the ∆RewP was 

correlated with anhedonia severity on the MASQ-AD subscale, such that blunted ∆RewP 

amplitude was associated with more severe baseline anhedonia across the two patient groups 

(partial r=-0.26, p=0.04). Furthermore, and consistent with the results of our multimodal analysis, 

increased mPFC Gln/Glu was associated with greater baseline (hypo)manic symptom severity on 

the BISS-mania subscale for individuals in the bipolar group only (partial r=0.51, p=0.04). 
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Supplemental Discussion 

Reasons for the lack of differences in the units of analysis between categorically-defined 

mood disorder subgroups 

As shown in Figure S2, although we observed slight potentiation of reward learning and 

NAc RPEs in the bipolar group, we did not observe any significant differences between the three 

groups (when categorically-defined) on any of the units of analysis. This contrasts with the 

findings from prior studies that have found evidence of blunted reward learning on the PRT, RewP 

amplitude, NAc RPEs and mPFC Gln/Glu in individuals with a diagnosis of MDD, and 

potentiation of these effects in individuals with a diagnosis of BD (see Introduction of the main 

manuscript for an overview). 

In contrast to the majority of prior studies examining categorical group differences in these 

units of analysis between controls and patients with mood disorders, we adopted a substantially 

more inclusive selection criteria with regards to comorbidity, substance use, medication and 

current mood state. Accordingly, our sample comprised a heterogeneous group of patients with 

multiple comorbidities who presented with depressed, mixed, and hypomanic episodes, or who 

were in partial remission from a mood episode. Furthermore, participants were recruited so that 

their performance on a behavioral measure of reward learning spanned a normative distribution. 

This means that our study sampled the entire range of individuals, spanning patients with mood 

disorders who had normative reward learning, those who had a unipolar mood disorder but 

potentiated reward learning, as well as individuals with a bipolar mood disorder who had blunted 

reward learning. This approach is in line with the RDoC framework, which remains agnostic to 

diagnosis and recognises that mental illness can be considered as falling along multiple 

dimensions, with traits that exist on a continuum from normal to extreme.  

The absence of clear differences between categorically-defined diagnostic groups in our 

study shows that in diverse, clinically heterogeneous and comorbid samples (which are the norm 

rather than the exception in clinical practice), diagnostic categories fail to capture differences in 

underlying neurobiology – a finding that echoes a central tenet of the RDoC initiative.  

 

Implications of sample size and adjustment for multiple comparisons 

The current study is one of the first to simultaneously test three discrete biomarkers of 

reward learning neurocircuitry as predictors of mood disorder symptom severity and trajectory. 
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However, due to the resource-intensive nature of the study, we were limited in terms of overall 

sample size. This has important implications for reproducibility and generalizability, which need 

to be addressed in future studies using larger samples. For example, although our analyses were 

defined a priori, the significant correlations among the different units of analysis reported in Table 

S1 would not survive correction for multiple comparison. Furthermore, the reliability of model 

estimates in the bipolar group (particularly for the longitudinal analyses) should be interpreted 

with caution given the small size of the bipolar sample. Accordingly, we emphasize that the 

findings should be considered preliminary, and must be replicated in order to determine their 

robustness. 
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Figure S1. Participant flow diagram 

Figure S1. Figure shows the flow of participants into the study from screening to 6-month follow-
up, along with reasons for exclusion from imaging sessions and from analysis. 
PRT=Probabilistic Reward Task; SCID=Structured Clinical Interview for DSM-IV;  MMSE=Mini 
Mental State Exam;  EEG=electroencephalography; ERP=event-related potential; 
fMRI=functional magnetic resonance imaging; MRS=magnetic resonance spectroscopy; 
SNR=signal-to-noise ratio.

Assessed for eligibility (n=272)

Excluded (n=160)
• Invalid PRT data (n=44)
• Imaging contraindication (n=29)
• SCID exclusion (n=37)
• Medication exclusion (n=13)
• Failed MMSE (n=4)
• Positive drug screen (n=9)
• Inconsistent reporting (n=2)
• Repeat participant (n=2)
• Uncontactable after screening (n=19)
• Dropped out (n=1)

Completed EEG (n=112)
Imaging data exclusions
• ERP (n=21)

• Too many artifacts (n=7)
• No visible ERP (n=12)
• Task non-compliance (n=1)
• Statistical outlier (n=1)

• fMRI (n=3)
• Scan failure (n=1)
• Task non-compliance (n=1)
• Statistical outlier (n=1)

• MRS (n=7)
• Low SNR (n=6)
• Statistical outlier (n=1)

Completed MRI (n=110)
• Uncontactable (n=2)

Completed 3-month follow-up (n=98)
• Lost to follow-up (n=12)

Completed 6-month follow-up (n=93)
• Lost to follow-up (n=5)
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Figure S2. Figure shows the raw mean (+ standard error of the mean; SEM) (A) reward learning 
(i.e., response bias in blocks 1, 2, and 3 of the Probabilistic Reward Task; PRT), (B) Reward 
positivity (RewP) component amplitude in response to rewards following rich and lean trials on 
the PRT, (C) reward prediction error beta weights from the left and right nucleus accumbens, and 
(D) the ratio of glutamine to glutamate (Gln/Glu) in the medial prefrontal cortex (mPFC), across
the healthy control (grey bars), unipolar mood disorders (blue bars) and bipolar mood disorders
(red bars) groups.

Figure S2. Reward learning units of analysis across diagnostic categories 
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Figure S3. Associations between neural markers and behavioral reward learning 

Figure S3. Panel A shows associations between behavioral reward learning on the Probabilistic 
Reward Task (PRT) and medial prefrontal cortex glutamine to glutamate ratio (mPFC Gln/Glu). 
Scatterplot shows a positive correlation between greater reward learning and higher levels of 
mPFC Gln/Glu (r=0.27, p=0.007). This correlation is consistent with the linear increase in mPFC 
Gln/Glu observed across the five reward learning quintiles (bars show mean standardized mPFC 
Gln/Glu + standard error). Although the nucleus accumbens reward prediction error signals (NAc 
RPE) and anterior cingulate cortex prediction error signals (ACC PE; defined as the delta reward 
positivity amplitude; ∆RewP) were not correlated with our a priori-defined learning measure 
(block 3 minus block 1 response bias), they did correlate with a separate aspect of learning on this 
task – total response bias – in the healthy control group. Scatterplot in Panel B shows a positive 
correlation between stronger NAc RPE signals and higher total response bias in the healthy control 
group (r=0.34, p=0.04). Scatterplot in Panel C shows a positive correlation between stronger RewP 
amplitude and greater total response bias in the healthy control group (r=0.41, p=0.04). All values 
plotted represent standardized (Z) scores. 
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Figure S4. Neural markers and symptoms across the reward learning quintiles 

Figure S4. Figures in Panel A show variation in medial prefrontal cortex glutamate (mPFC 
Gln/Glu; top figure), nucleus accumbens reward prediction error signals (NAc RPE; middle 
figure), and anterior cingulate cortex prediction error signals/reward positivity amplitude (∆RewP; 
bottom figure), across the reward learning quintiles for the whole sample. Figures in Panel B show 
variation in anhedonia on the Anhedonic Depression subscale of the Mood and Anxiety symptom 
Questionnaire (MASQ-AD; top figure), (hypo)mania on the Mania subscale of the Bipolar 
Inventory of Symptoms Scale (BISS-mania; middle figure) and impulsivity on the Barratt 
Impulsiveness Scale (BIS; bottom figure) across the reward learning quintiles in the patients. 
Scores on each measure are standardized (Z-scores derived using the mean and standard deviation 
from the whole sample for neural markers and the patients only for symptoms) and bars represent 
the mean + standard error of the mean. Individuals in higher quintiles were those who showed 
greater increases in response bias from the first to the last block of the Probabilistic Reward Task. 
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Figure S5. Changes in symptoms across time in the patient groups 
 

 
 
Figure S5. Figures show changes in anhedonic symptom severity on the Anhedonic Depression 
subscale of the Mood and Anxiety Symptom Questionnaire (MASQ-AD), (hypo)manic symptom 
severity on the mania subscale of the Bipolar Inventory of Symptoms Scale (BISS-mania), and 
impulsivity on the Barratt Impulsiveness Scale (BIS) from baseline (BL) to 3-month follow-up 
(3M) and 6-month follow-up (6M) in the unipolar and bipolar mood disorder groups. Points plotted 
represent the raw mean score on each scale ± standard error of the mean. Asterisks indicate 
significant group differences at each time point. *p<0.05; **p<0.001 
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Table S1. Correlations between neural indices and behavioral reward learning across the whole 
sample, and in the healthy control, unipolar and bipolar mood groups separately 
 

 ∆RewP NAc RPE mPFC Gln/Glu 

Whole sample 
Overall learning 0.16 (0.14) 0.12 (0.21) 0.01 (0.89) 
Slope of learning 0.03 (0.77) -0.18 (0.07) 0.27** (0.007) 

 
Control group 

Overall learning 0.41* (0.04) 0.37* (0.04) 0.08 (0.67) 
Slope of learning 0.04 (0.86) -0.23 (0.21) 0.17 (0.38) 

 
Unipolar group 

Overall learning -0.05 (0.75) -0.13 (0.36) -0.12 (0.38) 
Slope of learning -0.10 (0.51) -0.15 (0.27) 0.40** (0.003) 

    
Bipolar group    

Overall learning 0.24 (0.38) 0.36 (0.14) 0.20 (0.42) 
Slope of learning 0.32 (0.23) -0.24 (0.32) 0.19 (0.45) 

 
Note. Values shown are Pearson’s r values with p values indicated in parentheses. Correlations 
between learning and NAc RPE and mPFC Gln/Glu use learning values from the PRT that was 
performed behaviorally at the first screening session. Correlations between learning and ∆RewP 
were computed using learning values from the alternate version of the PRT that was performed 
during EEG recording.  
*p<0.05; **p<0.01. 
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Table S2. Correlations among the neural indices in the whole sample, healthy control, unipolar, 
and bipolar mood groups separately. 
 

 NAc RPE mPFC Gln/Glu 

Whole sample   
∆RewP -0.07 (0.52) 0.04 (0.74) 

NAc RPE  0.06 (0.50) 
   

Control group   
∆RewP -0.15 (0.46) 0.13 (0.55) 

NAc RPE  0.11 (0.58) 
   

Unipolar group   
∆RewP 0.06 (0.67) -0.04 (0.77) 

NAc RPE  0.03 (0.81) 
   
Bipolar group   

∆RewP -0.44 (0.12) -0.06 (0.85) 
NAc RPE  0.01 (0.97) 

 
Note. Values shown are Pearson’s r values with p values indicated in parentheses. 
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Table S3. Regression model testing whether mPFC Gln/Glu explains a greater proportion of 
longitudinal (hypo)manic symptom severity relative to behavioral reward learning alone 
 

Dependent variable: 3-month (hypo)manic symptom severity 
 

 B SE β T p 

Model 1      
(constant) 0.06 2.02  0.03 0.98 
Age 0.09 0.06 0.19 1.60 0.11 
Sex -0.83 1.23 -0.08 -0.68 0.50 
Medication load -0.02 0.32 -0.01 -0.08 0.94 
Baseline BISS-mania 0.41 0.10 0.60 3.94 <0.001 
Group -2.68 1.58 -0.26 -1.70 0.10 
Reward learning -4.00 2.96 -0.22 -1.35 0.18 
Group x Reward learning 3.42 4.31 0.13 0.79 0.43 
      
Model 2      
(constant) 1.73 2.11  0.82 0.42 
Age 0.06 0.06 0.13 1.02 0.31 
Sex -2.28 1.29 -0.23 -1.77 0.08 
Medication load -0.14 0.31 -0.06 -0.46 0.65 
Baseline BISS-mania 0.36 0.10 0.52 3.55 0.001 
Group -1.73 1.55 -0.17 -1.12 0.27 
Reward learning -1.56 3.08 -0.09 -0.51 0.61 
Group x Reward learning 0.08 4.32 0.00 0.02 0.99 
mPFC Gln/Glu -20.53 14.17 -0.22 -1.45 0.15 
Group x mPFC Gln/Glu 70.95 25.40 0.43 2.79 0.007 

 
Model Summary 
 

Model R R2 Adjusted R2 
SE of 

estimate 
R2 

change 
F 

change 
df1 df2 

Sig. F 
change 

1 0.53 0.28 0.19 4.20 0.28 3.08 7 55 0.008 
2 0.61 0.37 0.27 4.00 0.09 3.91 2 53 0.026 

 
Note. Group was dummy-coded 0=unipolar, 1=bipolar; BISS-Mania=Bipolar Inventory of 
Symptoms Scale mania subscale score; RewP=reward positivity; NAc RPE=nucleus accumbens 
reward prediction error; mPFC Gln/Glu=medial prefrontal cortex ratio of glutamine to glutamate. 
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