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Abstract
Prior research has identified two resting EEG biomarkers with potential for predict-
ing functional outcomes in depression: theta current density in frontal brain regions 
(especially rostral anterior cingulate cortex) and alpha power over posterior scalp 
regions. As little is known about the discriminant and convergent validity of these 
putative biomarkers, a thorough evaluation of these psychometric properties was 
conducted toward the goal of improving clinical utility of these markers. Resting 
71‐channel EEG recorded from 35 healthy adults at two sessions (1‐week retest) 
were used to systematically compare different quantification techniques for theta and 
alpha sources at scalp (surface Laplacian or current source density [CSD]) and brain 
(distributed inverse; exact low resolution electromagnetic tomography [eLORETA]) 
level. Signal quality was evaluated with signal‐to‐noise ratio, participant‐level spec-
tra, and frequency PCA covariance decomposition. Convergent and discriminant 
validity were assessed within a multitrait‐multimethod framework. Posterior alpha 
was reliably identified as two spectral components, each with unique spatial patterns 
and condition effects (eyes open/closed), high signal quality, and good convergent 
and discriminant validity. In contrast, frontal theta was characterized by one low‐
variance component, low signal quality, lack of a distinct spectral peak, and mixed 
validity. Correlations between candidate biomarkers suggest that posterior alpha 
components constitute reliable, convergent, and discriminant biometrics in healthy 
adults. Component‐based identification of spectral activity (CSD/eLORETA‐fPCA) 
was superior to fixed, a priori frequency bands. Improved quantification and concep-
tualization of frontal theta is necessary to determine clinical utility.

K E Y W O R D S
current source density (CSD), EEG biomarkers, frequency PCA, source localization (LORETA), theta/
alpha oscillations, validity

1 |  INTRODUCTION

Identifying disease‐specific biomarkers that elucidate patho-
physiology and predict treatment outcomes is a key target 

for clinical neuroscience. Although there has been signifi-
cant progress in this regard (Kühn et al., 2009; Light et al., 
2015; Monti et al., 2010; Pizzagalli et al., 2018; Weinberg, 
Riesel, & Hajcak, 2012), methodological heterogeneity (i.e., 
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identification and quantification of biomarkers) presents a 
significant barrier to cross‐study comparison, interpretation 
of results, replicability, and clinical application. For major 
depressive disorder (MDD), several EEG biomarkers have 
shown promise for predicting treatment outcomes (for re-
views, see Bruder, Tenke, & Kayser, 2013; Iosifescu, 2011; 
Widge et al., 2018). Two candidate biomarkers that rely on 
resting EEG activity are currently under investigation as part 
of a large multisite study (Trivedi et al., 2016): rostral anterior 
cingulate cortex (rACC) theta, identified via a current density 
distributed inverse solution (low resolution brain electromag-
netic tomography [LORETA]; e.g., Pizzagalli et al., 2001, 
2018) and posterior alpha, identified via scalp current source 
density (CSD; surface Laplacian) and frequency principal 
component analysis (fPCA; e.g., Tenke et al., 2011). These 
two biomarkers have demonstrated moderate predictive va-
lidity (Pizzagalli et al., 2018; Tenke et al., 2011; Widge et al., 
2018), but, in general, published results on EEG biomarkers 
are biased toward small studies with large effect sizes and 
positive results (Widge et al., 2018). Moreover, there is a no-
table absence of research evaluating techniques for biomarker 
quantification, discriminant validity between biomarkers, and 
convergent validity across methodologies. This study aimed 
to investigate questions regarding quantification and validity 
of these two candidate biomarkers.

1.1 | Research findings on rACC theta as a 
candidate biomarker
There is an ongoing effort to identify biomarkers that predict 
which depressed patients will improve following treatment 
(e.g., Pizzagalli, 2011; Waters & Mayberg, 2017). Among 
those, greater theta‐band activity in the rACC has been re-
peatedly linked to favorable clinical outcome (Pizzagalli, 
2011; Pizzagalli et al., 2001, 2018). Specifically, enhanced 
theta magnitude in the rACC, and also when measured at 
frontal scalp locations (i.e., midfrontal theta [MF θ]), pre-
dicted symptom remission of MDD patients who received 
antidepressant medications (e.g., selective serotonin reup-
take inhibitors [SSRIs]; Hunter, Korb, Cook, & Leuchter, 
2013; Korb, Hunter, Cook, & Leuchter, 2009; Mulert et 
al., 2007; Pizzagalli et al., 2001, 2018; Rentzsch, Adli, 
Wiethoff, Gómez‐Carrillo de Castro, & Gallinat, 2014), 
noninvasive (i.e., transcranial magnetic stimulation; Li et 
al., 2016) or invasive neuromodulation (i.e., implantation of 
a deep‐brain stimulator; Broadway et al., 2012), and also of 
those assigned to a placebo control group (Pizzagalli et al., 
2018). These findings suggest that frontal/rACC theta may 
be a nonspecific predictor of symptom improvement in indi-
viduals with MDD. It is hypothesized that individuals with 
low rACC theta may have difficulty with cognitive control, 
and consequently these individuals are more likely to have 
a poor clinical prognosis (e.g., Mayberg, 1997; Pizzagalli, 

2011; Waters & Mayberg, 2017). Notably, two recent mul-
tisite studies reported contradictory results. Pizzagalli et al. 
(2018) found a positive relationship between pretreatment 
rACC theta and symptom improvement in a large sample 
of depressed patients (N = 248), indicating that MDD pa-
tients with more pretreatment rACC theta were more likely 
to improve after 8 weeks regardless of treatment arm (pla-
cebo vs. SSRI; for additional independent replications, see 
Korb et al., 2009; Mulert et al., 2007; Pizzagalli et al., 2001; 
Rentzsch et al., 2014). In contrast, employing an even larger 
sample of MDD patients (N  =  1,008), Arns et al. (2015) 
found that less pretreatment rACC theta was associated 
with improvement, that is, a relationship between rACC 
theta and symptom change opposite the expected direction. 
These findings prompted us to examine whether different 
methods of rACC theta quantification could explain these 
inconsistencies.

Many reports have noted that frontal theta activity is 
weak and infrequent in resting EEG recordings of wakeful 
participants (e.g., Barry & De Blasio, 2018; Cigánek, 1961; 
Frauscher et al., 2018; Keitel & Gross, 2016; Schacter, 1977; 
Shackman, McMenamin, Maxwell, Greischar, & Davidson, 
2010; Tenke & Kayser, 2005; Westmoreland & Klass, 1986), 
meaning that there is no continuous or dominant theta 
rhythm except for limited bursts that can be obscured by 
fast Fourier transform (FFT) averaging (e.g., Vidaurre et al., 
2018). This evidence indicates that only a fraction of rest-
ing EEG recordings contain notable oscillations below 8 Hz 
in wakeful resting participants (Arns, Gordon, & Boutros, 
2017; Keitel & Gross, 2016; Schacter, 1977; Vidaurre et 
al., 2018; Westmoreland & Klass, 1986). In fact, frontal 
theta is inversely related to default‐mode network activity 
(Scheeringa et al., 2008). When theta is apparent in resting 
EEG, it is often associated with greater drowsiness and ocular 
artifact (Mcmenamin et al., 2010; Schacter, 1977; Strijkstra, 
Beersma, Drayer, Halbesma, & Daan, 2003). Moreover, data‐
driven approaches (i.e., principal component analysis [PCA]) 
often fail to identify a spectral theta component in resting 
EEG recordings (Barry & De Blasio, 2018; Shackman et al., 
2010; Tenke & Kayser, 2005). Variation in theta amplitude 
as a function of EEG hardware and personnel further under-
scores the subtlety of this metric (Tenke et al., 2017). Based 
on early factor analyses identifying functionally independent 
EEG frequency ranges (Kubicki et al., 1979), several studies 
have evaluated rACC theta as a candidate biomarker by quan-
tifying spectral activity between 6.5 and 8.0 Hz (Arns et al., 
2015; Mulert et al., 2007; Pizzagalli et al., 2001); however, 
this limited frequency range deviates from conventional defi-
nition of theta (Chatrian et al., 1974; Kane et al., 2017), and 
it may also be more prone to assessing a mixture of theta and 
alpha oscillations. What may ultimately be even more im-
portant is that a dominating theta rhythm, which is observed 
during task performance involving working memory load or 
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cognitive control, peaks at 5 Hz (e.g., Cavanagh & Shackman, 
2015). Phasic and induced theta oscillations are prominent at 
5 Hz over midfrontal regions and are consistently related to 
cognitive and behavioral performance (Cohen & van Gaal, 
2014; Hsieh & Ranganath, 2014; Li et al., 2016; Näpflin, 
Wildi, & Sarnthein, 2008; Olvet & Hajcak, 2009; Schacter, 
1977). To the extent that this evoked 5 Hz rhythm is directly 
related to resting theta, its peak frequency will be missed by 
a 6.5–8.0 Hz band quantification.

Moreover, although the rACC is the typical region of 
interest (ROI) for measuring resting‐state theta, dorsal 
and posterior ACC (dACC and PCC) regions have demon-
strated stronger resting theta. For example, Li and col-
leagues (2016) found that theta amplitude at rest correlated 
with glucose uptake in the dACC, whereas theta oscilla-
tions induced by cognitive testing correlated with glucose 
uptake in the rACC. Although the logic of focusing on the 
rACC as a region critical for depression was driven by early 
positron emission tomography (PET) findings of Mayberg 
et al. (1997), later confirmed by Pizzagalli et al. (2001) 
using EEG source localization, more recent evidence sug-
gests that theta generators outside the rACC may be more 
potent indicators of theta, and these regions are closely 
linked to psychological constructs relevant to treatment 
response (Cavanagh & Shackman, 2015). In particular, a 
magnetoencephalogram (MEG) study reported higher test‐
retest reliability of resting theta for dorsal‐posterior ACC 
than rACC (Martín‐Buro, Garcés, & Maestú, 2016), and 
an intracranial EEG study revealed strong theta sources 
near dorsal ACC regions at rest (Frauscher et al., 2018). 
Notably, an exploratory whole‐brain analysis by Arns and 
colleagues (2015) found that treatment response correlated 
with less theta amplitude near the dACC, rather than the 
rACC, suggesting that the dACC may also be relevant to 
treatment outcome. Therefore, refocusing analyses toward 
stronger theta generators (e.g., dACC) could improve mea-
surement quality and clinical prediction.

Another important consideration is the impact of compu-
tational procedures intended to improve the signal of interest. 
One often‐used optimization technique—spatial normal-
ization—actually mixes theta activity from different brain 
regions and could impede high‐fidelity measurement and con-
fuse spatial interpretation. Spatial normalization is calculated 
by dividing theta current density in the rACC by the sum of 
theta current density across the entire brain (e.g., Pizzagalli 
et al., 2003; Smith, Cavanagh, & Allen, 2018). Thus, the re-
lationship between normalized rACC theta and MDD recov-
ery may result from more rACC theta, less theta elsewhere in 
the brain (e.g., PCC), or both. Notably, studies not relying on 
spatial normalization found that less frontal theta (Arns et al., 
2015; Iosifescu et al., 2009; Knott, Telner, Lapierre, Browne, 
& Horn, 1996; Leuchter et al., 2017) and more PCC theta 
(Arns et al., 2015) predicted clinical improvement.

1.2 | Research findings on posterior alpha‐
band activity as a candidate biomarker
In comparison to resting theta oscillations, the alpha rhythm 
dominates the resting EEG, with most individuals showing a 
distinct alpha peak at about 10 Hz having a robust posterior 
topography (Aurlien et al., 2004; Chiang, Rennie, Robinson, 
van Albada, & Kerr, 2011). Moreover, the alpha rhythm is 
prominent (e.g., visible in raw EEG traces) and reliably quan-
tified by different research groups using different methodolo-
gies (e.g., Barry & De Blasio, 2018; Labounek et al., 2018; 
Schmidt et al., 2017; Shackman et al., 2010; Sockeel, Schwartz, 
Pélégrini‐issac, & Benali, 2016; Tenke et al., 2017). 
Importantly, greater posterior alpha oscillations at rest pre-
dicted a favorable clinical outcome for individuals diagnosed 
with MDD (Baskaran et al., 2017; Bruder et al., 2008; 
Jaworska, de la Salle, Ibrahim, Blier, & Knott, 2019; 
Kandilarova et al., 2017; Knott et al., 1996; Tenke et al., 2011; 
Ulrich, Renfordt, Zeller, & Frick, 1984; Ulrich, Renfordt, & 
Frick, 1986; although see Arns et al., 2016, and Knott, 
Mahoney, Kennedy, & Evans, 2000, for unsuccessful attempts 
to replicate these findings). To some degree, these reports dif-
fered in methodology, including EEG montage (density, loca-
tions) and reference, preprocessing steps, and a priori selection 
of frequency bins. Notably, there are significant benefits from 
using EEG signal separation as a generic initial preprocessing 
step, especially with regard to improved accuracy of measur-
ing brain activity from specific neural sources and empirical 
(i.e., data‐driven) determination of optimal frequency bands 
and recording locations (Cohen, 2017a; Delorme & Makeig, 
2004; Tenke & Kayser, 2005). For example, whereas spectral 
amplitude within an approximate range of 8–13 Hz is often 
averaged for a pooled analysis of the (classical) alpha band, 
narrower bands in this range have distinct functional signifi-
cance (Buzsáki, 2006; Klimesch, 1999; Sadaghiani & 
Kleinschmidt, 2016) and spatial distribution (Barzegaran, 
Vildavski, & Knyazeva, 2017; Tenke & Kayser, 2005). 
Specifically, Tenke and colleagues demonstrated the presence 
of two distinct spectral alpha components,1 peaking at around 
9 and 11 Hz, with 9 Hz component loadings crossing over to 
the classical theta band (i.e., well below 8 Hz), suggesting that 
low alpha and theta activity share variance (e.g., Tenke et al., 
2011, termed this spectral component low alpha/theta). 
Indeed, fPCA applied to resting‐state EEG has consistently 
revealed two distinct alpha components: one low alpha com-
ponent with an ~9 Hz peak frequency and a lateral occipitopa-
rietal topography and another high alpha component peaking 
at ~11 Hz with an occipitoparietal midline maximum (Barry 
& De Blasio, 2018; Barzegaran et al., 2017; Chiang et al., 
2011; Shackman et al., 2010; Tenke & Kayser, 2005). As 
“true” rACC theta variance may be weak at rest, it stands to 

1 Throughout the article, component refers to a spectral component 
identified by fPCA.
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reason that 6.5–8  Hz spatially normalized rACC activity, 
which is influenced by posterior activity, may partly be meas-
uring a posterior alpha covariance entity. Moreover, spectral 
windows within fixed frequency limits do not actually sepa-
rate genuine EEG rhythms (i.e., theta and alpha) because spec-
tral leakage conflates neighboring bands. Taken together, 
various suboptimal methodological choices may conflate 
theta and alpha metrics by mixing variance sources. Hence, 
the different specific techniques used to calculate these bio-
markers should be directly compared.

1.3 | Present report
This report aimed to systematically compare the effects of 
processing choices for the quantification and validity of rest-
ing EEG biomarkers. An evaluation of discriminant and con-
vergent validity can reveal the extent to which biomarkers are 
robust to specific methodologies and to what extent biomark-
ers are distinct from one another (Campbell & Fiske, 1959). 
Although decisions regarding EEG methodology are often 
arbitrary or based on a priori hypotheses (e.g., a priori fre-
quency bands, EEG reference, ROIs, spatial normalization), 
we argue that in many cases data‐driven approaches will 
outperform investigator‐guided processing choices. Data‐
driven approaches will reduce unsystematic nuisance vari-
ance in EEG data (e.g., Barry & De Blasio, 2018; Delorme, 
Palmer, Onton, Oostenveld, & Makeig, 2012; Kayser, Tenke, 
& Debener, 2000; Tenke & Kayser, 2005). Hence, frequency 
analyses in this report were guided by an unbiased extraction 
of spectral components (i.e., multivariate data decomposi-
tion via fPCA; Kayser et al., 2000; Tenke & Kayser, 2005; 
Tenke et al., 2011). fPCA identifies spectral components 
from their covariance structure across conditions, electrodes, 
and/or participants. Most importantly, fPCA has proven to be 
a useful tool for the quantification of the latent structure of 
EEG spectra (e.g., Barry & De Blasio, 2018; Shackman et al., 
2010; Tenke & Kayser, 2005).

Furthermore, ambiguity of reference choice is resolved, 
and spatial signal smearing due to volume conduction is mit-
igated, by transformation of scalp potentials into a reference‐
free representation of radial current flow (surface Laplacian 
or scalp CSD; Kayser & Tenke, 2015b; Nunez & Srinivasan, 
2006; Tenke & Kayser, 2012). Source modeling of resting 
EEG spectra also represents a reference‐free approach, al-
though this requires—in contrast to the CSD transform—
additional biophysiological assumptions (e.g., Michel et al., 
2004; Nunez, Nunez, & Srinivasan, 2019; Pascual‐Marqui, 
2007). CSD and inverse models have the additional advan-
tage of estimating possible locations of neural generator 
sources.

To this end, we analyzed current source estimates of 
EEG resting‐state recordings at sensor‐level (radial current 
flow via scalp CSD; Tenke & Kayser, 2012, 2015b) and 

voxel‐level (distributed inverses via exact low resolution 
electromagnetic tomography [eLORETA]; Pascual‐Marqui, 
2007) for theta and alpha oscillations in a sample of healthy 
adults (Tenke et al., 2017). We sought to identify cortical 
regions, particularly within cingulate cortex, where theta was 
maximal by taking signal‐to‐noise ratio (SNR) into account 
(Cohen, 2014b; Cohen & Gulbinaite, 2017; Smith, Reznik, 
Stewart, & Allen, 2017). Given previous work (Frauscher 
et al., 2018; Li et al., 2016; Martín‐Buro et al., 2016), it 
was expected that dorsal and posterior cingulate regions 
would demonstrate greater SNR for the theta band  com-
pared to rACC and subgenual ACC (sgACC) regions.  
We also explored fPCA results for a frontal theta compo-
nent, to facilitate identification of an optimal intracranial 
target to measure theta as well as optimal frequency band 
limits. A multitrait‐multimethod framework (MTMM; 
Campbell & Fiske, 1959) was used to assess discriminant 
and convergent validity for frontal theta and posterior alpha 
(see Bruder et al., 2013, and Pizzagalli, 2011, for reviews). 
For MTMM, patterns of correlations between methods 
and traits are interpreted qualitatively with respect to one 
another, with different patterns having implications for 
convergent and discriminant validity. MTMM correlations 
are descriptive measures of standardized covariance among 
indices and are not interpreted as inferential statistics.  
A MTMM analysis can elucidate construct validity and has 
the advantage of being technically parsimonious. We also 
applied fPCA to eLORETA distributed inverses (Barzegaran 
et al., 2017; Pascual‐Marqui, 2007) as well as a combined 
data set using both CSD and eLORETA estimates.

Given prior research reviewed above, we anticipated 
poor discriminant validity between a posterior low‐fre-
quency (peaking around 9 Hz) alpha component and spa-
tially normalized rACC theta (using the typical 6.5–8 Hz 
band limits). In contrast, we anticipated good convergent 
validity between CSD and eLORETA spectral principal 
components, good discriminant validity between theta and 
alpha spectral components, and good test‐retest reliability 
for spectral components. Overall, we anticipated that clari-
fying relationships between rACC theta and posterior alpha 
measures, which has not yet been systematically addressed 
in the literature, could aid the interpretation of each met-
ric, help explain inconsistent findings across reports, and 
lead to improvements in EEG biomarker quantification and 
validity.

2 |  METHOD

2.1 | Participants
Details regarding participant recruitment and selection 
are presented in Tenke et al. (2017). Briefly, a total of 35 
healthy, English‐fluent adults aged 18–65 years were tested 
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as part of the Establishing Moderators and Biosignatures 
of Antidepressant Response in Clinical Care (EMBARC) 
project (Trivedi et al., 2016). Participants were locally 
recruited and tested at four sites: Columbia University 
Medical Center in New York, University of Texas 
Southwestern Medical Center in Dallas, Massachusetts 
General Hospital in Boston, and University of Michigan 
in Ann Arbor. As part of the larger randomized clinical 
trial EMBARC, these participants represented the sub-
sample of healthy controls who were free of lifetime psy-
chiatric disorder as assessed by an interviewer trained in 
the administration of the Structured Clinical Interview 
for DSM‐IV Axis I Disorders, Nonpatient Edition (First, 
Gibbon, Spitzer, & Williams, 1996). Each participant 
had two 8‐min resting EEG sessions separated by about 
1 week. Each EEG recording included four 2‐min blocks 
with eyes closed (C) or open (O) in a fixed order (OCCO). 
Participants also completed a battery of biometric assays 
and self‐report questionnaires that are not pertinent to this 
report. The study was conducted in accordance with the 
Declaration of Helsinki, was approved by the institutional 
review board at each testing site, and all participants pro-
vided informed consent.

2.2 | EEG processing
All EEG pre‐ and postprocessing steps, including unifi-
cation of EEG montage and acquisition parameters, have 
been detailed in Tenke et al. (2017). Briefly, data from the 
different research testing sites were converted to a com-
mon 72‐channel EEG montage and visually inspected 
for recording artifacts. Missing, bad, or bridged channels 
(Alschuler, Tenke, Bruder, & Kayser, 2014) were replaced 
by spherical spline interpolation (Perrin, Pernier, Bertrand, 
& Echallier, 1989, 1990). The continuous EEG data were 
then blink corrected via spatial singular value decompo-
sition and segmented into 2‐s epochs with 75% overlap. 
Epochs were band‐passed at 1–60  Hz (24  dB/octave). A 
semiautomated reference‐free approach identified isolated 
EEG channels containing amplifier drift, residual eye ac-
tivity, muscle or movement‐related artifacts on a trial‐by‐
trial basis (Kayser & Tenke, 2006c). Channels containing 
artifact were replaced by spline interpolation if less than 
25% of all channels were flagged; otherwise, the epoch was 
rejected. Finally, an automatic threshold (±100  μV) ap-
plied to all EEG and uncorrected electro‐oculogram (EOG) 
channels removed any residual artifacts epoch‐wise. The 
average total number of usable epochs for eyes open (EO) 
and eyes closed (EC) were 331.4 (range 191–467) and 
377.7 (74–477) in Session 1, and 329.7 (90–480) and 373.6 
(44–476) in Session 2.

To be consistent with the LORETA analysis previously 
employed using these data (Pizzagalli et al., 2018; Tenke et 

al., 2017), the nose site was excluded from these data for all 
analyses, including those at sensor level, rendering a 71‐
channel montage. Average‐referenced2 and epoched data 
were transformed to CSD (surface Laplacian; Nunez et al., 
2019; Nunez & Srinivasan, 2006; Tenke & Kayser, 2012) 
and eLORETA representations (Pascual‐Marqui, 2007) 
using previously recommended parameters for CSD (spline 
flexibility m  =  4, regularization constant λ  =  10–5; e.g., 
Kayser, 2009; Kayser & Tenke, 2006b; Tenke & Kayser, 
2005) or default parameters as implemented in the 
eLORETA software package (Pascual‐Marqui, 2007). As 
the capacity of CSD estimates to represent different spatial 
frequencies is affected by choosing more (e.g., m = 3) or 
less (e.g., m = 5) flexible splines (Kayser & Tenke, 2015b), 
their spectral quantification using fPCA (Tenke & Kayser, 
2005) may be affected as well. CSD spline flexibility af-
fects the sensitivity of CSD measures to differentially rep-
resent broader versus more focal dipole layers (i.e., the 
spatial scale of the underlying neuronal generator sources; 
see fig. 15 in Kayser & Tenke, 2015b). We evaluated the 
effect of six different spline flexibilities (m = 2 … 7) on 
fPCA results. These analyses revealed that fPCA produced 
highly consistent spectral components regardless of spline 
flexibility (see online supporting information, Figures S1 
and S2, for alpha and theta components, respectively). 
Accordingly, only CSD findings for a medium (default, 
m  =  4) spline flexibility are detailed here. The FFT was 
used for calculation of spectral amplitude from 2‐s epochs 
(i.e., Tenke et al., 2017). CSD‐based midfrontal theta (MF 
θ; Table 1) was operationalized as the 6.5–8 Hz signal am-
plitude from the mean of sensors FCz and Cz. Spatially 
normalized MF θ was calculated as the 6.5–8 Hz amplitude 
at a sensor divided by the sum of 6.5–8 Hz theta amplitudes 
across all scalp sensors.

2.3 | SNR and internal consistency
Given that calculation of SNR is arbitrary with regard to 
what is considered signal and noise, we considered two dif-
ferent SNR calculations. In both cases, SNR was calculated 
directly from amplitude spectra rather than spectral compo-
nents. One technique (SNRavg) defined SNR as the ratio of 
spectral amplitude at a single frequency bin to the average 
amplitude of the surrounding ±5 Hz interval, excluding the 
±1 Hz around each bin (i.e., SNRavg[f] =  famp  / mean[f – 3 
⋯ f − 1amp + f + 1 ⋯ f + 3amp]). This approach character-
izes subject‐specific peaks in averaged amplitude spectra as 
having large SNR, and noise is assumed to be broadband or 

2 As only CSD and eLORETA transformed data were analyzed (i.e., no 
reference‐dependent surface potentials), the actual reference choice is 
inconsequential. CSD and eLORETA are reference‐free representations of 
EEG data and will produce the same unique result regardless of reference 
scheme.
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1/f amplitude. A second technique (SNRsgl) calculated signal 
as the average cross‐trial spectral amplitude and noise as the 
single‐trial standard deviation of an amplitude spectrum. In 
this case, noise is assumed to be the variance across a fre-
quency spectrum, and then standard deviations for each trial 
were averaged together to create an estimate of noise across 
the recording. For single‐trial analyses, 148 random trials 
(i.e., all participants had at minimum 148 artifact‐free trials) 
were selected from the first EEG recording session (74 tri-
als each from EC and EO blocks) for calculation of SNRsgl. 
Random selection of an equal number of epochs was used so 
that all participants benefited similarly from the number of 
trials used during averaging. Although neither SNR calcula-
tion is believed to represent “ground truth,” both measure the 
presence of a periodic signal relative to the background EEG 
(noise).

To obtain estimates of internal consistency, FFT spectra 
from the first EEG session were averaged for theta and alpha 
from a random split‐half of 148 epochs (i.e., 74 each, irre-
spective of condition).

2.4 | rACC 6.5–8 Hz current density
Based on reports of improvement in localization accu-
racy with newer iterations of the LORETA source estima-
tion package (Pascual‐Marqui, 2007; Pascual‐Marqui et al., 
2018), we opted to analyze rACC theta using the more recent 
implementation. The rACC ROI was based on a rACC ROI 
used by Pizzagalli and others (2001, 2018) but varied slightly 
with the newer eLORETA brain. This rACC ROI included 
39 voxels nearest (within 10 mm) a centroid at [±5 40 −5] 
in MNI (Montreal Neurological Institute) space (support-
ing information, Figure S3). Importantly, LORETA, sLO-
RETA, and eLORETA versions all produced very similar 
estimates of rACC theta (Pearson's correlations for all pair-
wise comparisons between LORETA versions: for 4.5–7 Hz, 
.82 ≤ r ≤ .99; for 6.5–8 Hz, .80 ≤ r ≤ .99). Thus, eLORETA 
estimates were considered to be equivalent to LORETA or 
sLORETA estimates.

Although 4–8 Hz are typically employed as theta band 
limits (Chatrian et al., 1974; Kane et al., 2017), the 6.5–8 Hz 
band was used here for consistency with previous reports 
examining biomarker capability for rACC theta (e.g., Arns 
et al., 2015; Hunter et al., 2013; Korb et al., 2009; Pizzagalli 
et al., 2001). Current density was normalized (theta ampli-
tude at each voxel/summed theta amplitude across all 6,239 
voxels) and averaged across the rACC ROI. For compari-
son, raw theta (i.e., not normalized) was calculated as the 
average across rACC voxels. Rather than solely examining 
rACC, the current analysis also examined three additional 
cingulate ROIs to identify and determine the strength of 
other possible theta generators: dACC, sgACC (Brodmann 
area 25), and PCC.

2.5 | CSD‐fPCA, eLORETA‐fPCA, and 
combined CSD/eLORETA‐fPCA
Sensor‐level (i.e., CSD) amplitude spectra consisting of 157 
frequencies between 1 and 40 Hz (0.25 Hz frequency reso-
lution) for each participant (N  =  35), test session (2), EO/
EC condition (2), and sensor (71), resulting in a 9,940 × 157 
Cases × Variables data matrix, were submitted to unrestricted 
fPCA followed by Varimax rotation of covariance loadings 
(Kayser & Tenke, 2003; Tenke & Kayser, 2005).

The procedure used for the sensor‐level CSD data was 
repeated for voxel‐level spectral amplitude (i.e., square root 
of power; Tenke & Kayser, 2005). First, the 6,239 voxels of 
the eLORETA brain were parcelled into 84 Brodmann areas 
(BAs; 42 for each hemisphere as created by the eLORETA 
software). This resulted in a 1,760 × 157 data matrix (i.e., 
35 Participants × 2 Conditions × 2 Sessions × 84 Brodmann 
areas and 157 Frequency bins), which was submitted to unre-
stricted Varimax‐PCA.

We also conducted a combined CSD/eLORETA‐
fPCA that encompassed 21,700 cases (35 Participants  ×  2 
Conditions × 2 Sessions × [71 Scalp sites + 84 Brodmann 
areas]). As the separate CSD‐ and eLORETA‐fPCAs relied 
on unstandardized covariance as the association matrix for 
component extraction (Kayser & Tenke, 2003), and because 
in all likelihood CSD and eLORETA data have dissimilar co-
variances, each data set was scaled by their respective total 
covariance (i.e., the sum of the diagonal elements of the co-
variance matrix) so that the total covariance for each metric 
was equal to 1 (see Kayser & Tenke, 2015a, for a related ex-
ample of scaling covariances for this purpose). A combined 
CSD/eLORETA‐fPCA solution was obtained because of the 
merits afforded by a unitary model for oscillatory phenomena 
often presented separately at sensor/scalp (CSD) or voxel/
brain (eLORETA) levels.

Frequency PCA followed by unrestricted Varimax rotation 
(Kayser & Tenke, 2003) yields as many factors as there are 
linearly independent variables. In most instances, this will re-
sult in an fPCA solution comprising as many factors as there 
are variables (i.e., the total number of spectral frequencies), 
although the vast majority will explain little variance (Kayser 
& Tenke, 2003). For brevity and simplicity, we focused our 
analysis on the factors accounting for the top 99% of spectral 
variance, in line with previous work (Tenke & Kayser, 2005).

All frequency PCAs were based on the average spectrum 
from all available trials from both recording sessions of each 
participant (i.e., following the procedures described in Tenke 
& Kayser, 2005).

2.6 | Statistics
Statistical analyses were conducted using native functions from 
the statistics toolbox of MATLAB (2018a v 9.4, The MathWorks 
Inc.) and custom MATLAB code. Wilcoxon signed‐rank tests 
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were used for examining paired‐samples comparisons (i.e., 
condition difference between EO and EC epochs). A correction 
for multiple comparisons across brain regions (i.e., BAs) based 
on a surrogate null distribution of 1,000 random shuffles was 
used for evaluation of statistical significance (i.e., the so‐called 
T‐max test; Holmes, Blair, Watson, & Ford, 1996). A corrected 
p value < .05 was considered significant. Corrected p values are 
reported unless otherwise indicated.

3 |  RESULTS

3.1 | Signal quality for resting theta and 
alpha oscillations
Internal consistency was excellent for both theta and 
alpha FFT amplitudes (rs  >  .99). Individual spectra from 

eLORETA source models, as well as SNR, are displayed in 
Figure 1. Individual spectral amplitudes indicated that only 
a few individuals were characterized by a noticeable theta 
peak (Figure 1b). Figure 1b also shows that theta amplitude 
was similar for EC (top panel) and EO (bottom panel). This 
observation was bolstered by a robust correlation between 74 
random EC and 74 random EO epochs (r = .951). For SNRavg, 
pairwise follow‐up comparisons for a significant main effect 
of region, F(3, 102) = 48.927, p < .001, did not reveal sig-
nificant differences between the rACC, sgACC, and dACC 
ROIs (all ps > .57; Figure 1c). The PCC region demonstrated 
significantly less theta SNRavg than the rACC, t(34) = 8.121, 
p < .001. For SNRsgl, repeated measures analysis of variance 
(ANOVA) also confirmed that SNRsgl varied across ROIs, 
F(3, 102) = 4.700, p = .004. Pairwise comparisons revealed 
that theta was weaker at the rACC than at any other ROI (all 

F I G U R E  1  Individual amplitude spectra and signal‐to‐noise ratio (SNR) for different regions of interest (ROIs) within the cingulate cortex 
(ACC/PCC: anterior/posterior cingulate cortex; sg: subgenual; r: rostral; d: dorsal). (a) four different ACC ROIs. From left to right: subgenual ACC 
(sgACC), rostral ACC (rACC), dorsal ACC (dACC), posterior cingulate cortex (PCC). (b) mean amplitude spectra for each participant (across 148 
random epochs) from the first resting EEG session, displayed separately for eyes closed (EC, top) and eyes open (EO, bottom). Most individual 
spectra were not characterized by a distinct peak within the 4–8 Hz theta range. ROIs as in (a). (c) SNR operationalized as the ratio of spectral 
amplitude at a single frequency bin to the average amplitude of the surrounding ±5 Hz (SNRavg, left top) and as the average cross‐trial spectral 
amplitude in relation to the single‐trial standard deviation of the amplitude spectrum (SNRsgl, right bottom; see text for computational details). 
Shaded regions indicate 1,000‐fold bootstrapped 95% confidence interval of the mean. In both cases, SNR was greatest for alpha‐band activity 
at the PCC, more modest for the theta band, and theta SNR was largest for the dACC. Theta and alpha SNR is also displayed on sagittal view 
of eLORETA brain (right; warmer colors depict higher SNR). Theta was characterized by higher SNR at dACC and PCC regions than rACC or 
sgACC. Alpha was characterized by high SNR at posterior regions
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ps < .007). In contrast, alpha was greatest at the PCC for both 
SNRavg and SNRsgl (all ps < .001).

3.2 | CSD/eLORETA‐fPCA
Factor loadings for alpha components were highly similar 
for CSD, eLORETA, and combined CSD/eLORETA solu-
tions (Tucker congruence coefficient ϕ: 0.78 ≥ ϕs ≥ 0.98; 
ϕ  ≥  0.85 indicates fair similarity, and ϕ  ≥  0.95 indicates 
that factors are considered equal; Lorenzo‐Seva & ten Berge, 
2006). The first 11 components of the combined CSD/eLO-
RETA fPCA accounted for 99% spectral variance. Two high‐
variance components had peak frequencies at 8.5 (4.3%) and 
10.5 Hz (30.8%), and posterior topographies consistent with 
previous results (e.g., Tenke & Kayser, 2005; Tenke et al., 
2011; Figure S4, bottom panel). Reconstructed spectra using 
only these two alpha factors were then submitted to a sec-
ond fPCA, which excluded frequencies above 20 Hz (follow-
ing the procedure of Tenke et al., 2011), yielding the 9 and 
10.5 Hz factors used for all subsequent analyses (Figure 2). 
Alpha component topographies and tomographies are dis-
played in Figure 2 separately for each resting condition (EO, 
EC), along with their respective difference (EC − EO, or net 
alpha; cf. Tenke, Kayser, Abraham, Alvarenga, & Bruder, 
2015). Alpha components demonstrated the strongest alpha 
amplitude in parietal‐occipital BAs and weak alpha ampli-
tude in frontal regions. The EC − EO difference was maximal 
in parietal‐occipital BAs, indicating that EC cued enhance-
ment of alpha oscillations in parietal‐occipital brain regions; 
however, the strength and spatial distribution of this condi-
tion effect varied with alpha component.

The 9 Hz component demonstrated a significant condition 
difference (EC − EO; Figure 3) in the right retrosplenial cor-
tex and PCC (BA 30, Z = 4.59, p < .001) and inferior‐lateral 
occipital and temporal gyri (BAs 18, 29, 41; all Zs > 4.50, all 
ps < .001).

In contrast, there were no significant condition differ-
ences for the 10.5 Hz component after correcting for multiple 
comparisons. However, when applying a more liberal statis-
tical threshold that was used in previous work (uncorrected 
p < .01; Pizzagalli et al., 2003), several trend‐level condition 
differences emerged for the 10.5  Hz component, as shown 
in Figure 3. These condition differences were maximal near 
the superior parietal lobe, right postcentral gyrus, and right 
fusiform gyrus (BAs 5, 3, 37; Zs > 2.50, ps < .01).

While the CSD‐fPCA solution revealed a distinct theta 
component (peak frequency 6  Hz, 1% explained variance; 
Figure S4) in the first 99% explained variance, this was not 
the case for the eLORETA‐ and combined CSD/eLORETA‐
fPCA. Therefore, the search for a theta component was 
widened to 99.9% total variance, which revealed one low‐
variance (0.05%) factor with a peak frequency at 5 Hz and a 
midfrontal maximum (Figure 4). Factor scores for this 5 Hz 

principal component showed several local maxima at medial 
anterior regions, including premotor areas (e.g., BAs 6, 24) 
and the dACC. There were no significant condition differ-
ences (EC vs. EO, all ps > .3).

3.3 | MTMM for rACC theta and 
posterior alpha
Interpretation of correlations in Table 1 is based on a MTMM 
framework that is helpful for evaluating convergent and 
discriminant validity of novel psychometrics (Campbell & 
Fiske, 1959). Significance tests are not a focus of the MTMM 
correlations—correlations are interpreted as descriptive, not 

F I G U R E  2  Low and high alpha components from the combined 
CSD/eLORETA‐fPCA solution. (a) Factor loadings revealed peak 
frequencies at 9 and 10.5 Hz (low and high alpha, respectively). 
(b) Topographies (column 1) and tomographies (columns 2–5) of 
corresponding factor scores for eyes open (EO) and eyes closed (EC) 
conditions and for net alpha amplitude (EC minus EO) indicative of 
greater alpha for eyes closed, particularly for low alpha. Across CSD 
and eLORETA data, low alpha showed posterior‐lateral maxima, 
whereas high alpha had a posterior‐medial maximum (for full fPCA 
solution, see Figure S4). LH = left hemisphere; RH = right hemisphere

(a)

(b)
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inferential—and are not reported. Table 1 displays MTMM 
correlations between theta and alpha metrics calculated 
from FFT averages using typical frequency bands and sen-
sors or principal component scores from separate CSD or 
eLORETA‐fPCAs. The combined CSD/eLORETA‐fPCA 
results were not examined in the MTMM because we wanted 
to evaluate validity across different techniques, in this case, 
CSD versus eLORETA.

Within the MTMM framework, theta and alpha measures 
are presumed to index different neurophysiological traits 
(i.e., constructs) pertinent to recovery from a depressive epi-
sode. For instance, rACC theta has been linked with internet-
work coordination and cognitive control (Pizzagalli, 2011), 
whereas posterior alpha is more often linked with arousal and 
vigilance (Olbrich et al., 2009; Tenke et al., 2015; Ulke et al., 
2019). In contrast, CSD and eLORETA are different meth-
ods in the MTMM. The main diagonal of the MTMM (Table 
1) reflects the 1‐week test‐retest reliability, with coefficients 
displayed with a blue background (test‐retest reliability is 

also reported in Tenke et al., 2017, for some of these metrics). 
Coefficients with a green background make up the validity di-
agonal. Validity coefficients that are larger than coefficients 
with a red or yellow background suggest good convergent and 
discriminant validity. On one hand, the absolute magnitude 
of the validity coefficient speaks to convergent validity (i.e., a 
large correlation between traits assessed with a different mea-
surement type). On the other hand, the relative magnitude of 
the validity coefficient compared to other correlations in the 
matrix speaks to discriminant validity. Correlations between 
different methods (CSD vs. eLORETA) and different traits 
(theta vs. alpha) are called heteromethod‐heterotrait cor-
relations, which are displayed with a red background. High 
correlations in the heteromethod‐heterotrait triangles speak 
to misspecification of intertrait relationships (e.g., traits are 
overlapping or nonspecific), or, more generally, these cor-
relations indicate covariance between traits and measures 
that would not be hypothesized to covary. Finally, the mono-
method‐heterotrait triangles are displayed with a yellow back-
ground. Large monomethod‐heterotrait correlations indicate 
that a particular method contributes to significant covariance 
between traits. Of course, assumptions regarding what consti-
tutes traits and methods are arguable, and MTMM interpre-
tation is contextualized by tenability of these assumptions as 
well as by extant literature and theory. Nonetheless, examina-
tion of covariance patterns between candidate biomarkers can 

F I G U R E  3  Statistical evaluation of net alpha (EC − EO) 
tomographies stemming from the combined CSD/eLORETA fPCA 
solution shown in Figure 2. Hot colors (reds and oranges) indicate 
greater alpha for EC than EO. Low alpha showed robust condition 
differences (thresholded at corrected p < .05); by comparison, 
condition differences for high alpha did not survive multiple 
comparisons correction and are presented with a more liberal threshold 
(uncorrected p < .01). Maximal condition differences for low alpha 
were near the lingual gyrus/V1, but there were also significant net low 
alpha effects distributed across the occipital cortex and temporal gyri. 
Condition differences for high alpha were maximal near the superior 
and inferior parietal lobe and right fusiform gyrus. Hatched lines on 
sagittal planes (top) indicate view for axial (bottom left) and coronal 
(bottom right) views

– –

F I G U R E  4  Midfrontal theta component extracted by 
combined CSD/eLORETA‐fPCA. (top) Factor loadings revealed a 
peak frequency at 5 Hz. (bottom) Overall component topography 
was consistent with previous work investigating midfrontal theta. 
Component tomography suggests sources in premotor areas, including 
the dACC. There were no significant condition differences (EC vs. 
EO) for the theta component after multiple comparisons correction 
(corrected ps > .3). LH = left hemisphere; RH = right hemisphere
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reveal important information about test validity beyond that 
inferred from bivariate correlations between predictors and 
outcomes (i.e., predictive validity; Campbell & Fiske, 1959).

Theta metrics at scalp demonstrated good test‐retest re-
liability, with the exception of spatially normalized MF θ 
(Table 1, blue). By comparison, intracranial theta metrics 
were reliable over time regardless of quantification approach. 
Theta component scores (i.e., via fPCA) demonstrated better 
convergent validity (r = .82; Table 1, green) than other theta 
metrics. Theta components also demonstrated high conver-
gent and discriminant validity (i.e., larger than coefficients 
with yellow and red background). In contrast, whereas non‐
normalized theta measures demonstrated modest convergent 
validity across CSD and eLORETA methods (r = .45), spa-
tially normalized theta measures demonstrated poor con-
vergence across transformations (r =  .25). Normalized and 
non‐normalized theta metrics also demonstrated high hetero-
trait correlations, indicating poor discriminant validity with 
posterior alpha components. Moreover, spatially normal-
ized theta demonstrated small correlations with fPCA theta 
components.

Posterior alpha components demonstrated good conver-
gent validity across CSD and eLORETA fPCA decomposi-
tions (Table 1, green), good discriminant validity with theta 
metrics, and good test‐retest reliability. For example, coeffi-
cients in validity diagonals for posterior alpha components 
(green background in Table 1) were larger than heteromethod‐
heterotrait (red background) and monomethod‐heterotrait 
(yellow background) coefficients.

Although our focus was on the qualitative comparison 
of MTMM coefficients, validity coefficients for frequency 
PCA components (theta and alpha) were significantly greater 
than the validity coefficients for normalized theta metrics 
(all ps < .02), supporting the notion that frequency PCA im-
proves convergent validity across CSD and eLORETA trans-
formations compared to spatial normalization.

4 |  DISCUSSION

This study examined the comparative validity of two rest-
ing EEG candidate biomarkers of MDD symptom improve-
ment in a sample of healthy adults. The present findings 
are in agreement with prior work noting lack of prominent 
theta activity during wakeful rest (Barry & De Blasio, 2018; 
Cigánek, 1961; Frauscher et al., 2018; Keitel & Gross, 2016; 
Schacter, 1977; Shackman et al., 2010; Tenke & Kayser, 
2005; Westmoreland & Klass, 1986). A combination of spa-
tial filtering, fPCA, and conventional frequency analyses in-
dicated that theta‐band activity was weak in this resting‐state 
EEG data set from healthy adults. By comparison, posterior 
alpha was prominent, reliably quantified, and persistent 
across data transformation (CSD vs. eLORETA). Patterns of 

correlations between alpha and theta metrics indicated that 
spectral component (fPCA) measures evidenced good con-
vergent and discriminant validity. Theta metrics computed at 
brain (rACC) and sensor (MF θ) level using spatial normali-
zation and spectral averaging of a 6.5–8 Hz band evidenced 
poor validity.

4.1 | Findings and context: Theta
A low‐variance, 5  Hz theta component stemming from a 
combined CSD/eLORETA‐fPCA solution of resting EEG 
was highly similar to midfrontal theta as typically described 
in the literature (Cavanagh & Shackman, 2015; Schacter, 
1977). This 5 Hz component was most prominent over fron-
tocentral sensors and near the dACC using the eLORETA 
source model. Notably, this theta component accounted for 
a very small amount of spectral variance across participants, 
conditions, and scalp/brain regions. Indeed, only a few par-
ticipants showed a noticeable theta peak in their mean ampli-
tude spectra (Figure 1). These findings are consistent with the 
notion that theta activity is weak and infrequent during wake-
ful resting states (Keitel & Gross, 2016; Vidaurre et al., 2018; 
Westmoreland & Klass, 1986). In contrast, event‐related 
and induced theta oscillations are prominent (Cavanagh & 
Shackman, 2015), especially during cognitive load (Cavanagh 
& Frank, 2014; Cohen, 2014a; Hsieh & Ranganath, 2014; 
Li et al., 2016; Olvet & Hajcak, 2009; Sauseng, Griesmayr, 
Freunberger, & Klimesch, 2010). When theta oscillations are 
observed in resting EEG, oscillations tend to be brief in dura-
tion (<1 s; Vidaurre et al., 2018). This is consistent with the 
idea that rapid and incidental activation of theta‐band pro-
cesses during resting state may be masked by cross‐trial aver-
ages dominated by default‐mode activity, which leans toward 
alpha oscillations (Knyazev, Slobodskoj‐Plusnin, Bocharov, 
& Pylkova, 2011; Schmidt et al., 2017; Tenke & Kayser, 
2005). For example, Li and colleagues (2016) reported that 
frontal theta following a cognitive task predicted clinical re-
sponse to antidepressant treatment, whereas baseline differ-
ences in resting frontal theta did not. It could therefore be 
argued that the cognitive demands studied by Li et al. (2016) 
likely cued theta oscillations critical for cognitive processing, 
which presented the researchers with measurable and perti-
nent variance by which to predict treatment outcome. Indeed, 
most work examining theta has focused on phasic theta oscil-
lations rather than on a stable and continuous theta rhythm 
(Cavanagh & Shackman, 2015; Cohen, 2014a).

Theta generators have been localized to several different 
regions of the brain, including the rACC (Li et al., 2016; 
Pizzagalli et al., 2003; Scheeringa et al., 2008), dACC (Cohen, 
2011; Debener, Ullsperger, Siegel, & Engel, 2006; Frauscher 
et al., 2018; Li et al., 2016; Onton, Delorme, & Makeig, 
2005), and PCC (Martin‐Buro et al., 2016). The results here 
indicated that, although theta peaks were apparent in the 
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sgACC and rACC for some participant‐level spectra, dACC 
had larger SNR and factor scores, suggesting that dACC may 
be a preferable ROI for measuring theta at rest (Arns et al., 
2015; Li et al., 2016). Theta amplitude near the rACC is also 
prone to contamination by residual non‐neurogenic artifact 
(Mcmenamin et al., 2010); moreover, EEG demonstrates 
generally poor SNR near the rACC (Goldenholz et al., 2009). 
These difficulties with robust measurement of a resting‐state 
theta biomarker may also contribute to the apparent variabil-
ity in theta amplitude across EMBARC research sites (Tenke 
et al., 2017), underscoring the difficulty of enhancing (“scal-
ing up”) theta toward reliable clinical use. Spectral compo-
nent factor loadings (Figure 4), as well as visual inspection 
of participant spectra (Figure 1b), suggest that a 5–6 Hz peak 
(Cavanagh & Shackman, 2015; Chatrian et al., 1974) may be 
more representative of theta than the often‐used 6.5–8.0 Hz 
band. In fact, recent work examining associations between 
theta oscillations and MDD outcomes has adopted the more 
conventional 4–8  Hz theta band (Pizzagalli et al., 2018; 
Whitton et al., 2019). Of course, if the effectiveness of high 
theta (6.5–8.0 Hz) to predict clinical outcomes is directly re-
lated to posterior alpha components, then the alpha compo-
nents are likely superior resting EEG biomarkers. Altogether, 
the literature suggests that assessment of theta oscillations 
and their underlying neural generators may be improved upon 
by modifying assays to include perturbation of theta circuitry 
(e.g., cognitive load, event‐related designs; Cohen, 2014a) 
and with an increased focus on empirical identification and 
quantification of theta.

4.2 | Findings and context: Alpha
Posterior alpha components from an eLORETA fPCA and 
a combined CSD/eLORETA fPCA were highly compara-
ble to alpha components found in previous reports exam-
ining only CSD data, both in terms of peak frequencies 
(i.e., about 9 and 11  Hz) and band‐specific topographies 
(lateral vs. midline occipitoparietal maxima). Source mod-
eling yielded additional information about the differential 
tomographic distribution underlying these low and high 
alpha rhythms. Low alpha (9 Hz) was strongest in primary 
visual cortex and inferior‐temporal gyri, but high alpha 
was strongest in anterior‐superior‐lateral parietal regions, 
especially on the right (also see Barzegaran et al., 2017, 
for a similar example). These eLORETA distributions 
are fully consistent with their CSD counterparts, but also 
extend previous CSD findings. For example, a deep me-
dial source for the 9.0  Hz component and inferotemporal 
sources for both the 9.0 and 10.5 Hz components are only 
evident with the eLORETA source model. Whereas the low 
alpha component (peak at 9.0  Hz) demonstrated a robust 
eyes open/closed Berger effect, the EC − EO difference for 
the high alpha component (10.5 Hz) was more modest. The 

strongest condition differences for low alpha were near pri-
mary visual cortex, which is consistent with a role of low 
alpha to inhibit ongoing activity in areas important for vi-
sion while the eyes are closed (Klimesch, 1999; Sadaghiani 
& Kleinschmidt, 2016; Tenke et al., 2015). By comparison, 
high alpha was less affected by closing of the eyes, with 
trend‐level condition differences apparent in parietal lobes; 
interestingly, these parietal high alpha sources overlap 
with brain regions important for cross‐modal attention and 
working memory performance (Figure 3; Haegens, Cousijn, 
Wallis, Harrison, & Nobre, 2014; Klimesch, 1999; Knyazev 
et al., 2011; Sadaghiani & Kleinschmidt, 2016; Tenke et 
al., 2015). Moreover, it has been noted that high alpha is 
more likely to be affected by attention/cognition manipu-
lations than low alpha (see Klimesch, 1999; Sadaghiani 
& Kleinschmidt, 2016, for reviews). Overall, these re-
sults align with a body of work demonstrating that narrow 
bands of the alpha frequency are spatially and function-
ally dissociable (Barzegaran et al., 2017; Buzsáki, 2006; 
Frauscher et al., 2018; Klimesch, 1999, 2018; Sadaghiani 
& Kleinschmidt, 2016).

The spectral component structure of alpha was relatively 
invariant to different spatial filters (CSD vs. eLORETA), in-
cluding spherical splines of varying flexibility that are differ-
entially sensitive to different generator configurations (i.e., 
shallow vs. deep, narrow vs. broad; Kayser & Tenke, 2015b; 
Tenke & Kayser, 2015), suggesting that the latent structure of 
resting alpha activity is robust to differences in identification 
and quantification methodology. Indeed, the latent structure 
of spectral data is remarkably homogeneous across studies, 
given that researchers have identified spectral components 
with 8.6 and 10.9 Hz peaks (Tenke & Kayser, 2005), 9.0 and 
10.5 Hz peaks (Tenke et al., 2011), 8.0 and 10.0 Hz peaks 
(Shackman et al., 2010), 8.5 and 10.0 Hz peaks (Barry & de 
Blasio, 2018), and 9.0 and 10.0 Hz peaks (Barzegaran et al., 
2017). Altogether, findings for resting EEG have been highly 
consistent at identifying two distinct alpha bands (8–9 Hz and 
10–11 Hz) using data‐driven approaches like fPCA, indicat-
ing that resting‐state alpha is easily quantified at rest as well 
as across a wide range of conditions (Tenke et al., 2015; see 
also Tenke et al., 2017).

4.3 | Relationships between theta and alpha
Interrelationships between biomarkers indicated good psy-
chometric properties for alpha and theta spectral components 
(i.e., fPCA‐based), whereas psychometrics for typical frontal/
rACC theta measures were poor. For example, associations 
between spectral measures varied sizably as a function of 
spatial normalization (Table 1). The correlation between raw 
rACC and a 9.0  Hz component approached the magnitude 
of validity coefficients, whereas normalized rACC theta was 
uncorrelated with the low alpha component. The opposite 
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relationship was observed for the 10.5 Hz alpha component. 
Similar results were found for normalized MF θ at the scalp. 
Collectively, results suggest that theta metrics are influenced 
by different variance sources depending on whether normali-
zation is used.

In contrast, component‐based metrics demonstrated good 
convergent and discriminant validity. Coefficients for alpha 
metrics on the validity diagonal were large, indicative of 
convergence across measures, and distinct from the rACC 
theta biomarker. A similar pattern was evidenced for theta 
components: theta components correlated highly with one 
another across methods, moderately with conventional theta 
metrics, and demonstrated small correlations with alpha 
components.

As a caveat, it should be noted that power‐power coupling 
has been observed between theta and alpha, so relationships 
between these measures could reflect a combination of spu-
rious and true neural interactions (Cohen & Van Gaal, 2013; 
Klimesch, 2018; Popov et al., 2018). However, spectral over-
lap and/or leakage seems to be a more parsimonious expla-
nation for theta‐alpha correlation during the resting state. 
Insofar as alpha amplitudes contribute to normalized theta 
amplitudes, the mere variation of using spatial normalization 
versus raw theta may account for discrepancies between re-
ports (compare Arns et al., 2015 and Pizzagalli et al., 2018). 
In fact, some researchers have used a combination of theta 
and alpha activity to successfully predict MDD prognosis, 
for example, by averaging across a 3–12 Hz frequency band 
(Hunter et al., 2011; Leuchter, Cook, Gilmer, et al., 2009; 
Leuchter, Cook, Marangell, et al., 2009). Altogether, the 
current findings strongly indicate that posterior alpha com-
ponents and a 6.5–8.0 Hz rACC theta metric covary, and it 
seems likely that suboptimal measurement of rACC theta 
contributes to an undesirable conflation of frontal theta and 
posterior alpha biomarkers.

4.4 | Limitations
While this study employed both design and analysis pipe-
lines of previous biomarker research to improve comparabil-
ity (Tenke et al., 2017), conventional cross‐trial averaging of 
the resting state is a poor representation of true dynamic in-
ternetwork communication (Allen & Cohen, 2010; Buzsáki, 
2006; Vidaurre et al., 2018). Accordingly, the study is limited 
by a lack of parallel event‐related data for examining theta 
and theta‐alpha interactions, analyses amenable to aperiodic 
signals, and a direct comparison of EEG oscillations during 
task performance versus resting. Recordings of event‐related 
EEG may have also facilitated interpretation of functional 
differences in posterior alpha components, for instance, by 
linking different alpha components to visual processing and/
or working memory capacity (e.g., Haegens et al., 2014; 
Tenke et al., 2015).

Although fPCA has the advantage of providing a simple 
and straightforward linear representation of the latent vari-
ance structure within a given data set, it has the disadvan-
tage that it may not “carve nature at its joints.” Specifically, 
Varimax‐fPCA, as used here, is a linear decomposition 
that reveals orthogonal spectral components (e.g., Tenke & 
Kayser, 2005), although it is probable that neural activity 
is neither linear nor orthogonal (e.g., Delorme et al., 2012). 
Whereas an orthogonal rotation provides the advantage of 
maintaining components that do not share variance and are 
in this sense parsimonious (Kayser & Tenke, 2005, 2006a), 
oblique rotation methods may provide superior estimates 
under certain conditions (Barry & De Blasio, 2018; Dien, 
Beal, & Berg, 2005; Scharf & Nestler, 2018). Recent work 
with relaxed orthogonality constraints has demonstrated a 
similar component structure to the present findings, albeit 
with an overall improved component loading morphology 
(e.g., non‐negative component loadings; Barry & De Blasio, 
2018). These methodological issues will require further study 
in the context of spectral decomposition. Nonetheless, the 
simplified representation afforded by the present approach is 
unique, replicable, and consistent with prior work (Tenke & 
Kayser, 2005; Tenke et al., 2011) and therefore adequate to 
address the questions posed in this report.

Notwithstanding that the present findings firmly convey 
the notion that a combination of weak rACC theta, spectral 
leakage, and spatial normalization are a parsimonious expla-
nation for variable findings across studies, it is important to 
note that these studies also differed in several other critical 
aspects. First, the present data were from healthy adults only 
and did not include resting EEG from MDD patients, which 
have been characterized by larger theta amplitudes at rest 
(Arns et al., 2015). Arguably, a more valid and robust mea-
sure of theta should be a better predictor of clinical outcomes; 
however, this was not directly tested in this report and should 
therefore be a focus in future work examining comparative 
predictive validity for treatment outcome in MDD patients 
(Trivedi et al., 2016). Second, previous treatment failure with 
antidepressant medication (Hunter et al., 2013), differences 
in MDD severity (compare Arns et al., 2015 to Pizzagalli et 
al., 2018), use of relative frequency indices (e.g., Leuchter et 
al., 2017), and variation in time between EEG recording and 
treatment initiation (Hunter et al., 2013) constitute additional 
moderators (see Pizzagalli et al., 2018, for examples) of the 
relationship between theta and symptom improvement in 
MDD. Future work will need to examine how these putative 
moderators affect prediction of clinical outcomes in individ-
uals with MDD.

4.5 | Toward improving theta quantification
The present findings argue for several methodological im-
provements to theta quantification. First, researchers should 
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consider adopting reference‐free (Kayser & Tenke, 2010, 
2015b, 2015c; Tenke & Kayser, 2012; Nunez et al., 2019) 
and multivariate data‐decomposition techniques (Bridwell et 
al., 2018; Delorme & Makeig, 2004; Tenke & Kayser, 2005) 
as a general strategy for analyzing EEG data. The present 
findings showing enhanced validity for CSD/eLORETA‐
fPCA spectral components attest to the importance and ben-
efits of this strategy. Second, conventional spectral averaging 
of rACC theta should pivot toward event‐related and induced 
designs rather than relying on a resting‐state paradigm. Third, 
examining resting‐state theta may significantly benefit from 
approaches that oversample theta bursts or are otherwise sen-
sitive to aperiodic theta oscillations. We describe these pos-
sible improvements and their rationale in more detail below.

The quantification of observations (neural, self‐report, 
or otherwise) into latent variables that reflect unobservable 
constructs of interest is of considerable interest and im-
portance to the field (e.g., Meehl, 1995; Patrick & Hajcak, 
2016). EEG source separation techniques facilitate interpre-
tation, identification, and quantification of EEG signals by 
reducing observed EEG variance into latent variables (e.g., 
components) that index some unobserved neural generators 
(Barry & De Blasio, 2018; Cohen, 2017a, 2017b; Delorme 
et al., 2012; Kayser & Tenke, 2010; Tenke & Kayser, 2005). 
This is important because signal mixing in the raw EEG 
dilutes measurement of variance pertinent to psychologi-
cal constructs of interest. Spatial normalization should be 
avoided in this regard because it enhances signal mixing. At 
the very least, results from spatially normalized and raw data 
should be reported in parallel. Source separation techniques 
also facilitate localization of neural activity to specific brain 
regions and produce results that are invariant to EEG refer-
ence choice (see Cohen, 2017a; Delorme & Makeig, 2004; 
Kayser & Tenke, 2010, 2015b; Pascual‐Marqui, Michel, & 
Lehmann, 1994, for examples and detailed discussions of 
this persistent pitfall). This is important for clinical utility, 
as specific brain regions likely have differential relatedness 
to psychiatric outcomes, and EEG reference choices will 
vary from clinic to clinic. There are myriad techniques and 
tools available to accomplish these aims, yet it remains to be 
seen which specific techniques are best for clinical predic-
tion (Bridwell et al., 2018; Delorme et al., 2012; Jaworska 
et al., 2019). Nonetheless, pivoting toward analyses focused 
on latent variables should substantially advance biomarker 
development and utility.

Task‐based theta is likely to be a more robust and valid 
measure of cognitive control than resting theta (e.g., Li et 
al., 2016; Schacter, 1977), especially when using multisec-
ond FFT averages. Resting theta is confounded by sleepiness 
and ocular artifact (Schacter, 1977; Strijkstra et al., 2003), 
resting theta oscillations are more likely to appear as tran-
sient bursts than a continuous rhythm (e.g., Keitel & Gross, 

2016; Vidaurre et al., 2018), and resting theta is inversely 
correlated with default mode activity (Scheeringa et al., 
2008). In this way, conventional FFT‐based analyses com-
puted over multiple seconds of resting EEG are poorly suited 
for assessing random and aperiodic theta bursts. By compar-
ison, when theta bursts are presumed to be more frequent 
and sustained, FFT may be suitable as is the case when theta 
activity is induced by sustained cognitive load (e.g., during a 
memory encoding period or during mental computation; Li 
et al., 2016; Schacter, 1977). Similarly, event‐related designs 
benefit from time‐locked theta bursts that consistently ap-
pear over trials, whereas the influence of background EEG 
is attenuated by averaging. Thus, clinical neuroscience could 
refocus its efforts toward induced and event‐related theta 
when applying conventional FFT analyses for quantification 
of frontal theta.

Alternatively, FFT analyses may be amenable to assessing 
resting theta when theta bursts are oversampled prior to aver-
aging. For example, researchers can comb through the resting 
state for specific neural events (e.g., oscillatory bursts) and 
then oversample these events for averaging. Specifically, Allen 
and Cohen (2011) extracted the top 1% of alpha bursts from 
the resting EEG as their indicator of alpha activity and found 
that the magnitude of the top 1% of alpha bursts accounted 
for a remarkable 42% of the variance in prediction of depres-
sion status (history or current depression). A similar approach 
could also be adopted with rACC theta: researchers can apply 
a narrow‐band temporal filter to continuous EEG for the theta 
band (e.g., 4–8 Hz) and identify time points from the contin-
uous EEG corresponding to large theta bursts (at FCz, for ex-
ample), and then analyze only epochs with large theta bursts 
using a typical FFT to calculate spectral amplitude. Another 
approach by Cohen (2017b) created epochs time locked to os-
cillatory bursts and then submitted these epochs to an EEG 
source separation technique (leaving out a substantial amount 
of the remaining background EEG). This approach guides 
source separation based upon experimenter theory and/or in-
terest (i.e., the specific neural events that were oversampled); 
moreover, Cohen (2017b) demonstrated convincingly that this 
technique improves SNR, mitigates multiple comparisons, and 
simplifies EEG analyses (also see Parra & Sajda, 2003; Parra, 
Spence, Gerson, & Sajda, 2005). These results underscore the 
importance of transient neural events buried in the continuous 
EEG that are typically weakened by a conventional FFT ap-
proach that relies on averaging across all resting epochs.

Notwithstanding that this report did not directly investi-
gate all of these considerations, known limitations of FFT 
spectral averaging, along with findings from previous stud-
ies, strongly suggests that implementing techniques that 
circumvent these pitfalls of conventional spectral analyses 
should improve the clinical utility of resting‐state EEG 
dynamics.
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4.6 | Conclusion
In close agreement with prior research, two distinct poste-
rior alpha components dominated the resting EEG spectrum. 
Most importantly, both posterior alpha components revealed 
psychometric qualities supportive of their continued devel-
opment as candidate EEG biomarkers: good reliability across 
sessions, convergent validity between methods (CSD and 
eLORETA), and discriminant validity with rACC theta. In 
contrast, rACC theta showed relatively low convergent valid-
ity across methods and poor discriminant validity with pos-
terior alpha components. Nonetheless, a low‐variance theta 
component demonstrated substantial advantages over rACC 
theta as is typically calculated, especially with regard to con-
vergent and discriminant validity. Overall, these findings 
argue against the continued use of the rACC theta metric as 
originally proposed (i.e., recorded at rest, spatial normaliza-
tion, fixed band limits). Instead, task‐based assays, empiri-
cal identification of meaningful theta sources, and analyses 
that are amenable to aperiodic theta dynamics may be a more 
promising avenue for identifying theta biomarkers with high 
clinical utility (Iosifescu, 2011; Stewart, Coan, Towers, & 
Allen, 2011; Tenke et al., 2011; Wade & Iosifescu, 2016; 
Widge et al., 2018).
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