Pretreatment Rostral Anterior Cingulate Cortex Connectivity With Salience Network Predicts Depression Recovery: Findings From the EMBARC Randomized Clinical Trial

Alexis E. Whitton, Christian A. Webb, Daniel G. Dillon, Jürgen Kayser, Ashleigh Rutherford, Franziska Goer, Maurizio Fava, Patrick McGrath, Myrna Weissman, Ramin Parsey, Phil Adams, Joseph M. Trombello, Crystal Cooper, Patricia Deldin, Maria A. Oquendo, Melvin G. McInnis, Thomas Carmody, Gerard Bruder, Madhukar H. Trivedi, and Diego A. Pizzagalli

ABSTRACT

BACKGROUND: Baseline rostral anterior cingulate cortex (rACC) activity is a well-replicated nonspecific predictor of depression improvement. The rACC is a key hub of the default mode network, which prior studies indicate is hyperactive in major depressive disorder. Because default mode network downregulation is reliant on input from the salience network and frontoparietal network, an important question is whether rACC connectivity with these systems contributes to depression improvement.

METHODS: Our study evaluated this hypothesis in outpatients (N = 238; 151 female) enrolled in the Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC) 8-week randomized clinical trial of sertraline versus placebo for major depressive disorder. Depression severity was measured using the Hamilton Rating Scale for Depression, and electroencephalography was recorded at baseline and week 1. Exact low-resolution electromagnetic tomography was used to compute activity from the rACC, and key regions within the default mode network (posterior cingulate cortex), frontoparietal network (left dorsolateral prefrontal cortex), and salience network (right anterior insula [rAI]). Connectivity in the theta band (4.5–7 Hz) and beta band (12.5–21 Hz) was computed using lagged phase synchronization.

RESULTS: Stronger baseline theta-band rACC–rAI (salience network hub) connectivity predicted greater depression improvement across 8 weeks of treatment for both treatment arms (B = 0.57, 95% confidence interval = 1.07, 2.08, p = .03). Early increases in theta-band rACC–rAI connectivity predicted greater likelihood of achieving remission at week 8 (odds ratio = 2.90, p = .03).

CONCLUSIONS: Among patients undergoing treatment, theta-band rACC–rAI connectivity is a prognostic, albeit treatment-nonspecific, indicator of depression improvement, and early connectivity changes may predict clinically meaningful outcomes.

Keywords: Depression, EEG, Functional connectivity, Rostral ACC, Salience network, Sertraline

https://doi.org/10.1016/j.biopsych.2018.12.007

Although a variety of interventions exist for major depressive disorder (MDD), fewer than 50% of individuals respond to first-line treatment (1). Consequently, there is an urgent need to better understand which factors predict depression recovery. Abnormal rostral anterior cingulate cortex (rACC) activity is critically implicated in MDD pathophysiology and has emerged as a prognostic (i.e., treatment-nonspecific) predictor of depression improvement (2). First observed by Mayberg et al. (3), heightened pretreatment rACC activity/metabolism predicts greater response to a range of antidepressants, including paroxetine (4), nortriptyline (5), citalopram (6), and fluoxetine (7), but also to placebo (8). Highlighting the robustness of this finding, a meta-analysis showed that depression improvement was linked to higher pretreatment rACC activity in 19 separate studies (2), although a number of nonreplications emerged (9–12). This finding was recently replicated a 20th time (13) in the Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC) study, an 8-week clinical trial of sertraline for MDD (14). Importantly, pretreatment rACC theta current density [associated with heightened rACC metabolism (15)] displayed incremental predictive validity in relation to treatment outcome (across both sertraline and placebo conditions) over and above a range of clinical and demographic factors previously associated with better MDD prognosis.
The rACC may influence treatment responsiveness by facilitating adaptive communication among large-scale functional networks (2). It is the main node within the anterior portion of the default mode network (DMN) and shows coordinated activity under task-free conditions with other regions in this network, including the posterior cingulate cortex (PCC) (the main node within the posterior portion of the DMN), angular gyrus, middle and superior frontal gyri, and middle temporal gyrus. The DMN is thought to support self-referential processing and exhibits greater activity under task-free conditions relative to conditions requiring external focus (16). Resting-state functional connectivity studies have revealed hyperconnectivity within the DMN in MDD, which might support persistent negative self-referential thinking (17).

Given its location within the DMN and structural connections with other areas of the prefrontal cortex, the rACC also communicates with the frontoparietal network (FPN) to support emotion regulation and goal-oriented responding (18)—two processes that require a downregulation of DMN activity. The FPN and DMN are typically anticorrelated (19), but meta-analyses indicate that individuals with MDD exhibit weaker anticorrelations between these networks (17), potentially leading to DMN interference in conditions requiring external focus. Similarly, a recent electroencephalography (EEG) source localization study showed that elevated connectivity between the DMN and FPN in the beta frequency band was linked to a more recurrent illness course (20), indicating that aberrant communication between these networks may be associated with MDD trajectory.

Finally, the rACC also has anatomical connections to regions in the salience network (SN), particularly the right anterior insula (rAI) (21,22), which is thought to play a critical role in emotional processing (23). This network supports the detection of emotionally salient stimuli, and the rAI in particular is thought to coordinate anticorrelated activity between the DMN and FPN (24,25). The SN is typically anticorrelated with the DMN (26); however, there is debate as to whether more or less anticorrelated rACC–SN activity may facilitate depression improvement. Weaker anticorrelated rACC and SN activity (particularly AI activity) has been observed in individuals with severe depression (21). Furthermore, greater baseline rACC–SN connectivity has been found to predict depression improvement following 1 week of placebo and 10 weeks of antidepressant treatment (22). It has been suggested that enhanced rACC–SN connectivity may confer a greater capacity for adaptively responding to emotionally salient stimuli, highlighting a potential link between rACC–SN connectivity and the responsiveness of the depressed state to intervention.

Together, these findings suggest that rACC activity may influence depression improvement via connections with other regions within the DMN and also by facilitating DMN connectivity with other networks such as the FPN and SN. Building on recent findings in the EMBARC study showing that baseline rACC theta activity prognostically predicted treatment outcome (13), this study examined whether theta-band synchronization between the rACC and other regions of the DMN, as well as the FPN and SN, predicts depression improvement. Because an independent study showed that elevated beta-band DMN–FPN connectivity was associated with a more recurrent depressive illness course (20), we also evaluated connectivity within the beta frequency.

In line with prior work (22), we hypothesized that greater depressive symptom reduction would be predicted by increased pretreatment rACC–SN connectivity. In contrast, given prior work linking heightened within-DMN connectivity (17) and DMN–FPN connectivity (20) to greater depression severity, we hypothesized that greater depressive symptom reduction would be predicted by decreased rACC–DMN and rACC–FPN connectivity. In addition, given that the local activity/baseline metabolism of a region has been found to determine that same region’s resting-state functional connectivity (27), we also examined whether rACC connectivity moderated or mediated the link between rACC activity and depression improvement. Finally, recent evidence (also based on data from the EMBARC trial) indicates that early changes in rACC cortical thickness following the first week of treatment with sertraline—potentially reflecting increases in cortical serotonin 1A receptor concentrations—predicted greater reduction in depressive symptoms over the course of treatment (28). Because sertraline may also have acute effects on functional connectivity of the rACC with other regions, we also examined whether early changes in rACC connectivity during the first week of treatment were associated with the likelihood of achieving remission.

METHODS AND MATERIALS
The EMBARC study design, recruitment, randomization methods, power calculation, and assessment measures can be found elsewhere (14) and in the Supplement. Methods pertinent to this study are outlined below.

Study Design
Using a double-blind design, participants were randomly assigned to 8 weeks of sertraline or placebo. The primary outcome was depression severity on the 17-item clinician-rated Hamilton Rating Scale for Depression (HRSD-17) (29) administered at baseline and weeks 1, 2, 3, 4, 6, and 8. EEG was recorded at baseline and week 1.

Sample
Outpatients aged 18 to 65 years meeting criteria for MDD based on the Structured Clinical Interview for DSM-IV (30) were recruited at Columbia University College of Physicians and Surgeons, Massachusetts General Hospital, the University of Michigan, and the University of Texas Southwestern Medical Center. A Quick Inventory of Depressive Symptomatology (31) score of ≥14 (moderate depression) was required at screening and randomization visits. Study procedures were approved by the institutional review boards of all sites. Participants provided written informed consent after receiving a complete study description.

From July 2011 to December 2015, 634 individuals were screened and 296 were randomized to sertraline or placebo. Of the latter individuals, 9 dropped out before taking medication, 266 (92.3%) had EEG data collected, and 248 were included in the final model reported by Pizzagalli et al. (13). Of this sample, 10 subjects were excluded from the current study for having <40 seconds of artifact-free segments available for
connectivity analysis (the recommended amount), leaving a final sample of 238 subjects. The study flow diagram is shown in Supplemental Figure S1, with dropout reasons listed in Supplemental Table S1.

EEG Acquisition and Preprocessing

EEG data were recorded in four 2-minute eyes-open and eyes-closed trials. Different EEG acquisition systems were used across sites; therefore, a manual was developed to standardize recording techniques (see Supplemental Methods). Briefly, EEG data from each site were interpolated to a common 72-channel montage and resampled at 256 Hz. Then, a standardized preprocessing pipeline was used to extract 2-second nonoverlapping artifact-free epochs for connectivity analyses (32). In line with prior work (20,33), the first 40 seconds of artifact-free data were analyzed.

Region-of-Interest Selection

To probe FPN connectivity, a left dorsolateral prefrontal cortex seed was defined using coordinates from Dosenbach et al. (34). For DMN connectivity analyses, a midline PCC seed was defined using coordinates from Yeo et al. (35). For SN analyses, an rAI seed was defined using coordinates from Seeley et al. (36) because this right hemisphere region is thought to modulate DMN and FN connectivity (24). Finally, an rACC seed was defined using prior work examining predictors of treatment response (8,13). Seed coordinates are shown in Supplemental Table S2. Seeds were used to create regions of interest (Figure 1) consisting of gray matter voxels within a 10-mm radius of the seed. Intracortical current source density at each region of interest was then computed using the linear inverse solution, exact low-resolution electromagnetic tomography (33).

Source-Based Functional Connectivity

Connectivity between sources was computed using lagged phase synchronization, which quantifies the nonlinear noninstantaneous relationship between two signals (33). Instantaneous EEG-based connectivity measures have limited utility given that they are susceptible to volume conduction, which leads to artificially correlated activity at different regions because the electrical signal spreads out laterally when it reaches the skull. However, noninstantaneous or lagged connectivity measures correct for this by computing the connectivity between two regions after any instantaneous contribution has been removed. Lagged phase synchronization was computed in the theta (4.5–7 Hz) and beta (12.5–21 Hz) frequency bands.

Statistical Analyses

Linear mixed-effect models (implemented in STATA 13.1; StataCorp, College Station, TX) evaluated whether rACC connectivity predicted HRSD score reductions across 8 weeks. Participants were treated as random effects, with subject-specific estimates for both intercept (estimated week 8 HRSD scores) and slope (weekly change in HRSD scores). Analyses were conducted in two stages. First, we entered demographic/clinical covariates linked to treatment response in MDD (Supplemental Table S3) as well as the baseline rACC theta activity terms that were included in the final model reported in Table 2 of the earlier study published by Pizzagalli et al. (13). Second, connectivity and connectivity × time (weeks 0, 1, 2, 3, 4, 6, and 8 centered at week 8) terms were added to the model. We applied a conservative criterion (13) whereby connectivity terms needed to be associated with both the intercept (connectivity effect) and slope (connectivity × time interaction) at $p < .05$ to be considered significant. For models containing significant connectivity terms, we used a likelihood ratio test to evaluate the goodness of fit of this extended model relative to the model containing only the covariates and baseline rACC theta activity terms.

For connectivity terms that were associated with both the intercept and slope, and that yielded a significantly improved model fit, we tested whether rACC connectivity moderated the relationship between baseline rACC theta activity and depression improvement by adding a connectivity × rACC theta term and a connectivity × rACC theta × time term. A significant interaction term was taken as evidence of moderation.

For mediation analyses, we evaluated a model in which baseline rACC connectivity mediated the relationship between baseline rACC theta activity and HRSD score improvement (baseline to week 8). Because prior work has shown that rACC connectivity changes after 1 week of placebo are correlated...
with depressive symptom improvement (22), we tested a second mediation model in which early change (baseline to week 1) in rACC connectivity was the mediator.

Finally, we examined whether connectivity was associated with clinically meaningful outcomes: 1) treatment response, defined as >=50% reduction in HRSD scores by week 8, and 2) depression remission, defined as an HRSD score <=7 at week 8.

RESULTS
Sample characteristics of the 238 subjects included in this analysis are shown in Table 1, with further details shown in Supplemental Table S4.

Effects of Baseline rACC Connectivity on Depression Improvement
A main effect of connectivity ($B = -3.01$, 95% confidence interval [CI] = -5.65, -0.37, $p = .03$) and a connectivity \times time interaction ($B = -0.59$, 95% CI = -1.07, -0.10, $p = .02$) emerged for rACC–rAI (SN hub) connectivity in the theta band. Specifically, across the entire sample (placebo and sertraline groups), elevated theta-band rACC–rAI connectivity predicted lower week 8 HRSD scores and greater symptom improvement over 8 weeks, controlling for demographic/clinical covariates and baseline rACC theta activity. A likelihood ratio test showed that a model containing these two connectivity terms (Table 2) provided improved fit relative to a covariates + rACC theta activity-only model (likelihood ratio = 6.69, $p = .04$). Notably, when connectivity terms were entered into the model, both rACC theta activity terms remained significant predictors of symptom improvement (rACC theta term: $B = -3.82$, 95% CI = -6.50, -1.15, $p = .01$; rACC theta \times time term: $B = -0.57$, 95% CI = -1.07, -0.08, $p = .02$). Furthermore, baseline theta-band rACC–rAI connectivity was uncorrelated with rACC theta activity ($r = .06$, $p = .39$), indicating that these two metrics were independent predictors of depression improvement. Aligning with rACC theta activity findings reported by Pizzagalli et al. (13), connectivity terms did not interact with treatment condition in predicting symptom change (both $p > .05$), suggesting that they are treatment-nonspecific (i.e., prognostic) predictors of symptom improvement.

In contrast, neither theta-band rACC–PCC (the key posterior DMN region) connectivity nor theta-band rACC–left dorsolateral prefrontal cortex (the key FPN region) connectivity emerged as a predictor of depression improvement (all $p > .05$). Furthermore, when considering beta-band connectivity, no models showed both a significant effect of connectivity and a connectivity \times time interaction (all $p > .05$) (see Supplemental Results). Taken together, these results specifically highlight theta-band rACC–rAI connectivity as a predictor of depression improvement.

rACC Connectivity as a Moderator or Mediator of the Effect of Baseline rACC Activity on Depression Improvement
For theta-band rACC–rAI connectivity, neither the connectivity \times rACC theta interaction ($B = 3.30$, 95% CI = -8.47, 15.06, $p = .58$) nor the connectivity \times rACC theta \times time interaction ($B = 0.61$, 95% CI = -1.54, 2.75, $p = .58$) was significant, indicating no moderation. We also found no evidence for theta-band rACC–rAI connectivity acting as a mediator. The two mediation models tested are described in the Supplemental Results and shown in Supplemental Figure S2.

rACC Connectivity as a Predictor of Depression Remission
Theta-band rACC–rAI connectivity changes from baseline to week 1 predicted remission status after controlling for baseline HRSD scores (odds ratio = 2.90, 95% CI = 1.11, 7.58, $p = .03$). Specifically, as theta rACC–rAI connectivity changes from

Table 1. Demographic and Clinical Characteristics of the Analyzed Sample

<table>
<thead>
<tr>
<th></th>
<th>Whole Sample ($N = 238$)</th>
<th>CU Site ($n = 75$)</th>
<th>MG Site ($n = 76$)</th>
<th>TX Site ($n = 83$)</th>
<th>UM Site ($n = 44$)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in Years, Mean (SD)</td>
<td>36.9 (13.2)</td>
<td>33.5 (11.0)a</td>
<td>33.2 (13.1)a</td>
<td>43.5 (12.4)b</td>
<td>33.4 (14.0)a</td>
<td><.001</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>151 (63.4)</td>
<td>49 (65.3)</td>
<td>18 (50.0)</td>
<td>52 (62.7)</td>
<td>32 (72.7)</td>
<td>.21</td>
</tr>
<tr>
<td>Years of Education, Mean (SD)</td>
<td>15.1 (2.4)</td>
<td>15.6 (2.1)</td>
<td>15.0 (2.5)</td>
<td>14.6 (2.7)</td>
<td>15.1 (2.3)</td>
<td>.09</td>
</tr>
<tr>
<td>Caucasian, n (%)</td>
<td>163 (68.5)</td>
<td>45 (60.0)</td>
<td>26 (72.2)</td>
<td>57 (68.7)</td>
<td>5 (11.4)</td>
<td>.16</td>
</tr>
<tr>
<td>Hispanic, n (%)</td>
<td>42 (17.6)</td>
<td>19 (25.3)a</td>
<td>2 (5.6)b</td>
<td>18 (21.7)a</td>
<td>3 (6.8)b</td>
<td>.01</td>
</tr>
<tr>
<td>Married, n (%)</td>
<td>49 (20.6)</td>
<td>9 (12.0)</td>
<td>7 (19.4)</td>
<td>22 (26.5)</td>
<td>11 (25.0)</td>
<td>.13</td>
</tr>
<tr>
<td>Employed, n (%)</td>
<td>135 (56.7)</td>
<td>41 (54.7)</td>
<td>26 (72.2)</td>
<td>40 (48.2)</td>
<td>28 (63.6)</td>
<td>.07</td>
</tr>
<tr>
<td>Age of MDD Onset, Mean (SD)</td>
<td>16.3 (5.7)</td>
<td>17.1 (5.9)a</td>
<td>16.2 (4.3)b</td>
<td>16.8 (6.4)</td>
<td>14.2 (4.5)b</td>
<td>.04</td>
</tr>
<tr>
<td>Current MDE Length in Months, Median</td>
<td>15.5</td>
<td>20.0</td>
<td>8.5</td>
<td>30.0</td>
<td>6.0</td>
<td>.09</td>
</tr>
<tr>
<td>Number of Prior MDEs, Median</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>.19</td>
</tr>
<tr>
<td>QIDS, Mean (SD)</td>
<td>18.2 (2.8)</td>
<td>18.8 (2.9)a</td>
<td>17.5 (2.8)</td>
<td>17.5 (2.9)b</td>
<td>18.7 (3.1)</td>
<td>.01</td>
</tr>
<tr>
<td>17-Item HRSD, Mean (SD)</td>
<td>18.5 (4.5)</td>
<td>17.9 (4.4)</td>
<td>19.9 (4.0)</td>
<td>18.6 (4.5)</td>
<td>18.0 (4.8)</td>
<td>.11</td>
</tr>
</tbody>
</table>

The p values indicate the significance value associated with the main effect of site. Where the main effect of site was significant at $p < .05$, superscript letters are used to denote the results of Bonferroni-adjusted pairwise comparisons between sites. Sites with the same superscript letter did not differ significantly from each other.

CU, Columbia University College of Physicians and Surgeons; HRSD, Hamilton Rating Scale for Depression; MDD, major depressive disorder; MDE, major depressive episode; MG, Massachusetts General Hospital; QIDS, Quick Inventory of Depressive Symptoms; TX, University of Texas Southwestern Medical Center; UM, University of Michigan.
Table 2. Linear Mixed Model Showing Theta-Band rACC–rAI Connectivity as a Predictor of HRSD Score Improvement Across 8 Weeks

<table>
<thead>
<tr>
<th>Model Term</th>
<th>Coefficient</th>
<th>SE</th>
<th>Z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>-3.19</td>
<td>0.94</td>
<td>-3.41</td>
<td><.001</td>
</tr>
<tr>
<td>Treatment</td>
<td>5.86</td>
<td>2.68</td>
<td>2.19</td>
<td>.03</td>
</tr>
<tr>
<td>Time × Treatment</td>
<td>-0.19</td>
<td>0.25</td>
<td>-0.74</td>
<td>.46</td>
</tr>
<tr>
<td>Site</td>
<td>1.52</td>
<td>0.37</td>
<td>4.15</td>
<td><.001</td>
</tr>
<tr>
<td>Time × Site</td>
<td>0.17</td>
<td>0.07</td>
<td>2.50</td>
<td>.01</td>
</tr>
<tr>
<td>Treatment × Site</td>
<td>-0.17</td>
<td>0.53</td>
<td>-0.33</td>
<td>.74</td>
</tr>
<tr>
<td>Time × Treatment × Site</td>
<td>-0.02</td>
<td>0.10</td>
<td>-0.25</td>
<td>.80</td>
</tr>
<tr>
<td>Depression Severity</td>
<td>0.48</td>
<td>0.09</td>
<td>5.55</td>
<td><.001</td>
</tr>
<tr>
<td>Time × Depression Severity</td>
<td>-0.07</td>
<td>0.01</td>
<td>-5.39</td>
<td><.001</td>
</tr>
<tr>
<td>Treatment × Depression Severity</td>
<td>-0.27</td>
<td>0.11</td>
<td>-2.54</td>
<td>.01</td>
</tr>
<tr>
<td>Anxiety Severity</td>
<td>0.10</td>
<td>0.05</td>
<td>2.21</td>
<td>.03</td>
</tr>
<tr>
<td>Age</td>
<td>0.14</td>
<td>0.03</td>
<td>4.67</td>
<td><.001</td>
</tr>
<tr>
<td>Time × Age</td>
<td>0.01</td>
<td>0.00</td>
<td>1.41</td>
<td>.16</td>
</tr>
<tr>
<td>Treatment × Age</td>
<td>-0.08</td>
<td>0.04</td>
<td>-2.14</td>
<td>.03</td>
</tr>
<tr>
<td>Gender</td>
<td>-0.53</td>
<td>0.51</td>
<td>-1.03</td>
<td>.31</td>
</tr>
<tr>
<td>Race</td>
<td>0.33</td>
<td>0.34</td>
<td>0.99</td>
<td>.32</td>
</tr>
<tr>
<td>Time × Race</td>
<td>0.06</td>
<td>0.06</td>
<td>0.99</td>
<td>.32</td>
</tr>
<tr>
<td>Marital Status</td>
<td>-0.96</td>
<td>0.31</td>
<td>-3.10</td>
<td><.001</td>
</tr>
<tr>
<td>Employment Status</td>
<td>-0.08</td>
<td>0.35</td>
<td>-0.25</td>
<td>.82</td>
</tr>
<tr>
<td>Treatment × Employment Status</td>
<td>0.49</td>
<td>0.53</td>
<td>0.93</td>
<td>.35</td>
</tr>
<tr>
<td>rACC</td>
<td>-3.82</td>
<td>1.37</td>
<td>-2.80</td>
<td>.01</td>
</tr>
<tr>
<td>Time × rACC Theta</td>
<td>-0.57</td>
<td>0.25</td>
<td>-2.28</td>
<td>.02</td>
</tr>
<tr>
<td>Theta-Band rACC–rAI Connectivity</td>
<td>-3.01</td>
<td>1.35</td>
<td>-2.23</td>
<td>.03</td>
</tr>
<tr>
<td>Time × Theta-Band rACC–rAI Connectivity</td>
<td>-0.59</td>
<td>0.25</td>
<td>-2.37</td>
<td>.02</td>
</tr>
</tbody>
</table>

- rACC, rostral anterior cingulate cortex; rAI, right anterior insula.
- Depression Severity from baseline Hamilton Rating Scale for Depression (HRSD) total score.
- Anxiety Severity from Anxious Aroused subscale of the Mood and Anxiety Symptom Questionnaire.

Baseline to week 1 increased by 1 unit, a participant was 2.9 times more likely to achieve symptom remission by week 8 (connectivity change in remitters [n = 73]: mean = 0.44, SD = 0.34; change in nonremitters [n = 122]: mean = 0.32, SD = 0.31). Theta-band rACC–rAI connectivity changes in remitters and nonremitters are shown in Figure 2, with tests of potential confounds reported in the Supplemental Results.

DISCUSSION

Baseline theta rACC activity has emerged as an important indicator of clinical response to a range of depression interventions, including antidepressants, electroconvulsive therapy, and sleep deprivation as well as placebo (13), and—in combination with known clinical/demographic predictors of depression prognosis—could be used to identify patients who require careful monitoring and more intensive intervention. Because the rACC has rich anatomical connections with large-scale functional networks involved in attention, emotion regulation, and cognitive control (2), we hypothesized that rACC connectivity with other brain systems may play a mechanistic role in depression recovery. Several key findings emerged. First, greater theta-band connectivity between the rACC and rAI—a key region within the SN—predicted greater reduction in depression severity across treatment conditions, controlling for demographic/clinical covariates and baseline rACC activity. Second, adding theta-band rACC–rAI connectivity as a predictor provided an improved model fit compared with a model containing only the demographic/clinical covariates and rACC activity. Importantly, in this final model, rACC activity remained a significant predictor of depression improvement. Combined with the lack of evidence for rACC connectivity moderating or mediating the link between baseline rACC activity and symptom improvement, this suggests that rACC activity and rACC connectivity are independent predictors of depression improvement. Third, baseline theta-band rACC–rAI connectivity did not interact with treatment group, indicating that it represents a nonspecific prognostic predictor of depression improvement [as previously found for baseline rACC activity (13)]. Fourth, increases in theta-band rACC–rAI connectivity from baseline to week 1 predicted a greater likelihood of achieving remission by week 8, indicating that early connectivity changes may be a useful marker of clinically meaningful outcomes.

Prior work has shown that rACC activity increases under conditions involving emotional conflict (37) or inhibiting attention to irrelevant emotional information (38). Consequently, elevated rACC activity may reflect a greater ability to modulate emotional responding using top-down control (2), and this may in turn promote better outcomes. Our findings extend this by showing that communication between the rACC and a region that is involved in the detection of personally salient events, and that regulates communication between the DMN and FPN (25), may be another important predictor of future symptom improvement. One explanation is that rACC–SN synchronization may aid in DMN downregulation in response to emotionally salient events, and this may be a mechanism that facilitates depression recovery. Support for this comes from a study in healthy individuals, which showed that ignoring task-irrelevant unpleasant words was associated with task-evoked increases in rACC–SN functional connectivity (39). Furthermore, disruption of this functional coupling via brain injury-related damage to the white matter tract linking the rAI to the ACC results in difficulty in deactivating the DMN under conditions requiring external task focus (40).

![Figure 2](image-url)
Communication between the rACC and rAI may also be implicated in monitoring the salience of one’s emotions and interoceptive states, and this may partially explain the link between rACC–rAI connectivity and clinical response to placebo observed in our study and in other work (22). For example, rAI and ACC coactivation has been observed when subjects view pictures of their bodies (41), and connectivity between these regions has been found to be negatively correlated with impairments in social awareness and self-awareness in healthy adults (42). This hints at the role of rACC–rAI connectivity in adaptive self-related processes, which may play an important role in both antidepressant and placebo effects. Furthermore, our observations that rACC connectivity with the DMN (the PCC region) or the FPN (the left dorsolateral prefrontal cortex region) was not a predictor of depression improvement suggests that the integrity of systems that coordinate DMN–FPN switching (i.e., the SN), rather than the integrity of the DMN or FPN per se, may be more closely associated with the responsiveness of the depressed state to intervention. Moreover, the specificity of our findings to the theta band may reflect the putative role that the ACC (including the rACC) has in generating frontal midline theta frequency synchroniz [e.g., see (15)].

Our finding that early changes (i.e., after 1 week of treatment) in theta-band rACC–rAI connectivity predicted depressive symptom improvement aligns with prior findings showing that changes in rACC cortical thickness after 1 week of sertraline treatment [potentially reflecting increased serotonin 1A receptor concentrations (28)] predicted greater depressive symptom improvement. Furthermore, involvement of the rAI is consistent with prior studies showing that changes in activity among a set of brain regions (including the insula) following 1 week of treatment with a selective serotonin reuptake inhibitor were predictive of greater therapeutic response (22). However, in the current study, early changes in theta-band rACC–rAI connectivity (and the relationship between these early changes and better depression improvement) cannot be entirely attributed to the effects of sertraline given that theta-band rACC–rAI connectivity predicted better response to both sertraline and placebo. Future research is needed to determine what neuromodulatory processes may influence early changes in functional connectivity in individuals undergoing treatment with placebo. In the context of our findings, enhanced baseline theta-band rACC–rAI connectivity and early changes in this connectivity may be an indicator of the degree to which an individual’s depressive symptoms are responsive to intervention more generally. An important avenue for future studies will be to examine whether this reflects 1) a unique subtype of depression characterized by early response to treatment or 2) a marker that is indicative of remission that is currently/already in progress. Examining changes in theta-band rACC–rAI connectivity over a longer time course during treatment (e.g., from baseline to week 8) would allow for these competing interpretations to be tested. Furthermore, it will be important to link this marker to previously reported depression endophenotypes (43).

We initially hypothesized that rACC–outcome associations observed in prior work [e.g., (32)] may be driven by rACC connectivity; however, we found no evidence for rACC connectivity acting as a moderator or mediator. Although we cannot infer directionality from our analysis, the link between rACC–rAI connectivity and depression improvement may be driven by inputs coming from the rAI. Support for this comes from dynamic causal modeling research showing that the rAI acts as a “causal outflow hub” within the SN that triggers FPN modulation of the DMN in accordance with salient events (24). Another dynamic causal modeling study points to the relevance of excitatory rAI signaling in depression, showing weaker excitatory input from the rAI to the middle frontal gyrus in MDD patients compared with control subjects (44). In the context of our study, coordinated input from the rAI to the DMN (via the rACC) may facilitate adaptive processing of emotionally salient events, which may in turn promote treatment responsiveness.

An important next step is to determine whether malleability of theta-band rACC–rAI connectivity identifies patients whose depression is likely to spontaneously remit or whether it indicates patients who show greater susceptibility to placebo effects. Although these two processes are likely to be closely related, links between rACC–rAI connectivity and greater placebo response will have important implications for clinical trials. For example, if the mechanism by which elevated baseline theta-band rACC–rAI connectivity facilitates greater symptom improvement is via greater susceptibility to placebo effects, then this may be used to identify individuals for whom treatment-nonspecific factors are likely to play a larger role in determining treatment outcome. This in turn might allow for a better estimation of treatment-specific effects.

Some limitations must be emphasized. First, although EEG source functional connectivity has high temporal resolution for examining connectivity at discrete frequencies, lagged phase synchronization quantifies only synchronization strength (ranging from 0 to 1) and does not indicate synchronization direction. Studies using metrics that assess both connectivity strength and direction are needed to confirm whether greater positive or greater anticorrelated theta-band rACC–rAI connectivity predicts depression improvement. Causal links between rACC–rAI connectivity and depression improvement should also be probed using neurostimulation techniques that modulate fronto–insula connectivity [e.g., prefrontal theta burst stimulation (45)]. Second, source localization techniques cannot estimate connectivity involving subcortical regions. Subcortical dysfunction is critical to MDD pathophysiology; therefore functional magnetic resonance imaging–based connectivity studies must examine relationships between rACC–subcortical connectivity and depression improvement. Third, in addition to showing significant main effects and interactions involving theta-band rACC–rAI connectivity, the final model also revealed a number of unanticipated significant effects that warrant further investigation. These include a main effect of site and a site × time interaction, both of which were unanticipated owing to standardization of treatment across study sites. The significant treatment × age interaction was also unanticipated because there is little evidence to suggest that the effects of sertraline (relative to placebo) are moderated by patient age in adults aged 18 to 65 years. Finally, because our sample was composed of individuals with chronic or recurrent MDD with onset before 30 years of age, further research is needed to
acknowledge the important contribution of Craig Tenke, who sadly passed away on December 19, 2017. Through his expertise in electrophysiology, Dr. Tenke spearheaded the development of the EEG acquisition protocol and made a major contribution through his creation of a standardized EEG preprocessing pipeline. It is to Dr. Tenke that we dedicate this article.

The authors report the following financial disclosures during the last 3 years (unless otherwise noted) for activities unrelated to the current research. TC received an honorarium from the University of Texas, San Antonio. DGD received funding from NIMH and consulting fees from Pfizer. MF has received research support from Abbott Laboratories; Akermes, Inc.; American Cyanamid; Aspect Medical Systems; AstraZeneca; Avanir Pharmaceuticals; BioResearch; BrainCells Inc.; Bristol-Myers Squibb; CeNeRx BioPharma; Cephalon; Clintara, LLC; Cercov; Covidian; Eli Lilly and Company; EnVivo Pharmaceuticals, Inc.; Euthymics Bioscience, Inc.; Forest Pharmaceuticals, Inc.; Ganedan Biotech, Inc.; GlaxoSmithKline; Harvard Clinical Research Institute; Hoffman-LaRoche; Icon Clinical Research; Janssen Innovation; Janssen R&D, LLC; Jed Foundation; Johnson & Johnson Pharmaceutical Research & Development; Lichtwer Pharma GmbH; Lorenx Pharmaceuticals; Lundbeck Inc.; MedAvante; Methylation Sciences Inc.; National Alliance for Research on Schizophrenia & Depression; National Center for Complementary and Alternative Medicine; National Institute of Drug Abuse; NIMH; Neuralistem, Inc.; Novartis AG; Organon Pharmaceuticals; Parmalab, LLC.; Pfizer Inc.; Pharmacia-Upjohn; Pharmaceutical Research Associates, Inc.; Pharmavite LLC; PharmoRx Therapeutics; Photothera; Reckitt Benckiser; Roche Pharmaceuticals; RCT Logic, LLC; Sanofi-Aventis US LLC; Shire; Solvay Pharmaceuticals, Inc.; Stanley Medical Research Institute; Synthelabo; Tal Medical; and Wyeth-Ayerst Laboratories. MF has also served as advisor or consultant to Abbott Laboratories; Acadia; Afectics Pharmaceuticals AG; Akermes, Inc.; Amarin Pharma Inc.; Aspect Medical Systems; AstraZeneca; Auspex Pharmaceuticals; Avanir Pharmaceuticals; AXSOME Therapeutics; Bayer AG; Best Practice Project Management, Inc.; Biogen; BioMarin Pharmaceuticals, Inc.; Biovail Corporation; BrainCells Inc.; Bristol-Myers Squibb; CeNeRx BioPharma; Cephalon, Inc.; Cercov; CNS Response, Inc.; Compellis Pharmaceuticals; Cypress Pharmaceutical, Inc.; DiagnoSearch Life Sciences (P) Ltd.; Dinopson Sumitomo Pharma Co. Inc.; Dox Pharmaceuticals, Inc.; Edgemont Pharmaceuticals, Inc.; Esai Inc.; EnVivo Pharmaceuticals, Inc.; ePharmaSolutions; EPIX Pharmaceuticals, Inc.; Euthymics Bioscience, Inc.; Fabe-Kramer Pharmaceuticals, Inc.; Forest Pharmaceuticals, Inc.; Forum Pharmaceuticals; GenOmind, LLC; GlaxoSmithKline; Grunenthal GmbH; I3 Innovus/Ingenis; Intracellular; Janssen Pharmaceuticals; Jazz Pharmaceuticals, Inc.; Johnson & Johnson Pharmaceutical Research & Development, LLC; Knoll Pharmaceuticals Corp.; Labopharm Inc.; Lorex Pharmaceuticals; Lundbeck Inc.; MedAvante, Inc.; Merck & Co., Inc.; MSI Methylations Sciences, Inc.; Naurex, Inc.; Nestle Health Sciences; Neurocrine, Inc.; Neurogenetics, Inc.; NextWave Pharmaceuticals; Novartis AG; Nutrition 21; Orexigen Therapeutics, Inc.; Organon Pharmaceuticals; Osmostica; Otsuka Pharmaceuticals; Pamlab, LLC.; Pfizer Inc.; PharMacaStar; Pharmavite LLC; PharmoRx Therapeutics; Precision Human Biobehavioral; Prexa Pharmaceuticals, Inc.; Puretech Ventures; PsychoGenics; Psynl Neuronsciences, Inc.; RCT Logic, LLC; Rexahn Pharmaceuticals, Inc.; Ridge Diagnostics, Inc.; Roche; Sanofi-Aventis US LLC; Sepracor Inc.; Server Laboratories; Schering-Plough Corporation; Solyv Pharmaceuticals, Inc.; Somaxon Pharmaceuticals, Inc.; Somerset Pharmaceuticals, Inc.; Sunovion Pharmaceuticals; Supernus Pharmaceuticals, Inc.; Synthelabo; Taisho Pharmaceutical; Takeda Pharmaceutical Company Limited; Tal Medical, Inc.; Tetragenex Pharmaceuticals, Inc.; TransForm Pharmaceuticals, Inc.; Transcept Pharmaceuticals, Inc.; Vanda Pharmaceuticals, Inc.; and VistaGen. MF has received speaking or publishing fees from Adamed, Co; Advanced Meeting Partners; American Psychiatric Association; American Society of Clinical Psychopharmacology; AstraZeneca; Belvoir Media Group; Boehringer Ingelheim GmbH; Bristol-Myers Squibb; Cephalon, Inc.; CME Institute/Physicians Postgraduate Press, Inc.; Eli Lilly and Company; Forest Pharmaceuticals, Inc.; GlaxoSmithKline; Imedex, LLC; MGH Psychiatry Academy/PriMedia; MGH Psychiatry Academy/Reed Elsevier; Novartis AG; Organon Pharmaceuticals; Pfizer Inc.; PharmStar; United BioSource, Corp.; Wyeth-Ayerst Laboratories. MF has equity holdings in Compells and PsyBrain, Inc.; he has a patent for Sequential Parallel Comparison Design (SPCD), which are licensed by MGH to Pharmaceutical Product Development, LLC (PPD); and patent application for a combination of ketamine plus scopolamine in MDD, licensed by MGH to Biohaven; and he receives copyright royalties for the MGH Cognitive & Physical Functioning Questionnaire, Sexual Functioning Inventory, Antidepressant Treatment Response Questionnaire, Discontinuation-Emergent Signs & Symptoms, Symptoms of Depression Questionnaire, and SAFER; Lippincott, Williams & Wilkins; Wolters Kluwer; World Scientific Publishing Co. Pte. Ltd. JK received funding from NIMH and the Templeton Foundation. MGM received funding from NIMH and consulting fees from Janssen and Otsuka Pharmaceuticals. MA received funding from NIMH, and royalties for the commercial use of the Columbia–Suicide Severity Rating Scale. Her family owns stock in Bristol-Myers Squibb. DAP received funding from NIMH, the Brain and Behavior Research Foundation, and the Dana Foundation and received consulting fees from Akili Interactive Labs, BlackThorn Therapeutics, Boehringer Ingelheim, Posit Science, and Takeda Pharmaceuticals. MHT reported the following lifetime disclosures: research support from the Agency for Healthcare Research and Quality, Cyberonics Inc., National Alliance for Research in Schizophrenia and Depression, NIMH, National Institute on Drug Abuse, National Institute of Diabetes and Digestive and Kidney Diseases, and Johnson & Johnson as well as consulting and speaker fees from Abbott Laboratories Inc., Akzo Nobel (Organon Pharmaceuticals Inc.), Allergan Sales LLC, Akermes, AstraZeneca, Axon Advisors, Bristol-Myers Squibb, Cephalon Inc., Cercov, Eli Lilly, Evotec, Fabre-Kramer Pharmaceuticals Inc., Forest Pharmaceuticals, GlaxoSmithKline, Health Research Associates, Johnson & Johnson, Lundbeck, MedAvante Mediscape, Medtronic, Merck, Mitsubishi Tanabe Pharma Development America Inc., MSI Methylations Sciences Inc., Nestle Health Science–Pamlab Inc., Naurex, Neuronetics, One Carbon Therapeutics Ltd., Otsuka Pharmaceuticals, Pamlab, Pame-Davis Pharmaceuticals Inc., Pfizer Inc., PGxHealth, Phoenix Marketing Solutions, Rexahn Pharmaceuticals, Ridge Diagnostics, Roche Products Ltd., Sepracor, SHIRE Development, Sierra, SK Life and Science, Sunovion, Takeda, Tal Medical/Puretech Venture, Targacept, Transcept, VantagePoint, Vivus, and Wyeth–Ayerst Laboratories. JMT currently owns stock in Gilead Sciences and Merck and within the past 36 months owned stock in Johnson & Johnson. MW received funding from NIMH, the National Alliance for Research on Schizophrenia and Depression, the Sackler Foundation, and the Templeton Foundation and received royalties from the Oxford University Press, Perseus Press, American Psychiatric
rACC Connectivity Predicts Depression Recovery

Association Press, and MultiHealth Systems. All other authors report no biographical interests or potential conflicts of interest. Clinicaltrials.gov: Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care for Depression; https://clinicaltrials.gov/ct2/show/NCT01407094; NCT01407094.

ARTICLE INFORMATION

From the Department of Psychiatry (AEW, CAV, DGD, MF, DAP), Harvard Medical School, and Department of Psychiatry (MF), Massachusetts General Hospital, Boston, Center for Depression, Anxiety and Stress Research (AEW, CAV, DGD, AR, FG, DAP), McLean Hospital, Belmont, Massachusetts; New York State Psychiatric Institute and Department of Psychiatry (JK, PM, MW, PA, GB), College of Physicians and Surgeons of Columbia University, New York, and Department of Psychiatry (RP), Stony Brook University, Stony Brook, New York; Department of Psychiatry (JMT, CC, TC, MHT), University of Texas Southwestern Medical Center, Dallas, Texas; Department of Psychiatry (PD, MGM), University of Michigan, Ann Arbor, Michigan; and Department of Psychiatry (MAO), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.

Address correspondence to Diego A. Pizzagalli, Ph.D., Center for Depression, Anxiety and Stress Research, Room 233C, McLean Hospital, 115 Mill Street, Belmont, MA 02478; E-mail: dap@mclean.harvard.edu.

Received Aug 7, 2018; revised Dec 6, 2018; accepted Dec 7, 2018.

Supplementary material cited in this article is available online at https://doi.org/10.1016/biopsych.2018.12.007.

REFERENCES

