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Abstract Despite the prominence of anhedonic symptoms associated with diverse
neuropsychiatric conditions, there are currently no approved therapeutics designed
to attenuate the loss of responsivity to previously rewarding stimuli. However, the
search for improved treatment options for anhedonia has been reinvigorated by a
recent reconceptualization of the very construct of anhedonia, including within the
Research Domain Criteria (RDoC) initiative. This chapter will focus on the RDoC
Positive Valence Systems construct of reward learning generally and sub-construct
of probabilistic reinforcement learning specifically. The general framework empha-
sizes objective measurement of a subject’s responsivity to reward via reinforcement
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learning under asymmetrical probabilistic contingencies as a means to quantify
reward learning. Indeed, blunted reward responsiveness and reward learning are
central features of anhedonia and have been repeatedly described in major depres-
sion. Moreover, these probabilistic reinforcement techniques can also reveal neuro-
biological mechanisms to aid development of innovative treatment approaches. In
this chapter, we describe how investigating reward learning can improve our under-
standing of anhedonia via the four RDoC-recommended tasks that have been used to
probe sensitivity to probabilistic reinforcement contingencies and how such task
performance is disrupted in various neuropsychiatric conditions. We also illustrate
how reverse translational approaches of probabilistic reinforcement assays in labo-
ratory animals can inform understanding of pharmacological and physiological
mechanisms. Next, we briefly summarize the neurobiology of probabilistic rein-
forcement learning, with a focus on the prefrontal cortex, anterior cingulate cortex,
striatum, and amygdala. Finally, we discuss treatment implications and future
directions in this burgeoning area.

Keywords Anhedonia · Animal models · Medications development · Probabilistic
reinforcement schedules · Reverse translation · Reward learning

1 Introduction

1.1 Anhedonia: Definition and Statement of Problem

Anhedonia is traditionally defined as the loss of pleasure or lack of reactivity to
previously rewarding stimuli. Although often associated with major depressive
disorder (MDD; American Psychiatric Association 2013), its transdiagnostic rele-
vance has emerged across neuropsychiatric conditions, including schizophrenia
(Moran et al. 2022), bipolar disorder (Whitton and Pizzagalli 2022), post-traumatic
stress disorder (Vinograd et al. 2022), anxiety disorder (Taylor et al. 2022), sub-
stance use disorders (Koob 2022; Gilbert and Stone 2022), eating disorders (Murray
et al. 2022), neurodevelopmental disorders (Dichter and Rodriguez-Romaguera
2022), and neurodegenerative disorders (Turner and Husain 2022). Unfortunately,
there are no approved treatments for anhedonia and first-line antidepressants such as
selective serotonin reuptake inhibitors (SSRI) are typically ineffective at increasing
hedonic tone in MDD (Calabrese et al. 2014). Therefore, a critical need for effective
therapeutics to treat anhedonic conditions has inspired coordinated bi-directional
research efforts between clinical investigations and animal models designed to
optimize assays of relevant phenotypes (Der-Avakian et al. 2016; Silverman et al.
2020).
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1.2 Using Probabilistic Contingencies to Examine Anhedonia

The search for improved treatment options for anhedonic individuals has been
catalyzed by an important reconceptualization of the very construct of anhedonia
in the latest revision (National Institute of Mental Health 2016) of the Research
Domain Criteria (RDoC; Insel et al. 2010). This chapter will focus on the Positive
Valence Systems construct of reward learning generally and sub-construct of
probabilistic reinforcement learning specifically. Blunted reward responsiveness is
a hallmark feature of anhedonia and examining a subject’s responsivity to reward via
reinforcement learning under asymmetrical probabilistic contingencies yields an
objective probe to quantify reward learning. Indeed, a recent meta-analysis found
that blunted reward bias was the metric most consistently associated with MDD
(Halahakoon et al. 2020). In turn, these techniques can reveal neurobiological
mechanisms and inform novel approaches to treat MDD and other neuropsychiatric
conditions prominently characterized by anhedonic phenotypes and reductions in
reward learning. In this review, we first explain how investigating reward learning
can improve our understanding of anhedonia. To this end, we describe the four
recommended tasks chosen for the reward learning subdomain of the Positive
Valence Systems in the latest revision of the RDoC (NIMH 2016). These paradigms
are used to probe sensitivity to probabilistic contingencies and their influence on
choice behavior, and how such behavior is disrupted in various neuropsychiatric
conditions. We then discuss promising examples of reverse translation of probabi-
listic assays in laboratory animals and the mechanistic understanding they have
uncovered. Next, we summarize the neurobiology of probabilistic reinforcement
learning, with a focus on the prefrontal cortex (PFC), anterior cingulate cortex
(ACC), striatum, and amygdala. We end by discussing treatment implications and
future directions in this burgeoning area.

2 How Probabilistic Contingencies Inform the Study
of Anhedonia and Its Symptoms

This section highlights findings from the four RDoC-recommended behavioral tasks
that have been designed to probe the reward learning subdomain across clinical
populations. It should be noted that these empirical efforts are a significant departure
from traditional clinical assessments and diagnostic tools that primarily rely on self-
report questionnaires (Wang et al. 2022). Importantly, although the tactics vary
among the tasks highlighted below, the approaches share a common strategy that
emphasizes probabilistic reinforcement contingencies as an objective means to
quantify responsivity to reward and participants’ ability to learn from consequences,
as well as investigate these processes across neuropsychiatric disorders.
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2.1 Probabilistic Reward Task

The Probabilistic Reward Task (PRT) developed by Pizzagalli et al. (2005; modified
after Tripp and Alsop 1999; see also Henriques et al. 1994) is a laboratory procedure
designed to provide a quantitative measure of reward learning (i.e., ability to
modulate behavior as a function of reinforcement history). The PRT uses probabi-
listic discrimination methodology to quantify responsiveness to changes in rein-
forcer frequency. In the prototypical computerized task, human participants are
instructed to discriminate between two briefly presented mouths that vary minimally
in length on a cartoon face. Unbeknownst to the participants, probabilistic contin-
gencies are arranged so that correct responses on one alternative are rewarded
3 times more often (e.g., long line: rich alternative) than correct responses on the
other alternative (e.g., short line: lean alternative). As predicted by signal detection
theory (Luc et al. 2021; McCarthy and Davison 1979), healthy control participants
consistently develop a response bias in favor of the rich alternative and do so without
disruption in overall task discriminability (i.e., performance accuracy; Pizzagalli
et al. 2005, 2008b).

During the last 17 years, the PRT has been widely used across laboratories and is
one of the most common probabilistic reinforcement learning tasks used to study
clinical populations (>85 empirical publications). Among others, selected studies
have shown that response bias toward the more frequently rewarded stimulus: (a) is
inversely related to current anhedonic symptoms in unselected adults (e.g.,
Pizzagalli et al. 2005), relatives of patients with MDD (Liu et al. 2016), and in a
transdiagnostic sample with depression and anxiety disorders (Reilly et al. 2020);
(b) predicts self-reported anhedonic symptoms 38 days later (Pizzagalli et al. 2005)
and a diagnosis of MDD 8 weeks later (Vrieze et al. 2013); (c) is blunted in
individuals with increased depressive symptoms (Pizzagalli et al. 2005), current
MDD (e.g., Pizzagalli et al. 2008c; Vrieze et al. 2013, Liu et al. 2011; but see Reilly
et al. 2020), and past MDD (e.g., Liu et al. 2011, 2016; Pechtel et al. 2013; but see
Audrain-McGovern et al. 2014), particularly those with elevated anhedonic symp-
toms (Vrieze et al. 2013) or melancholic depression (Fletcher et al. 2015); (d) is
blunted in youth reporting anhedonia across various DSM diagnoses (Morris et al.
2015) and individuals with PTSD and elevated anhedonia (Eskelund et al. 2018) but
not schizophrenia (e.g., Barch et al. 2017); (e) is linked to functional, electrophys-
iological, and molecular markers within mesolimbic pathways (e.g., Bogdan et al.
2011; Santesso et al. 2009; Kaiser et al. 2018); (f) is potentiated by pharmacological
challenges hypothesized to increase dopaminergic signaling (e.g., nicotine, amphet-
amine, k-opioid receptor antagonism) in both humans and rats (e.g., Barr et al. 2008;
Der-Avakian et al. 2013; Kangas et al. 2020; Krystal et al. 2020; Lamontagne et al.
2018); (g) is reduced by pharmacological challenges hypothesized to decrease
dopaminergic signaling in both humans and rats (e.g., Der-Avakian et al. 2013;
Grob et al. 2012; Lamontagne et al. 2018; Pizzagalli et al. 2008a); and (h) is
amenable to computational modeling that allows to parse reward sensitivity and
learning rate (e.g., Huys et al. 2013).
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2.2 Probabilistic Stimulus Selection Task

The Probabilistic Stimulus Selection Task (PSST) developed by Frank et al. (2004)
is also a computerized task using visual discrimination methodology and probabi-
listic conditions. This laboratory protocol consists of two phases. First, in the
acquisition phase, subjects are presented with three different stimulus pairs across
trials that have varied asymmetric probabilistic contingencies arranged (A:B,
80%:20%; C:D, 70%:30%; E:F, 60%:40%). Following discrimination mastery, sub-
jects are then exposed to a transfer test phase in which they are presented with the
same stimuli, but in novel arrangements and without feedback, to enable examina-
tion of whether response biases that emerge are a function of choosing the more
frequently rewarded (rich) stimulus or avoiding the less frequently rewarded (lean)
stimulus. This task was originally designed to characterize reward learning via
positive vs. negative feedback in patients with Parkinson’s disease while either
unmedicated or medicated with L-dopa. These initial studies verified the expected
findings in reward responsiveness (i.e., the inability to learn from trial and error);
however, this task was also able to reveal selectivity in the effects of
positive vs. negative feedback. Specifically, impairment in learning under probabi-
listic contingencies was driven by insensitivity to positive feedback when
unmedicated relative to their performance under medicated conditions and, also,
sensitivity to negative feedback under unmedicated conditions that was greater than
when medicated (Frank et al. 2004). These observations of functional segregation
between responses to positive and negative outcomes, in turn, were examined further
using computational models to mechanistically interrogate the so-called “Go” and
“NoGo” dopaminergic signaling pathways, primarily in the basal ganglia which has
well-known dopamine depletion in Parkinson’s disease patients (Frank 2005).

The value of this experimental framework was extended in patients with schizo-
phrenia (Waltz et al. 2007), a clinical population also known to have dopamine
dysfunction in the basal ganglia and, often more critically, in the prefrontal cortex
(Weinberger 1987; Weinberger and Berman 1988). These system deficits have been
long associated with poor reinforcement learning rates, anhedonic phenotypes, and
negative symptoms of schizophrenia (Kirkpatrick and Buchanan 1990). Pronounced
deficits in prefrontal cortex function were indeed corroborated by an inability of
most patients with schizophrenia to successfully learn to discriminate between the
standard PSST stimuli (Hiragana characters) used in the studies with Parkinson’s
patients highlighted above. However, patients with schizophrenia were able to
successfully engage with a task variant that used more familiar clip art images as
stimuli (which could, however, introduce working memory requirements that could
make result interpretations challenging). In addition, the modified task confirmed
reduced reward learning in patients with schizophrenia. Specifically, reduced learn-
ing from positive, but not negative, outcomes were observed and have since been
replicated (Dowd et al. 2016; see also Strauss et al. 2014 for a review on the role of
reward learning in the motivational impairment of schizophrenic disorders).
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The PSST has also been used to examine reward responsiveness in MDD
participants. For example, Admon et al. (2017) conducted a randomized controlled
trial in unmedicated depressed patients and healthy control participants receiving
either placebo or a single, low dose of the D2/D3 receptor antagonist amisulpride
(thought to increase dopamine signaling through presynaptic autoreceptor block-
ade). As hypothesized, depressed patients showed a reduced probability of selecting
previously rewarding stimuli. However, despite the ability of amisulpride to poten-
tiate corticostriatal functional connectivity (examined with fMRI) in response to
monetary rewards in the same study, drug treatment did not modulate behavioral
performance. Similarly reduced reward learning in PSST performance was also
observed in a sample of women with remitted MDD and a history of childhood
sexual abuse (Pechtel and Pizzagalli 2013), which included concurrent electrophys-
iological measurement; source-localized electroencephalographic (EEG) activity
revealed blunted differentiation between correct and incorrect responses
(feedback-related negativity and error-related negativity) and increased activation
in the subgenual anterior cingulate cortex in the clinical sample. Cavanagh et al.
(2019) extended our understanding of PSST performance in MDD participants by
associating selective features of EEG responses to probabilistic reward and punish-
ment by examining positive prediction errors (when the outcome is better than
expected) and negative prediction errors (when the outcome is worse than expected).
By teasing apart depressive and anxious dimensional aspects of MDD, the authors
were able to document elevated anxiety as reliably associated with avoidance
learning due to a tighter coupling of negative prediction error signaling (i.e., the
mismatch between reward expectancy and actual reward omission) with
punishment-specific EEG features (i.e., ERPs related to punishment stimuli and
associated theta-band dynamics). Conversely, depressive symptoms were reliably
associated with smaller reward-related EEG signature (i.e., smaller reward-specific
ERPs and associated delta-band dynamics). These dissociations between diverse
dimensions of MDD support further an RDoC view of multifaceted neuropsychiatric
disorders.

More recently, Brown et al. (2021) examined in participants with MDD the
ability of cognitive behavioral therapy (CBT) to improve probabilistic reward (and
loss) learning during fMRI imaging of prediction error and value signaling in the
striatum. Among the participants with MDD, expected reductions in reward learning
rates, associations between prediction error and expected value in ventral striatum,
and anhedonia were observed relative to healthy controls. Following CBT, partici-
pants with MDD exhibited expected reductions of anhedonic and negative affect
symptoms and, as well, significantly higher reward learning rates and ventral
striatum signaling to prediction error and expected value. Moreover, a correlation
was observed between reported symptom change and task-related behavioral and
neural responses, thus demonstrating that this nonpharmacological treatment strat-
egy can have desirable effects on reinforcement learning processes. Importantly,
however, inconsistent findings have been observed when examining behavioral and
neural responses to probabilistic reinforcement conditions in participants with MDD.
For example, Rutledge et al. (2017) found no evidence of reward learning reduction
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using fMRI, computational modeling, and smartphone-based metrics between
depressed participants and healthy controls in monetary earnings, choice accuracy,
and reaction times, nor were differences observed in reward prediction errors in
BOLD responses in the reward-relevant regions of interest in the ventral striatum.

Interestingly, healthy subjects also display blunted reward responsivity in the
PSST following acute exposure to stressful conditions, which are known etiological
factors in MDD (Hammen 2005). For example, Berghorst et al. (2013) examined the
effects of threat-of-shock experimental protocols in healthy female subjects on self-
report measures, cortisol, and PSST performance. Although not all subjects had
expected elevations in self-reported stress or elevations in cortisol, those who were
sensitive to the laboratory stressor were characterized by blunted learning from
reward, but not punishment, as assayed by the PSST.

2.3 Probabilistic Pavlovian Conditioning Task

Examination of Pavlovian conditioning can provide insight into additional aspects of
fundamental adaptive behavior that, unlike operant conditioning, allows for assess-
ments of reward learning during passive stimulus-response exposure rather than
through volitional behavioral responses determined by programmed response-
reinforcement contingencies. Although there are numerous ways to arrange classical
conditioning paradigms (Bouton 2016; Pavlov 1927), in keeping with the theme of
this chapter, O’Doherty et al. (2004) promulgated a probabilistic variant of a
Pavlovian conditioning task which has been subsequently refined for use in clinical
studies of anhedonic phenotypes. The task was initially developed to serve as a
control condition for a probabilistic operant task designed to examine the extent to
which the ventral and dorsal striatum contributes to instrumental conditioning. In the
operant task, subjects are exposed to two trial types: either reward trials or neutral
trials. During reward trial types, one of two stimuli is presented that was either
associated with a relatively high (60%) or a relatively low (30%) probability of
obtaining a palatable juice reward. During neutral trial types, subjects are presented
with two different stimuli that are also associated with either a relatively high (60%)
or a relatively low (30%) probability of obtaining a neutral tasteless solution. In the
probabilistic Pavlovian conditioning task, subjects are exposed to the same condi-
tions, but in a passive manner with the computer making the selection that exposed
the subject to what would become conditioned stimuli immediately preceding either
palatable or neutral stimuli. Because the ventral striatum has been long associated
with reward learning and motivation (Cardinal et al. 2002), whereas the dorsal
striatum is implicated in learning stimulus-response associations (Packard and
Knowlton 2002), the active (operant) and passive (Pavlovian) tasks were conducted
under fMRI conditions to examine reward learning, during both variants of condi-
tioning, in the striatum. And, indeed, behavioral and neuroimaging outcomes largely
supported these dissociable roles.
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The general approach of including assessments of Pavlovian mechanisms in the
behavioral and neural study of anhedonia was subsequently advanced by Kumar
et al. (2008). Dopaminergic function has been long known to encode highly specific
and brief phasic reward learning signals to unconditioned reinforcers and, as well,
track behavioral measures of classical conditioning until the conditioned response
produces dopamine release following the conditioned stimulus alone (Montague
et al. 1996; Schultz 2002; Schultz and Dickinson 2000; McClure et al. 2003; Tobler
et al. 2006). These mechanisms have been repeatedly documented to be blunted in
MDD populations (Gershon et al. 2007; Gradin et al. 2011). Therefore, dysfunction
in phasic reward learning signals was interrogated by Kumar et al. (2008) in
medicated but SSRI treatment-resistant MDD patients and in healthy control sub-
jects following acute treatment with the antidepressant citalopram. Computer-based
photographic stimuli served as conditioned stimuli (A and B), which were presented
prior to small volume water deliveries in fluid-deprived subjects. Probabilistic
schedules associated with the conditioned stimuli and water delivery were system-
atically varied across five 20-trial blocks (e.g., A:B, 80%:0%; A:B, 50%:20%; A:B,
0%:90%; A:B, 20%:20%; A:B, 80%: 0%) to allow for repeated measures of condi-
tioning and re-conditioning of differing response strength during fMRI recording.
Findings showed that patients with MDD had expected blunting in reward learning
signals in the ventral striatum, rostral and dorsal anterior cingulate, retrosplenial
cortex, midbrain and hippocampus, with a magnitude that correlated with anhedonic
severity. In addition, they observed that acute administration of citalopram in healthy
control subjects blunted reward learning and its associated neurophysiological
activity, which is consistent with evidence that typical antidepressants initially
suppress dopamine function before enhancing it following chronic treatment as
illustrated by their well-known delayed onset of action (Taylor et al. 2006).

This probabilistic Pavlovian conditioning task was subsequently used in conjunc-
tion with fMRI to examine putative dopaminergic function associated with reward
learning in the ventral striatum and ventral tegmental area. Computational modeling
techniques revealed that in medication-free patients with remitted recurrent depres-
sion and a high risk of recurrence, greater anhedonia was significantly associated
with lower prediction error-related activation of the ventral tegmental area, whereas
greater anhedonia in healthy controls was associated with higher prediction error-
related activation of the ventral tegmental area (Geugies et al. 2019). These findings
are consistent with assumptions regarding the dissociation of MDD and anhedonia
and the latter’s resistance to frontline antidepressant treatment even when it suc-
cessfully reduced depressive symptoms and led to remission (Admon and Pizzagalli
2015; Calabrese et al. 2014). In other studies that paired the probabilistic Pavlovian
conditioning task with fMRI to assess reward value encoding and event-related
connectivity, Rupprechter et al. (2021) observed in unmedicated participants with
MDD both blunted striatal activation following presentation of reward and negative
encoding of reward value in the hippocampus and rostral anterior cingulate cortex,
thus, suggesting an impaired communication between these areas as a possible
culprit in the subjective valuation of rewards in MDD. Finally, probabilistic Pav-
lovian conditioning tasks have also been modified to examine both appetitive and
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aversive outcomes under fMRI conditions and using computational modeling. For
example, in studies designed to investigate how the habenula encodes negative value
of stimuli associated with punishment contingencies, healthy participants (Lawson
et al. 2014) and unmedicated patients with current MDD (Lawson et al. 2017) were
exposed to abstract computerized images that were followed by probabilistically
high (75%) or low (25%) positive (e.g., win money), negative (e.g., lose money,
painful electric shock), or 100% neutral outcomes. Findings showed that habenula
activation increased in response to conditioned stimuli more strongly predictive of
negative outcomes, especially electric shock; however, the opposite was observed in
participants with MDD (i.e., habenula activation decreased in the presence of
conditioned stimuli more strongly predictive of shock). Moreover, habenula volume
was negatively correlated with self-reported anhedonic symptoms in participants
with MDD, leading the authors to speculate that habenula dysfunction may contrib-
ute to a poorer ability to avoid aversive stimuli, thereby, exacerbating MDD
symptomology.

2.4 Drifting Double Bandit Task

The Drifting Double Bandit task (also known as the Two-step task) was developed
by Daw et al. (2011) and designed to examine another aspect of reward learning,
namely, a subject’s reliance on goal-directed behavior versus habit-based behavior
(e.g., inflexible responding based on previously experienced contingencies). This
task consists of two stages. In the first stage, the subject is presented with two visual
stimuli (A and B). A fixed probability is programmed for the stimulus pair such that a
response to stimulus A results in a second stimulus pair (C and D) 70% of the time or
another stimulus pair (E and F) 30% of the time, whereas a response to stimulus B
results in a second stimulus pair (C and D) 30% of the time or (E and F) 70% of the
time. In this second stage, responses to C and D or E and F are rewarded with
monetary outcomes that are programmed with variable probabilistic schedules that
change slowly and independently throughout the session. This arrangement is
designed to examine the extent to which subjects are relatively habit-based and
make choices based on the fixed probabilities arranged during the first stage stimulus
pair or relatively goal-directed and remain flexible in response allocation as the
probabilities change during the second stage stimulus pairs. This task also lends
itself well to computational modeling strategies that can be used to define a subject’s
response style to determine reward learning processes. Although the ability of this
task to probe reward learning processes as they relate to anhedonic phenotypes in
this subdomain is highly probable, there have yet to be any published reports using
the Drifting Double Bandit expressly for this pursuit, despite it being a
recommended task in the most recent RDoC revision (NIMH 2016).
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3 Reverse Translation of Probabilistic Assays
in Laboratory Animals

Given the correspondence between behavioral outcomes under probabilistic contin-
gencies and anhedonic phenotypes across diverse clinical populations, there have
been increasing efforts to reverse translate these tasks for use in laboratory animals.
As reviewed above, although task performance in human participants has revealed
critical information regarding neurophysiological mechanisms which, in turn, have
allowed an ability to appraise novel behavioral and pharmacological treatment
strategies, there is considerable value in the ability to conduct similar studies in
animals while healthy and following conditions designed to produce anhedonic-like
phenotypes. Functional similarities in task outcome are the primary objective;
however, recent advances in apparatus technologies have also afforded the ability
to maintain certain formalistic features of various computerized cognitive tasks.
More generally, the expectation is that this coordinated bi-directional approach
will help bridge the preclinical gap between therapeutic discovery and treatment
(Der-Avakian and Pizzagalli 2018).

One prominent example of this approach has been the reverse translation of the
PRT into rats and nonhuman primates. The first variant of this task designed for
laboratory animals established a protocol using tone duration discriminations in rats
which, after acquisition, were programmed with a 3:1 rich:lean probabilistic contin-
gency modeled after the human task detailed above (Der-Avakian et al. 2013).
Expected task outcomes were observed, including a reliable response bias toward
the more richly rewarded stimulus alternative and a pharmacological blunting of the
response bias following administration of low doses of pramipexole (thought to
decrease dopaminergic signaling via presynaptic autoreceptor activation) as seen
previously in humans (Pizzagalli et al. 2008a). Subsequent independent studies
advanced this approach by documenting task sensitivity to chronic stress, with rats
exposed to social defeat exhibiting a blunted response bias relative to non-stressed
controls (Der-Avakian et al. 2017) and highlighted the role of dopamine and
glucocorticoid systems in reward responsiveness (Lamontagne et al. 2018).

Subsequent efforts to reverse translate the PRT capitalized on recent advances in
touchscreen technology (Kangas and Bergman 2017) to develop a task variant using
visual line-length discriminations under probabilistic contingencies designed for rats
(Kangas et al. 2020) and nonhuman primates (Wooldridge et al. 2021). In addition to
enhanced formal similarity of the touchscreen-based animal task variant to the
computerized human task, expected response biases were observed in both species
that closely approximated values observed in humans. Subsequent drug studies
using these reverse-translated PRT variants in laboratory animals have confirmed
the ability of putative antidepressants and pro-hedonics, such as amphetamine,
scopolamine, and ketamine, to dose-dependently enhance reward learning. These
findings confirm and extend their therapeutic promise previously documented in
clinical populations using traditional metrics (Jaffe et al. 2013; Kim et al. 2019;
McIntyre et al. 2017). Most recently, studies in rats have confirmed the ability of the
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touchscreen PRT to characterize enduring deficits in reward responsiveness during
adulthood long after exposure to a rodent model of early-life adversity and simulated
poverty (Kangas et al. 2022).

Reverse translation of the other probabilistic tasks highlighted in this chapter has
either yet to be developed for use to examine anhedonic phenotypes or has yet to be
subjected to extensive pharmacological and neurophysiological analysis in healthy
and chronically stressed animals. Some tasks (e.g., the probabilistic Pavlovian
conditioning task) should be relatively straightforward to adapt for laboratory
animals with aims to study anhedonic phenotypes, whereas other tasks (e.g., the
PSST) will likely require creative modifications given the well-documented diffi-
culty in reliably establishing transfer of function in laboratory animals (Lionello-
DeNolf 2009; Zentall et al. 2014). Nevertheless, as illustrated above, coordinated
translational efforts studying clinical populations and animal subjects can yield
complementary approaches and mutually beneficial advances from clinical observa-
tions and laboratory discoveries.

4 Neurobiological Mechanisms of Probabilistic
Reinforcement Learning

Several studies in both humans and laboratory animals have implicated corticolimbic
circuits, modulated primarily by dopamine, norepinephrine, and serotonin in prob-
abilistic reinforcement learning. In this section, we will provide a brief overview of
neurobiological mechanisms that underlie probabilistic reinforcement learning.

4.1 Prefrontal Cortex and Probabilistic Learning

Two areas of the prefrontal cortex (PFC) that are heavily implicated in decision-
making processes associated with probabilistic reinforcement include the
orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC). The OFC encodes
reward value and responds to reward expectancy (Gottfried et al. 2003; Schoenbaum
and Roesch 2005). Thus, the OFC is sensitive to both the magnitude and probability
of future rewards, and lesions or pharmacological impairment of this area generally
results in an inability to select optimal outcomes in the face of uncertainty, which
may occur when the probability of obtaining a reward is relatively low (Mobini et al.
2002; Rogers et al. 1999a). For example, electrophysiological activity in the OFC is
correlated with reward valence and expectancy (Hikosaka and Watanabe 2000;
Schoenbaum and Roesch 2005; Kennerley et al. 2011). Similarly, in nonhuman
primates, the magnitude of a reward modulates activity of OFC neurons, which can
be modulated by reward expectancy and history (Saez et al. 2017). Moreover,
cerebral blood flow is increased in the OFC in humans making a choice between
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small rewards with a relatively high outcome probability and large rewards with a
relatively low outcome probability (Rogers et al. 1999b). Lesioning the OFC in rats
has been shown to increase risky decision-making and preference for uncertain
rewards, whereby animals become more likely to respond for rewards that are
large but have a relatively low probability (Stopper et al. 2014). Evidence suggests
that this change in choice preference can be partially, but not exclusively, explained
by deficits in reward valuation that are accompanied by OFC lesions (Stalnaker et al.
2015). That is, the OFC is important for coding reward expectancy under probabi-
listic conditions.

The ACC has also been implicated in signaling reward expectancy. In particular,
the ACC is thought to code reward prediction errors, whereby a mismatch occurs
between expected and actual reward outcomes (Hyman et al. 2017). Evidence in
humans and nonhuman primates also suggests that the ACC codes for reward
valuation as well (Amiez et al. 2006; Kolling et al. 2016). As with the OFC,
inactivation of the prelimibic cortex (PrL) in rats, which is thought to approximate
human ACC area 32/25, also increased risky decision-making, but only when the
probability of reward decreased over time (St Onge and Floresco 2010). Interest-
ingly, inactivation of this region decreased risky decision-making when reward
probability increased over time, suggesting that the ACC plays an important role
in updating reward probabilities based on outcome to help guide future decision-
making. Thus, like the OFC, reward expectancy signals in the ACC may contribute
to the coding of rewards of a particular magnitude and probability of outcome.

It is unlikely, however, that two distinct PFC regions play functionally identical
roles with regard to reward expectancy. Differences between these two PFC areas
may emerge in the rate at which they track reward probability, and thus expectancy,
over time. Soltani and Izquierdo (2019) recently suggested that while the ACC may
be responsible for rapid updating of reward probabilities based on immediate
computation of unexpected events, the OFC may provide slower, longer-term
updates on changes in reward valuation and expectancy. Alternatively, Winstanley
and Floresco (2016) have suggested that the OFC plays a role in risky decision-
making when one of the options includes an aversive stimulus, thereby promoting
the value of the appetitive option. On the other hand, the ACC may help guide
choices of two or more uncertain rewards to ensure maximal possible outcomes.
Given that these two areas maintain reciprocal connections, it is important to also
consider that discrete functional processes specific to one area are likely communi-
cated to the other area to help guide decision-making during probabilistic reinforce-
ment learning.

Both norepinephrine and serotonin appear to play neuromodulatory roles in the
PFC with regard to reward expectancy signaling. Norepinephrine is thought to
regulate the balance between exploitation and exploratory behavior as animals
navigate different actions with varying probabilities of reward outcomes (Aston-
Jones and Cohen 2005). The firing rates of noradrenergic cells originating from the
locus coeruleus change with alternating reward contingencies. When reward out-
comes are uncertain, tonic firing of noradrenergic cells facilitates alternating behav-
ior from current actions that may be suboptimal to new actions that may produce
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more certain outcomes (i.e., exploration; Aston-Jones et al. 1999). On the other
hand, when reward outcomes become more certain, phasic firing of noradrenergic
cells promotes optimized task performance (i.e., exploitation; Aston-Jones and
Cohen 2005). Additionally, noradrenergic signaling in the orbitofrontal cortex may
facilitate the learning of current or prior associative states (Sadacca et al. 2017). That
is, the ability to recognize and adapt to changes in reward probabilities and expec-
tations may require an understanding of different task states whereby different
actions yield different outcomes depending on the task state. Maximizing reward
outcomes requires actions to be implemented that are appropriate for a given state.
The OFC is believed to mediate learning of these task states and may promote rapid
learning under conditions of changing and unexpected reward contingencies.

Serotonin originating from the midbrain dorsal raphe nucleus (DRN) is also
involved in reward expectancy and probabilistic learning and may regulate the
timescale of reward predictions (Miyazaki et al. 2020). Whereas midbrain dopamine
activity encodes prediction error signals, serotonin is believed to modulate the
degree to which these prediction error signals for uncertain outcomes are integrated
into action. Given the dense reciprocal connections between the dorsal raphe nucleus
and OFC, it is possible that this serotonergic modulation of prediction error signaling
is at least partially mediated by the OFC.

4.2 Striatum and Probabilistic Learning

Both ventral and dorsal striatum, which form corticostriatal loops with the PFC areas
described above, appear to be involved in probabilistic reinforcement learning. In
humans, parts of the midbrain that send dopaminergic projections to the NAc
respond to stimulus uncertainty, and activity of these dopaminergic cells correlates
with reward probability (Dreher et al. 2006). Moreover, increasing reward probabil-
ity is associated with increased blood flow in the striatum in humans (Abler et al.
2006). Consistent with these findings in humans, lesions of the NAc in rats promote
risk-aversive behavior by biasing choices away from large rewards with a low
probability of occurrence and toward small rewards with a high probability of
occurrence, while discrimination of the reward value of different choices remains
largely intact (Cardinal and Howes 2005). Interestingly, despite the role of the shell
subregion of the NAc in processing the hedonic value of rewards, the suppression of
risky behavior described above was specific to the core subregion of the NAc, as
NAc shell lesions had no effect on choice behavior based on reward probability. In
both nonhuman primates (Costa et al. 2016) and rodents (St Onge et al. 2012),
lesions of the dorsal striatum also impaired learning during probabilistic, but not
deterministic, reward schedules. Much of the role of the striatum in signaling reward
expectancy has focused on the neurotransmitter dopamine. Midbrain dopamine
neuronal activity encodes the mismatch between expected and actual reward error
signals (Schultz et al. 1997). That is, during positive prediction errors, the firing of
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midbrain dopamine neurons is increased, whereas during negative prediction errors,
firing of midbrain dopamine neurons is reduced. Thus, either too much or too little
dopamine signaling may disrupt prediction error processing, thereby impairing
learning during activities with unexpected or probabilistic reward schedules.

4.3 Basolateral Amygdala (BLA) and Probabilistic Learning

Evidence suggests that the BLA represents expected reward valuation and learning
from changes in the expected value of rewards (Stolyarova and Izquierdo 2017). As
described above, the OFC is also involved in coding the valuation of rewards, and it
may do so via reciprocal connections with the BLA. Inactivation of the BLA in rats
results in a shift toward risky decision-making, although this effect may not just rely
on the value of positive outcomes. For example, if a particular choice leads to
negative or aversive events, the BLA is thought to bias choice away from the
aversive event. Further evidence supports the role of the BLA in rapidly detecting
unexpected changes (positive or negative) to reward outcomes (Wassum and
Izquierdo 2015). This rapid signaling of changes to expected reward outcomes
could be mediated via reciprocal connections with the ACC, OFC, and insula. For
example, amygdala connectivity with these cortical regions shifts preference toward
smaller, certain rewards compared to larger, uncertain rewards (Ghods-Sharifi et al.
2009).

4.4 Overlapping Neural Circuits Underlying Probabilistic
Learning and Anhedonia

The brain regions and neurotransmitters described above that support probabilistic
reinforcement learning are strongly implicated in the symptom of anhedonia and
several psychiatric disorders characterized by anhedonia. Activation of the OFC, and
in particular the medial OFC that signals the value of rewards, is suppressed in
MDD, impairing reward-related processes that likely contribute to the symptom of
anhedonia. In contrast, the lateral OFC, which is responsible for signaling
non-reward or aversive outcomes, is overactive in depression (e.g., Rolls 2019).
Thus, suppression and potentiation of OFC subregions responsible for computing
the value of rewarding and aversive outcomes, respectively, are thought to bias an
individual with depression away from pleasant experiences and toward negative
states. Indeed, the acute administration of the rapid-acting antidepressant ketamine
in patients with treatment-resistant depression suppressed lateral OFC activity, and
this suppression correlated with the alleviation of anhedonia (Lally et al. 2015).
Activity of the ACC, and functional connectivity with surrounding cortical and
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limbic areas, is also suppressed in patients with depression (Pizzagalli and Roberts
2022). Given the role of the ACC in encoding differences between expected and
actual reward outcomes (i.e., prediction errors), the value of chosen rewards, and the
integration of prior behavioral actions and subsequent reward outcomes, suppression
of this region would be expected to impair reward-guided behavior. The striatum is
involved in many aspects of reward-related behavior that are also impaired in
patients with anhedonia. Suppression of activity in this region can negatively impact
reward valuation, anticipation/expectancy, and motivation, each of which would
hinder reward-guided behavior and manifest as anhedonia.

In summary, the neural computations of probabilistic learning when engaged in
choices about different rewards (or aversive events) involves a diverse set of cortical
and subcortical structures that are tightly interconnected, each of which computes
different variables related to reward probability. The connections from cortical areas
involved in reward valuation and uncertainty to subcortical areas are also widely
involved in the pathophysiology of depression and other psychiatric disorders
characterized by anhedonia. Thus, the different reward-related deficits observed in
patients with anhedonia are likely reflected by disruptions in one or several
corticolimbic structures that normally process reward valuation and expectancy
signals.

5 Conclusions and Future Directions

The ability to learn from reward and adjust behavior accordingly is fundamental to
survival across the animal kingdom. Here, we reviewed and integrated convergent
preclinical and clinical findings highlighting the centrality of abnormalities in
probabilistic reinforcement learning across neuropsychiatric disorders. Several
important conclusions can be extracted from this burgeoning area. First, psychiatric
conditions reporting similar levels of anhedonia, such as MDD and schizophrenia,
are characterized by divergent patterns of reward learning abnormalities. For exam-
ple, whereas MDD has been linked to blunted reward learning in implicit reinforce-
ment tasks (such as the PRT), schizophrenia has been linked to (surprisingly)
preserved implicit reward learning but blunted explicit reward learning (Barch
et al. 2017; for an extended discussion, see Moran et al. 2022). This dissociation
points to partially non-overlapping neurobiological abnormalities in the manifesta-
tion of anhedonia (i.e., MDD: more striatal-based vs. schizophrenia: more
PFC-based), which implies that different therapeutic strategies might be needed to
address anhedonia in these conditions. Second, by focusing on objective behavioral
metrics that can be precisely quantified across species (e.g., rodents, nonhuman
primates, humans) using functionally identical tasks, the field has an unprecedented
opportunity to accelerate translational discoveries toward the development of novel
treatments for anhedonia. In this context, it is noteworthy that, in both rats (Kangas
et al. 2022) and humans (Pechtel and Pizzagalli 2013), early adversity has been
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linked to blunted reward learning abilities in adulthood. Owing to such parallel
findings, promising (and safe) compounds with efficacy to restore reward learning
abilities in preclinical models could be useful for anhedonic individuals with a
history of early-life adversity. Along similar lines, recent neuroimaging and behav-
ioral findings – which were inspired by robust preclinical data highlighting kappa
opioid blockade as a promising target for anhedonia – indicate that a kappa opioid
receptor antagonist increased reward-related activation in the nucleus accumbens,
boosted reward learning, and reduced self-reported anhedonia in a transdiagnostic
sample (Krystal et al. 2020; Pizzagalli et al. 2020). In light of this evidence of “target
engagement,” clinical studies evaluating kappa opioid receptor antagonists to
reverse anhedonic phenotypes are warranted. Third, as recently demonstrated by
Ang and colleagues, parsing the heterogeneity of MDD using objective measures of
reward learning abilities might provide a means to guide treatment selection, and
thus speed up recovery (Ang et al. 2020). Specifically, in that study, reward learning
rates that more closely approximated those observed in healthy control participants
predicted response to the atypical antidepressant bupropion after failing 8 weeks of
treatment with an SSRI. Finally, although we highlighted several possible pharma-
cological targets, it is important to emphasize that other treatment modalities are
currently under intense investigation to tackle anhedonic phenotypes, including
psychological treatments inspired by the RDoC (Sandman and Craske 2022) and
neurostimulation (Siddiqi et al. 2022). With respect to the latter strategy, it is
interesting to note that, among healthy controls, reward learning (as assessed by
the PRT) could be potentiated by high-frequency rapid TMS (Ahn et al. 2013) or
intermittent theta burst stimulation (Duprat et al. 2016) over the left dorsolateral
PFC. Such findings raise the possibility that psychiatric conditions characterized by
reward learning dysfunction might benefit from similar types of neurostimulation.

In spite of significant progress in this area, there are important outstanding
questions for future studies. First and foremost, although reward learning abnormal-
ities have emerged across tasks in specific psychiatric disorders (e.g., MDD), the
causal status of blunted reward learning in anhedonia needs to be directly evaluated.
Specifically, do improvements in anhedonia drive reward learning or does the
resolution of anhedonia require normalization of reward learning? Dense sampling
(e.g., within the context of a randomized clinical trial) of both constructs would be
needed to clarify the temporal (and putatively, causal) relationship between them
(e.g., early improvements in reward learning in week 1 predicts reduction in self-
reported anhedonia in week 2). Second, reward learning abnormalities have often
emerged using tasks (e.g., PRT) that include only adjusting behavior as a function of
rewards. Thus, in such studies, it is unclear whether the documented abnormalities
are specific to reward or might reflect more global (non-specific) learning deficits.

Ultimately, and as reviewed in detail in other chapters within this volume, we
believe that parsing anhedonia into subdomains that are biologically more homog-
enous, can be probed in similar ways across species, and are subserved by distinct
neurobiological pathways will give us the best chance at developing more effica-
cious and much needed treatments for anhedonia and reward learning deficits.
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