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Abstract

Background. Cognitive deficits in depressed adults may reflect impaired decision-making.
To investigate this possibility, we analyzed data from unmedicated adults with Major Depressive
Disorder (MDD) and healthy controls as they performed a probabilistic reward task. The
Hierarchical Drift Diffusion Model (HDDM) was used to quantify decision-making mechanisms
recruited by the task, to determine if any such mechanism was disrupted by depression.
Methods. Data came from two samples (Study 1: 258 MDD, 36 controls; Study 2: 23 MDD, 25
controls). On each trial, participants indicated which of two similar stimuli was presented;
correct identifications were rewarded. Quantile-probability plots and the HDDM quantified
the impact of MDD on response times (RT), speed of evidence accumulation (drift rate),
and the width of decision thresholds, among other parameters.
Results. RTs were more positively skewed in depressed v. healthy adults, and the HDDM
revealed that drift rates were reduced—and decision thresholds were wider—in the MDD
groups. This pattern suggests that depressed adults accumulated the evidence needed to
make decisions more slowly than controls did.
Conclusions. Depressed adults responded slower than controls in both studies, and poorer
performance led the MDD group to receive fewer rewards than controls in Study 1. These
results did not reflect a sensorimotor deficit but were instead due to sluggish evidence accu-
mulation. Thus, slowed decision-making—not slowed perception or response execution—
caused the performance deficit in MDD. If these results generalize to other tasks, they may
help explain the broad cognitive deficits seen in depression.

Introduction

Depression is characterized by impaired executive function (Snyder, 2013), difficulty sustain-
ing attention (Biringer et al., 2007), and memory problems—including trouble recalling details
from encoding (MacQueen et al., 2003) and loss of the positive memory bias typically seen in
healthy adults (Burt et al., 1995; Dillon et al., 2013). Indeed, multiple meta-analyses document
broad cognitive deficits in depressed adults (Burt et al., 1995; Zakzanis et al., 1998; Snyder,
2013), with problems related to executive function and attention persisting in remission
(Douglas and Porter, 2009; Rock et al., 2014). Each cognitive problem may involve separate
pathophysiologies, but some processes may be common to most of the tests on which
depressed adults show impairment. If so, then a negative effect of depression on those pro-
cesses would help explain the broad range of cognitive deficits observed. This work aimed
to study the impact of depression on one such process—namely, decision-making.

Decision-making is an appealing candidate because most tests of attention, executive func-
tion, and memory involve choosing among alternatives (Shadlen and Kiani, 2013). Thus, a
negative effect of depression on decision-making would lead to the broad impairments that
have been seen. Another reason to focus on decision-making is that computational models
can parse it into component processes, providing an opportunity to pinpoint the specific
mechanisms affected by depression. In particular, the drift-diffusion model (DDM) has
been used for over 40 years to decompose decision-making during recognition memory
tests (Ratcliff, 1978), lexical decision tasks (Ratcliff et al., 2004), purchasing games (Krajbich
et al., 2012), and many other paradigms (for review, see Ratcliff and McKoon, 2008). The
DDM and similar models have also been used to study brain systems that support decision-
making in humans (Frank et al., 2015) and non-human primates (Gold and Shadlen,
2007). Finally, prior work has emphasized that by applying the DDM in clinical contexts, it
may be possible to uncover deficits in patients that cannot be detected with traditional analysis
of response times (RT) and accuracy (White et al., 2010). For these reasons, we elected to use a
Bayesian variant of the DDM called the Hierarchical Drift Diffusion Model (HDDM; Wiecki
et al., 2013) to study decision-making in depression.
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The HDDM is shown in Fig. 1a. Briefly, it conceptualizes
decision-making as a process of evidence accumulation. When a
participant views two options and must choose between them,
the HDDM assumes that the participant sets up boundaries spe-
cifying the amount of evidence needed to select one alternative
over the other. Next, the participant draws a sample of the evi-
dence for each option, computes the difference between the sam-
ples, and then increments a decision variable towards whichever
boundary is favored by the difference score. This process is per-
formed repeatedly until the evidence crosses one of the boundar-
ies, at which point the corresponding response is rendered.

For example, several non-human primate studies have used a
task in which monkeys must decide if a swirling dot pattern is
moving mainly to the left or right (Gold and Shadlen, 2007).
Monkeys solve this task by repeatedly drawing samples of evidence
from motion-sensitive neurons that encode movement to the left v.
right, respectively, until the evidence crosses a threshold (bound-
ary) in favor of one direction; at this point, the monkeys respond.
The speed of evidence accumulation is called the drift rate. Drift
rate sets a limit on the speed and accuracy of decision-making,
and it can be estimated by applying the HDDM to RT and accuracy
data. Importantly, the HDDM also includes a non-decision time
parameter that captures the time needed to perceive stimuli and
execute a response once a decision has been made. Thus, the
model can distinguish between factors that affect the speed of evi-
dence accumulation, quantified by drift rate, v. those that affect
sensorimotor aspects of behavior, quantified by non-decision time.

As a first step towards testing the hypothesis that depression
affects decision-making, we applied the HDDM to behavioral
data collected from 281 unmedicated adults with Major
Depressive Disorder (MDD) and 61 healthy controls as they per-
formed a probabilistic reward task (PRT; Pizzagalli et al., 2005). As
described below, on each trial the participants viewed a schematic
face onto which a mouth was briefly flashed. The task was to indi-
cate whether the mouth was long or short. Correct responses eli-
cited monetary rewards, and correct identifications of one
mouth length (the ‘rich’ stimulus) were rewarded three times
more often than correct identifications of the other length (the
‘lean’ stimulus). This asymmetric reinforcement rate was used to
induce a response bias. Many studies have found that depressed
adults develop a weaker response bias than controls (Pizzagalli
et al., 2005, 2008; Vrieze et al., 2013; Liu et al., 2016), and we
report on this below. However, our main goal was to conduct a
fine-grained analysis of the impact of MDD on decision-making.

We expected that MDD would be associated with slow evidence
accumulation. To test this account, we first compared RT distribu-
tions across the groups. Prior research (Ratcliff and McKoon,
2008) indicates that differences in drift rate have a small effect
on fast RTs but a large effect on slow RTs, such that the RT dis-
tribution should be more positively skewed in the group with the
slower drift rate (because the impact of the drift rate difference is
magnified as RT increases). Therefore, we predicted that the RT
distribution would be more positively skewed in the MDD
group. Next, we fit the HDDM to the data. Our second prediction
was that the model would reveal slower drift rates in the MDD
group. We also examined the non-decision time parameter to
determine whether MDD affected sensorimotor processes.

We also report on decision threshold (Fig. 1a). Wider thresholds
correspond to greater distance between the boundaries, which
means more evidence must accumulate for the participant to
respond. Manipulations that increase response caution—such as
prioritizing accuracy over speed (Ratcliff and Rouder, 1998)—result
in slower RTs and wider thresholds. We did not have an a priori
hypothesis about this parameter, but because depressed adults
often respond more slowly than controls in this task (Pizzagalli
et al., 2008), wider thresholds in MDD might be expected.

The drift process can also begin from a position shifted towards
either boundary to an extent captured by the starting point bias.
White and Poldrack (2014) found that a response bias in behavior
typically maps onto a starting point bias in the DDM: the drift pro-
cess begins closer to one boundary such that even a little evidence in
favor of that option will elicit a response. Given the asymmetric
reinforcement rate, we expected the starting point to be biased
towards the more frequently rewarded ‘rich’ boundary. If so, then
fast responses should predominantly be rich responses because if
the starting point is close to the rich boundary, then the accumulator
will need to travel just a short distance to reach it. To our knowledge,
no PRT study has examined whether the response bias is stronger
for fast v. slow RTs, as these considerations predict. Finally,
we examined the split-half reliability of our measures to assess
internal consistency (Levinson et al., 2017; Luking et al., 2017).

Method

Participants

Study 1
Data were collected from 296 adults with MDD and 40 healthy
participants in the multi-site ‘Establishing Moderators and

Fig. 1. (a) The Hierarchical Drift Diffusion Model (HDDM). The HDDM represents deci-
sions as a process of evidence accumulation towards response boundaries separated
by a decision threshold. The speed of evidence accumulation is referred to as the drift
rate. The drift process moves left to right over time, from a starting point that can be
midway between the boundaries or shifted towards one to an extent captured by the
starting bias. The time needed for perception and response execution is captured by
the non-decision time. In applying the model to PRT data, we mapped the upper and
lower boundaries to ‘rich’ and ‘lean’, responses, respectively. The HDDM is a Bayesian
extension of the original DDM (Ratcliff and McKoon, 2008) that provides enhanced
parameter estimation for studies with between-group designs. (b) The probabilistic
reward task (PRT). On each trial, participants must indicate whether a short
(11.5 mm) or long (13.0 mm) mouth was shown. Correct identifications of one length
(the ‘rich’ stimulus) are rewarded three times more frequently than correct identifica-
tions of the other length (the ‘lean’ stimulus).
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Biosignatures of Antidepressant Response in Clinical Care’
(EMBARC) study. EMBARC was a randomized, placebo-
controlled trial of sertraline. The goal was to identify predictors
of treatment response, thus a variety of measures—including the
PRT—was administered before randomization to drug or placebo.
Only pre-treatment data were included in this analysis. Depressed
participants were outpatients between 18 and 65 who met
DSM-IV criteria for MDD, as assessed by the Structured
Clinical Interview for DSM-IV Disorders (SCID; First et al.,
2002). The SCID was administered by graduate-level clinicians.
To limit heterogeneity, depressed participants had to report
early onset (before age 30), chronicity (current episode >2 years
duration), or recurrence (two or more episodes). Data were col-
lected at Columbia University Medical Center, Massachusetts
General Hospital (MGH)/McLean Hospital, University of Texas
Southwestern Medical Center, and the University of Michigan.
Participants consented to a protocol approved by local
Institutional Review Boards. See Trivedi et al. (2016) for details.

Study 2
To determine if the results from Study 1 could be replicated, we
reanalyzed data from 23 unmedicated adults with MDD and 25
healthy controls, previously published in Pizzagalli et al. (2008).
The depressed participants were recruited from treatment studies
at MGH, whereas controls came from the community. Depressed
participants met DSM-IV criteria for current MDD based on the
SCID, which was administered by trained psychiatrists. All parti-
cipants consented to a protocol approved by the Harvard
University and Partners Healthcare IRBs. See the original publica-
tion for details.

Self-report

Participants provided demographic information and completed
the Mood and Anxiety Symptoms Questionnaire (MASQ:
Watson et al., 1995); Studies 1 and 2 used 30 and 62 item ver-
sions, respectively. Both include scales for anhedonic depression
(MASQ-AD) and anxious arousal (MASQ-AA). The shorter ver-
sion includes a ‘general distress’ (MASQ-GD) scale, whereas the
longer one has scales for general distress due to depression
(MASQ-GDD) and anxiety (MASQ-GDA). All participants
except the Study 2 controls were administered the 17-item
Hamilton Rating Scale for Depression (HRSD; Hamilton, 1960),
which was scored by the diagnostic interviewer. Both studies
included additional questionnaires not considered here.

Task

E-Prime version 1.1 (Psychology Software Tools, Sharpsburg PA)
was used to present the PRT, which is shown in Fig. 1b. On each
PRT trial, participants view a schematic face for 500 ms. A mouth
is then shown for 100 ms, and the task is to indicate by button
press whether the mouth was long (13.0 mm) or short
(11.5 mm). Correct identifications of one length (the ‘rich’ stimu-
lus) are rewarded three times more often than correct identifica-
tions of the other length (the ‘lean’ stimulus). In Study 1,
participants completed two 100-trial blocks in which they pressed
‘c’ or ‘m’ on a keyboard to report seeing the short or long mouth,
which served as the rich and lean stimuli, respectively. The PRT
was programmed to deliver 40 20-cent rewards per block—30
rich rewards v. 10 lean rewards—although there was some vari-
ability due to differences in behavior. No feedback was presented
on non-reward trials. Study 2 was very similar, except that

participants completed three 100-trial blocks, rewards were
worth 5 cents, and the rich and lean keys were counterbalanced
across subjects. See Pizzagalli et al. (2005) for additional task
details.

Analyses

Quality Control (QC).
Trials were excluded for extreme RTs (<150 ms, >2500 ms), or if
the remaining (log transformed) RT exceeded the participant’s
mean ± 3S.D. Participants’ datasets were excluded if, in any
block, there were more than 20 RT outliers, fewer than 24 rich
or 7 lean rewards, a rich-to-lean reward ratio lower than 2.5, or
lower than 40% correct accuracy. In Study 1, 258 depressed adults
and 36 controls passed the QC criteria. Study 2 data are from par-
ticipants who passed these QC checks.

Quantile-probability plots
We used quantile-probability plots to determine whether the RT
distribution was more positively skewed in the MDD group. To
generate these plots, we binned responses by RT quantile. The
quantiles used, from fastest to slowest, were 0.1, 0.3, 0.5, 0.7,
0.9, and 0.995. Each quantile served as the RT ceiling for its
bin, with the previous quantile as the floor. We used the 0.005
quantile as the floor for the 0.1 quantile, so that the sizes of the
fastest RT bin (0.100–0.005 = 0.095) and slowest RT bin (0.995–
0.900 = 0.095) would be identical. For each bin, we plotted the
percent correct and incorrect on the right and left sides of the
x-axis, respectively, with the mean correct/incorrect RT plotted
on the y-axis.

HDDM
Computational modeling was performed in Jupyter Notebooks
(Kluyver et al., 2016) and fit to trial-level RT and response data
following published recommendations (Wiecki et al., 2013).
Briefly, the HDDM is initialized with priors that reflect estab-
lished findings in the literature, and then the Markov Chain
Monte Carlo method fits the model to the data by estimating
the joint posterior distribution for all parameters. All HDDM
parameters were allowed to vary by group. We drew 10 000 sam-
ples from the posterior distribution, discarding the first 1000
‘burn-in’ samples (Kruschke, 2014). Trace and autocorrelation
plots were inspected to assess convergence. To evaluate model
quality, the estimated parameters were used to generate simulated
data (posterior predictive checks). Summary statistics from the
actual data fell well within 95% intervals of the simulated data,
indicating a good fit. We examined the between-group overlap
of the posterior distributions for all parameters, defining signifi-
cance as less than 5% overlap. Because these are comparisons of
Bayesian posterior distributions, we report the HDDM outcomes
as q-values rather than p-values.

Signal-detection analyses
We computed the signal detection metrics response bias and dis-
criminability using published formulas (Pizzagalli et al., 2005),
analyzing them in Group x Block ANOVAs implemented in the
R (R Core Team, 2018) package afex (Singmann et al., 2016).
The Greenhouse-Geisser correction was applied to all ANOVAs.
To determine how signal detection measures related to HDDM
parameters, we computed linear mixed models with response
bias or discriminability as the dependent variable, HDDM para-
meters and Group as predictors, and Subject as a random effect
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(Bates et al., 2014). Site was included as a covariate in all Study 1
analyses.

Individual differences
We computed Pearson correlations between MASQ scores and
HDDM parameters in depressed adults, to determine if variability
in symptoms was related to decision-making. We also used
regressions to determine if there was a group difference in cumu-
lative rewards earned, and to see if such a group difference could
be explained by the HDDM parameters. Because the samples were
larger in Study 1 and the methods varied somewhat across the
studies, we restricted these analyses to Study 1.

Psychometrics
To assess split-half reliability, we computed response bias and dis-
criminability separately for odd and even trials for each partici-
pant and ran the HDDM on the odd and even trials to generate
two sets of model parameters per person. We then computed
Pearson correlations between the odd and even results and
applied the Spearman-Brown prophesy formula (2r/(1 + r)) to
quantify internal consistency (Luking et al., 2017).

Results

Demographics and self-report

Groups did not differ on age, education or gender (Table 1). As
expected, depressed adults reported more anhedonia, higher anx-
iety, and greater general distress on the MASQ than did controls.
Based on HRSD cut-offs (Zimmerman et al., 2013), adults with
MDD were moderately depressed.

Study 1

Quantile-probability plots
Figure 2 shows the Study 1 quantile-probability plot. This depicts
the mean percentage of correct (plotted to the right) and incor-
rect (plotted to left) responses to the rich (circles) and lean
(crosses) stimuli as a function of RT quartile (plotted on the
y-axis) for the two groups. This figure supports two main conclu-
sions. First, as expected the RT distribution was more skewed in
depressed adults. Specifically, although the mean ± S.D. RT in
the 0.1 quantile bin, averaged over stimulus type and response
accuracy, was 5 ms slower in depressed (242.73 ± 17.22 ms) v.
healthy (237.37 ± 10.87 ms) participants, t(239) = 2.23, p = 0.031,
Cohen’s d = 0.38, by the 0.995 quantile bin this group difference
had grown to 158 ms (MDD: 841.00 ± 76.33 ms; controls:
683.07 ± 48.54 ms; t(240) = 15.34, p < 0.001, d = 2.53), a 32-fold
increase (note that degrees of freedom vary in the quantile-
probability analyses as not all participants contributed responses
to the more extreme bins). Second, Fig. 2 reveals that response
bias was constrained to the fastest 30% of responses. Notice that
the circles are farther to the right than the crosses for the 0.100
and 0.300 quantiles, indicating higher accuracy for responses to
the rich v. lean stimulus. This reflects response bias: when reply-
ing quickly, participants pressed ‘rich’ more than ‘lean’ and so
achieved a higher proportion correct for the rich v. lean stimulus.
This effect is absent for the remaining quantiles. Thus, the PRT
induced a response bias but this was constrained to fast RTs.

To confirm these impressions, Group x Stimulus ANOVAs
were run on response accuracy for fast (RT ⩽ 0.3 quantile) and
slow (RT > 0.3 quantile) responses. As expected from Fig. 2, for
fast RTs the Stimulus effect was strong, F(1, 267) = 89.44, p <

Table 1. Demographics and self-report data

Variable Healthy mean (S.D.) Depressed mean (S.D.) P Effect size

Study 1

Gender 21 f, 15 m 172 f, 86 m 0.324 0.06

Age 37.25 (14.71) 36.81 (13.29) 0.853 0.03

Education (years) 15.21 (2.29) 15.07 (2.61) 0.755 0.06

HRSD 0.69 (0.90) 18.60 (4.44) <0.001 6.71

MASQ-AD 24.89 (6.92) 43.73 (5.45) <0.001 3.05

MASQ-AA 10.80 (1.08) 17.60 (5.67) <0.001 2.02

MASQ-GD 12.09 (2.63) 32.36 (8.04) <0.001 3.80

Study 2

Gender 11 f, 14 m 10 f, 13 m 0.971 0.01

Age 38.36 (10.76) 43.65 (9.55) 0.079 0.52

% College education 64.00 65.22 0.999 0.01

HRSD -- 19.40 (3.30) -- --

MASQ-AD 51.52 (12.60) 91.00 (7.60) <0.001 3.91

MASQ-AA 18.76 (5.19) 25.30 (11.32) 0.016 0.79

MASQ-GDD 15.64 (5.22) 40.70 (10.71) <0.001 3.15

MASQ-GDA 14.16 (4.34) 23.26 (8.14) <0.001 1.46

Note. p-values reflect between-group t tests except for gender and % of participants with college education in Study 2, which were evaluated by chi-square. All tests were two-sided. Effect
size: Cramer’s V for Gender, otherwise Cohen’s d. HRSD data were not obtained from Study 2 controls. As detailed in the text, different MASQ versions were used in each study (Study 1: 30
items; Study 2: 62 items)
f, female; m, male; HRSD, Hamilton Rating Scale for Depression (17 items); MASQ, Mood and Anxiety Symptom Questionnaire (AD, anhedonic depression; AA, anxious arousal; GD, general
distress; GDD, general distress, depression; GDA, general distress, anxiety).
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0.001, ηp
2 = 0.25, corresponding to higher mean ± S.E. accuracy for

rich (84.15 ± 1.53%) v. lean (59.95 ± 1.53%) stimuli. An effect of
Group was also found, F(1, 267) = 13.62, p < 0.001, ηp

2 = 0.05,
reflecting lower accuracy in depressed (67.11 ± 1.56%) v. healthy
(76.98 ± 1.56%) participants. By contrast, for slow RTs no signifi-
cant results emerged, Fs < 2.28, ps > 0.12.

HDDM
Figure 3 shows the HDDM results. The posterior distributions
revealed slower drift rates (q < 0.001) and wider decision thresh-
olds (q = 0.004) in depressed adults, but no group differences in
starting bias or non-decision time, qs > 0.17.

Signal-detection analyses
The response bias and discriminability data are in Figure S1.
Group x Block x Site ANOVAs yielded no significant results,
although there was a trend ( p = 0.06) for worse discriminability
in depressed adults (MDD: 0.59 ± 0.24; controls: 0.67 ± 0.24).
The lack of a group difference in response bias was unexpected;
exploratory t tests against zero revealed reliable biases in both
groups (MDD: 0.09 ± 0.16; controls: 0.11 ± 0.13; ts > 5, ps < 0.001).

Prediction of signal-detection metrics by HDDM parameters
Linear mixed models were used to predict response bias and dis-
criminability with Group, Site, and HDDM parameters. Starting
point bias was the strongest predictor of response bias (Z =
12.71, p < 0.001), and drift rate was a remarkably strong predictor
of discriminability (Z = 45.56, p < 0.001); these relationships are
shown in Figure S2. Response bias was also predicted by drift
rate (Z = −5.17, p < 0.001), and discriminability was also predicted
by decision threshold (Z = 14.81, p < 0.001) and non-decision
time (Z = 2.99, p = 0.003). Group did not predict either variable
( ps > 0.23).

Individual differences
In the MDD group, weak relationships emerged between
MASQ-AA scores and drift rate, r = −0.15, p = 0.02, and between
MASQ-GD scores and decision threshold, r =−0.17, p = 0.01.
Neither of these relationships remains significant, however,
when a Bonferroni-corrected alpha of 0.004 (0.5/12 comparisons)
is applied.

Finally, Group predicted cumulative reward, β = −0.13, p =
0.029. Depressed adults received fewer rewards than controls
did, although the difference was small (controls: 79.08 ± 1.27;
MDD: 78.25 ± 2.22) as the PRT is programmed to equate reward
delivery across participants. Adding the HDDM parameters
improved the model, ΔR2 = 0.34, F(4, 288) = 38.41, p < 0.001,
and with these parameters included the effect of Group was
no longer significant (β = −0.05, p = 0.30). Instead, drift rate
(β = 0.39), non-decision time (β = 0.29), and starting point bias
(β = 0.18)—but not decision threshold (β = 0.09)—emerged as
predictors of cumulative reward, ps < 0.001. The fact that drift
rate strongly predicted cumulative reward is sensible because
individuals with high drift rates have high discriminability
(Figure S2B), which allows them to respond accurately and
thus efficiently harvest rewards on rich and lean trials.

Study 2

The next goal was to determine if the quantile-probability plot
and HDDM findings from Study 1 would replicate in a dataset
characterized by a group difference in response bias. To this
end, we reanalyzed data published by Pizzagalli et al. (2008),
referred to as Study 2.

Quantile-probability plots
Figure 4 shows the quantile-probability plot. As in Study 1, RTs
were drastically more skewed in the MDD group. Specifically,
while the fastest RTs (0.1 quantile) were 34 ms slower in
depressed (298.64 ± 21.09 ms) v. healthy (264.31 ± 17.62 ms)
adults, t(34) = 5.22, p < 0.001, d = 1.77, by the 0.995 quantile bin
this group difference had grown to 339 ms (|MDD: 1365.85 ±
91.57 ms; controls: 1026.81 ± 96.92 ms), t(36) = 11.08, p < 0.001,
d = 3.60, a nearly 10-fold increase.

The restriction of response bias to fast RTs was partially repli-
cated. As depicted in Fig. 4, the MDD group showed an accuracy
advantage for the rich stimulus in the 0.1 quantile that was
reduced in the 0.3 quantile and absent thereafter. This mirrors
Study 1. By contrast, in controls the rich > lean accuracy effect
was visible at every quantile—notice the consistent horizontal
separation between circles and crosses. Accordingly, a Group x
Stimulus ANOVA on accuracy for fast RTs (⩽0.3 quantile)

Fig. 2. Quantile-probability plots: Study 1. Percent cor-
rect (right) and incorrect (left) for rich (circles) and
lean (crosses) stimuli as a function of RT quantiles, for
adults with MDD (left column) and healthy controls
(right column). The six quantiles are marked on the con-
trols’ data; they are shifted upwards on the y-axis for the
MDD group, with the magnitude of the shift increasing
with longer response latency. The effect of stimulus
type on accuracy (rich > lean) is restricted to the 0.1
and 0.3 quantiles, indicating that response bias is car-
ried by fast RTs.
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revealed a main effect of Stimulus, F(1, 41) = 22.40, p < 0.001, ηp
2

= 0.35, due to higher mean ± S.E. percent correct in response to the
rich (89.98 ± 3.47%) v. lean (65.99 ± 3.47%) stimulus across both
groups. By contrast, an analogous ANOVA on slower RTs (>0.3
quantile) revealed a Group x Stimulus interaction, F(1, 46) =
5.42, p = 0.02, ηp

2 = 0.11, due to a rich > lean effect that was signifi-
cant by post-hoc Tukey test only in controls (rich: 86.21 ± 1.83%;
lean: 75.05 ± 1.83%; t = 4.60, p < 0.001).

HDDM
Figure 5 shows that the HDDM again revealed slower drift rates
(q = 0.037) and higher decision thresholds (q < 0.001) in
depressed adults. There was no group difference in starting bias
or non-decision time, qs > 0.23. These results replicate Study 1.

As in Study 1, the strongest predictors of response bias and
discriminability were starting point bias (Z = 3.29, p = 0.002)
and drift rate (Z = 13.26, p < 0.001), respectively (Figure S3). In
contrast to Study 1, response bias was also predicted by Group
(Z =−2.12, p = 0.040). As in Study 1, discriminability was also
predicted by decision threshold (Z = 3.58) and non-decision
time (Z = 3.45), ps < 0.001.

Psychometrics

Split-half reliabilities for Studies 1 and 2 are in Figures S4 and S5.
Reliability was good for response bias (SBs > 0.677) and discrim-
inability (SBs > 0.844). For the HDDM, reliability was good for
starting bias (SBs > 0.777) and outstanding for all other para-
meters (SBs > 0.910).

Discussion

This study found support for the hypothesis that decision-making
deficits are present in MDD. First, RT distributions were more
positively skewed in depressed v. healthy adults. Indeed, although
there were differences in the fastest RTs, judging by Cohen’s d the
group differences for the slowest RTs were 6.66 (2.53/0.38) and
2.03 (3.60/1.77) times larger in Studies 1 and 2. As detailed in
the Introduction, this suggests slow evidence accumulation in
MDD. Second, the HDDM returned a result consistent with
this interpretation: drift rate was lower in depressed adults.
Decision thresholds were also wider in the MDD groups, poten-
tially indicating a cautious response style. However, the effect
on drift rate was practically more important as drift rate predicted
cumulative reward totals, which were reduced in MDD in Study 1,
while decision threshold did not. Neither study returned a group
difference in non-decision time, thus the results do not appear to
reflect group differences in sensorimotor processes. There were
also no group differences in starting point bias, although starting
points were consistently shifted away from the midpoint and
towards the rich boundary, consistent with the asymmetric
reinforcement rate used in the PRT. In summary, this study estab-
lished a decision-making deficit in MDD across two independent
samples, and localized that deficit to the evidence accumulation
process, indexed by drift rate.

A goal for future work is to establish the generality of these
results. They may reflect a domain-general effect of MDD that
would be detectable across various tasks and thus could help
explain the broad cognitive deficits seen in MDD. Additional

Fig. 3. HDDM results: Study 1. Plots of posterior probabilities for HDDM parameters. Relative to results in the controls (dashed lines), drift rate was reduced and
threshold width was increased in the MDD group (solid lines). There were no group differences in starting point bias or non-decision time. *q < 0.005.
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research using different tasks is needed to investigate this possibil-
ity, but limited extant work is encouraging. For instance, a recog-
nition memory study identified a drift rate advantage for positive
v. negative material that was reduced in dysphoric students
(White et al., 2009). If similar results can be obtained in MDD,
that would increase confidence that depression reliably reduces
the speed of evidence accumulation, perhaps especially when
stimuli are positively valenced.

However, the results may depend on details of the PRT. In par-
ticular, the evidence accumulated during decision-making is
influenced by stimulus properties, and drift rates are typically
lower for short v. long duration presentations (Thapar et al.,
2003). It is thus possible that the reduced drift rates in the current
MDD groups reflect difficulty extracting high-quality evidence
from rapidly presented stimuli. If so, then the results would not
generalize to tasks with longer duration stimuli. Additional
work is needed to distinguish between these possibilities.

This research also provides new insights into the PRT, which is
widely used to study reward processing across different clinical
groups (Barch et al., 2017) and non-human animals
(Der-Avakian et al., 2013). First, we found that response bias
was stronger for fast v. slow RTs; in Study 1, the response bias
was confined to the 0.1 and 0.3 quantiles, which means that
approximately 70% of responses were not biased. Similarly, in
both studies starting point bias (in the HDDM) was the strongest
predictor of response bias (in the PRT). This helps explain why
biased responses are fast: the drift process starts close to the
rich boundary such that minimal evidence needs to accumulate
before a rich response is made. These findings are consistent
with results from White and Poldrack (2014), but they are the
first to demonstrate a dependency between response bias and
RT in the PRT. Second, the internal consistency of response
bias, discriminability, and the HDDM parameters was good to
excellent. We conclude that PRT data are reliable, especially if
the HDDM is used to extract estimates of underlying processes.

These results also raise several questions. First, given that a
reduced response bias is often found in adults who are depressed
or at risk for depression, why did a group difference in response
bias emerge in Study 2 but not Study 1? The quantile-probability
plots provide some insight. White and Poldrack (2014) distin-
guished between biases confined to response execution (response

biases) v. stimulus processing (stimulus biases), showing that
response biases affect fast but not slow RTs, while stimulus biases
affect fast and slow RTs. On this analysis, both Study 1 groups
and the Study 2 MDD group showed response biases: they
responded ‘rich’ more than ‘lean’ only when replying quickly.
By contrast, the Study 2 controls developed a stimulus bias, show-
ing a rich > lean accuracy advantage at every quantile. The pres-
ence of biased responses for slow RTs in controls but not
depressed adults explains why a group difference emerged in
Study 2, and the lack of this effect explains why no group differ-
ence emerged in Study 1. Of course, this does not explain why
only the Study 2 controls developed a stimulus bias, but it sug-
gests that researchers using the PRT should distinguish between
response and stimulus bias in order to determine why one v.
the other is more likely to emerge.

Another question that remains unanswered is, what causes low
drift rates in MDD? Two candidate hypotheses include reduced
integrity of white matter pathways that enable evidence accumu-
lation from distant brain regions (Madden et al., 2008), or reduc-
tion in cortical dopamine levels that can support fast drift rates
(Beste et al., 2018). These hypotheses are informed by prior stud-
ies linking MDD to white matter abnormalities (Jiang et al., 2017)
and dopamine dysfunction (Treadway and Zald, 2011), but they
await empirical test. An important future direction is thus to
pair DDM-based analysis of behavior with electrophysiological
and neuroimaging data collected from patient groups, to study
the pathophysiology underlying deficits like the one reported
here.

Finally, it is worth underscoring the fact that the HDDM
detected effects of MDD on cognition that were not obvious in
the traditional PRT analyses. For example, in Study 1 the MDD
group showed poorer discriminability than the controls, but
only at trend levels. Discriminability depends on a participant’s
ability to rapidly accumulate evidence in favor of each response
option, captured by drift rate, but also on the criterion the partici-
pant uses to judge when there is sufficient evidence to make an
accurate response, captured by decision threshold. The HDDM
revealed that drift rates were markedly lower in depressed v.
healthy adults, but decision thresholds were also wider. These
two results appear to have roughly counterbalanced each other,
leading to the weak group difference in discriminability.

Fig. 4. Quantile-probability plots: Study 2 (Pizzagalli
et al., 2008). Percent correct (right) and incorrect (left)
for rich (circles) and lean (crosses) stimuli are shown
as a function of RT quantiles, for adults with MDD (left
column) and healthy controls (right column). The six
quantiles are marked on the controls’ data; they are
shifted upwards on the y-axis for the MDD group, with
the magnitude of the shift increasing with longer
response latency. The effect of stimulus type on accur-
acy (rich > lean) is apparent in the 0.1 and 0.3 quantiles
in the MDD group, but it is evident at every quantile for
the controls.
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Nevertheless, they were clearly dissociable—for example, drift rate
predicted cumulative reward totals while decision thresholds did
not. This is an example of the explanatory power of computa-
tional modeling: it can identify the distinct contributions that dif-
ferent cognitive processes make to behavior.

In conclusion, in two PRT studies, we found evidence of
decision-making deficits in unmedicated adults with MDD.
These deficits were localized to the evidence accumulation process
and were reflected in lower drift rate. It would be valuable to con-
duct additional studies to determine if these results are specific to
tasks that use briefly presented stimuli, such as the PRT, or if they
generalize to those that use longer stimulus durations. Moreover,
pairing this approach with collection of electrophysiological or
neuroimaging data could advance our understanding of patho-
physiology. Finally, if we can identify a domain-general decision-
making deficit in MDD, then we should gain valuable insight into
the broad cognitive deficits that accompany depression.
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