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Major depression is currently defined on the basis of clinical 
criteria and encompasses a heterogeneous mix of neuro-
biological phenotypes1. This heterogeneity may account 

for the modest superiority of antidepressant medication over pla-
cebo (Cohen’s d of ~0.3)2–6. Work over the past two decades has 
suggested that resting-state EEG (rsEEG) may be able to identify 
treatment-predictive heterogeneity in depression7–10. Specific atten-
tion has been paid to prefrontal and parietal signals carried by the 
ϑ (4–7 Hz) and α (8–12 Hz) frequency bands7–13. However, due to 
lack of cross-validation and small sample sizes, previous studies 
have either identified nonspecific predictors that do not differenti-
ate between response to drug versus placebo, such as rostral ante-
rior cingulate ϑ current density11–13 or failed to yield robust (that is, 
generalizable) and reproducible neural signatures that are predic-
tive at the individual patient level8. As such, we still lack a robust 
neurobiological signature for an antidepressant-responsive pheno-
type that could identify which patients will derive a large benefit 
from medication. Delineating such a signature would advance both 
a neurobiological understanding of treatment response and yield 
important clinical implications.

To identify a robust antidepressant-responsive depression 
phenotype, machine learning can be used to combine across the 

complex multivariate relationships existing within rsEEG data. 
An effective predictive rsEEG computational model, however, 
must deal with three critical challenges. The first is a smearing 
of signal and noise resulting from volume conduction due to 
each electrode picking up neural signals from multiple sources, 
and adjacent electrodes detecting neural signals from the same 
sources14. Second, there is a risk of overfitting the model given 
the high spatiotemporal dimensionality and noisiness of EEG 
data15,16. Third, there are challenges in simultaneously optimizing 
feature identification and fitting of predictive regression models 
due to the nonlinearity of the error function with respect to the 
model parameters17.

To address each of these challenges, we developed a machine-
learning algorithm that we called Sparse EEG Latent SpacE 
Regression (SELSER). The data were derived from four studies. 
First, we established the rsEEG predictive signature by training 
SELSER on data derived from the largest neuroimaging-coupled 
placebo-controlled randomized clinical study of antidepressant effi-
cacy (n = 309). We then used three additional datasets to validate 
our findings. Together, these efforts aimed to reveal a treatment-
responsive phenotype in depression, dissociate between medication 
and placebo response, establish its mechanistic significance and 
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provide initial evidence for the potential for treatment selection on 
the basis of an rsEEG signature.

Results
Development of SELSER. We developed SELSER (Fig. 1 and 
Methods) to address the challenges mentioned above and identify a 
robust signature from EEG data that could predict response to anti-
depressants. Signal identification and mitigation of volume conduc-
tion are accomplished by amplifying signal-to-noise ratio through 
use of spatial filters18. Each spatial filter transforms the multichannel 
EEG data into a single latent signal, the power of which is used as a 
feature for the machine-learning algorithm. Because model fitting is 
performed under a sparse constraint on the number of spatial filters, 
this also serves to reduce the dimension of the underlying latent sig-
nals and thus, decrease the chance of overfitting. Finally, we math-
ematically formulated the outcome prediction framework as solving 
a convex problem that related EEG time series to the treatment out-
come directly, yielding a single and globally optimal solution19. This 
approach can be contrasted, for example, with regression models 
being applied to channel-level rsEEG power measures, which does 
little to mitigate volume conduction. Likewise, conventional latent-
space methods, such as independent-component analysis (ICA)20 
and principal-component analysis (PCA) are not optimal, in that 
they are unsupervised approaches not directly related to optimizing 
the model fit to the treatment outcome prediction target. In light 
of previous rsEEG work7–9, we predicted that SELSER-established 
neural signals drawn from ϑ and α frequency bands would most 
strongly predict treatment outcome.

Data were drawn from four studies. Establishment of the treat-
ment-predictive rsEEG signature was accomplished with data from 
the Establishing Moderators and Biosignatures of Antidepressant 
Response in Clinic Care (EMBARC) study21. EMBARC is the larg-
est neuroimaging-coupled placebo-controlled randomized clini-
cal trial (RCT) in depression to date and involved randomization 
of 309 medication-free depressed outpatients (n = 228 with high 
quality rsEEG data) to receive either the selective serotonin reup-
take inhibitor sertraline or placebo for 8 weeks (Supplementary 
Fig. 1). Eyes-open and eyes-closed EEG data were collected before 
randomization at four sites in the United States, each of which 
used a different high-density EEG system and/or electrode mon-
tage (60 or more electrodes). Clinical outcome was assessed on 
the 17-item clinician-administered Hamilton Depression Rating 
Scale (HAMD17).

The generalizability of the antidepressant-predictive signature 
was then tested in a second independent sample of depressed patients 
(n = 72), for whom we had historical information about treatment 
response during the current depressive episode, as well as rsEEG 
data. A third independent sample of depressed patients (n = 24) 
was used to assess two features of the treatment-predictive rsEEG 
signature: convergent validity and neurobiological significance. 
Specifically, we tested whether expression of our rsEEG signature 
correlated with another machine-learning signature we developed 
based on task-based functional magnetic resonance imaging (fMRI) 
activation in EMBARC22, as this would provide further convergent 
validation of the rsEEG signature identified here. We also tested in 
the third sample whether regions that were prominent in the rsEEG 
signature reflected individual differences in cortical responsivity, as 
directly assessed through single-pulse transcranial magnetic stimu-
lation (TMS) during concurrent EEG recording.

Finally, in a fourth depressed sample (n = 152) that was treated 
with either 10-Hz left dorsolateral prefrontal repetitive TMS (rTMS) 
or 1-Hz right dorsolateral prefrontal rTMS (both with concurrent 
psychotherapy), we tested whether the strength of the EMBARC-
trained rsEEG signature predicted outcome with an antidepressant 
treatment that has a putatively different mechanism of action. This 
allowed us to test the generalizability of our results and open up the 
potential for treatment selection by defining the neural predictors of 
antidepressant response.

Treatment prediction from pretreatment resting EEG using 
SELSER. We built prediction models using pretreatment rsEEG 
by applying SELSER to each of four canonical EEG frequency 
bands (ϑ, 4–7 Hz; α, 8–12 Hz; β, 13–30 Hz; γ, 31–50 Hz) in each 
resting condition (two 2-min blocks each of eyes open or eyes 
closed). Treatment outcome was quantified as the pre- minus post-
treatment difference in HAMD17 scores, with missing endpoint 
values imputed to maintain an intent-to-treat framework. Model 
performance was tested using tenfold cross-validation (Fig. 1 and 
Supplementary Fig. 2; Methods).

For the sertraline arm, only α signals from the resting eyes open 
(REO) condition were significantly predictive of the observed 
treatment score changes during cross-validation (Fig. 2a; Pearson’s 
r = 0.60, r.m.s. error (r.m.s.e.) = 5.68, Bonferroni-corrected 
P = 2.88 × 10−11; permutation test-verified using 1,000 permuta-
tions, P < 10−3). When the sertraline-trained model was applied to 
the placebo arm, however, outcome could not be predicted (Fig. 2b; 
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Fig. 1 | End-to-end prediction of the treatment outcome with a latent-space model. The model consists of three stages: (1) spatial filtering that linearly 
transforms the EEG signals to the latent signals; (2) band power feature extraction that computes the band power of each latent signal; and (3) linear 
regression that uses the band powers to predict the treatment outcome. By solving a convex optimization problem, all the unknown parameters (spatial 
filters and linear regression weight coefficients) are optimized in conjunction under a unified objective function that trades off between the prediction error 
and dimensionality of the latent signals. S1, S2 and SN refer to Subject 1, Subject 2 and the Nth Subject, respectively. C1, C2, F1, F2 and Pz refer to example 
electrode locations according to the 10/10 international system. (·)2 denotes the square operator and ∫t denotes the average of a time series over time.
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Pearson’s r = −0.03, r.m.s.e. = 9.77, P = 0.63), thus demonstrating the 
specificity of this model for sertraline efficacy prediction (Fisher’s 
z-test: z = 4.94, P = 8 × 10−7). Application of SELSER to α-frequency 
REO rsEEG signals could not, however, predict baseline HAMD17 
scores (Pearson’s r = 0.06, r.m.s.e. = 6.10, P = 0.27), thus illustrating 
that the treatment-predictive model was not related to the severity 
of baseline depression.

As a result of the algorithm-enforced low-dimensionality con-
straint on the latent signals in SELSER, only a few latent signals 
were obtained in each model (Supplementary Fig. 3). For the 
sertraline α REO model, the scalp and cortical spatial maps of 
the two latent signals with the most positive and negative regres-
sion weights are shown in Fig. 2c,d, respectively. The spatial pat-
tern of the latent signal with the most positive regression weight 
was mainly centered around the right parietal-occipital regions, 
in line with previous work23. In contrast, the spatial pattern of  
the latent signal with the most negative regression weight was 
heavily concentrated in both the lateral prefrontal and parieto-
occipital regions.

We also tested the effects of the amount of data on model fitting 
and found that performance began degrading when fewer than 
two blocks of 1.5 min each per patient were used (Supplementary 
Figs. 4 and 5).

For the placebo arm, both α signals from the REO and resting eyes 
closed (REC) conditions significantly predicted the HAMD17 score 
change (REO: Fig. 3a, Pearson’s r = 0.41, r.m.s.e. = 6.34, Bonferroni-
corrected P = 2.73 × 10−5; and REC: Fig. 3c, Pearson’s r = 0.31, 
r.m.s.e. = 7.60, Bonferroni-corrected P = 4.13 × 10−3; permutation 
test-validated P < 10−3). The spatial maps of the two latent signals 
with the most positive and negative regression weights are shown in 
Supplementary Fig. 6 for the REO and REC conditions. For the REO 
condition, the spatial patterns of the latent signals were predominantly 
in the temporal and occipital regions, whereas for the REC condition, 
frontal-parietal and frontal regions were the most prominent. When 
applied to the sertraline arm, both regression models failed to predict 
outcome (Fig. 3b,d; Fisher’s z-test, z > 2.98, P < 3 × 10−3), demonstrat-
ing the specificity of these models for placebo outcome prediction 
and distinction from the sertraline-predictive model above.
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Fig. 2 | Prediction of outcome specific to sertraline using SELSER on REo α-frequency range data. a, A 10 × 10 stratified cross-validation prediction of 
HAMD17 change in the sertraline arm (n = 109) using SELSER. Pearson’s r = 0.60, Bonferroni-corrected P = 2.88 × 10−11 based on the one-sided test against 
the alternative hypothesis that r > 0. b, Application of the sertraline-trained model to the placebo arm (n = 119) failed to predict outcome, demonstrating 
the specificity of the model for sertraline prediction. Pearson’s r = −0.03, P = 0.63 based on the one-sided test against the alternative hypothesis that 
r > 0. c, Scalp spatial patterns of the SELSER latent signals, with the most positive (β = 759.31; left) and negative (β = −853.13; right) regression weights, 
respectively (n = 109). d, Cortical spatial patterns of the SELSER latent signals, with the most positive (β = 759.31; left) and negative (β = −853.13; right) 
regression weights, respectively (n = 109). e, Purely for the purpose of visualizing the utility of the rsEEG predictive signature, patients in each arm were 
partitioned into the low and high groups by applying a median split on the cross-validated predicted HAMD17 score changes for sertraline response. The 
response rate was then calculated for each group (defined as a 50% or greater decrease in symptoms from baseline). SER, sertraline (blue); PBO, placebo 
(red). f, Treatment prediction across study sites in a leave-study-site-out cross-validation on the α REO sertraline model (n = 109). CU, Columbia 
University; TX, University of Texas Southwestern Medical Center; UM, University of Michigan; MG, Massachusetts General Hospital. Site effect was 
corrected for by removing the mean of the covariance matrix from each study site before the SELSER analysis. Pearson’s r = 0.45, Bonferroni-corrected 
P = 9.89 × 10−6 based on the one-sided test against the alternative hypothesis that r > 0.
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To visualize how the SELSER predictions in Fig. 2a could be 
used for treatment stratification, we partitioned the patients in each 
arm by applying an arbitrary median split on the cross-validated 
predicted HAMD17 score changes derived from the sertraline α 
REO model. We then calculated the rates of treatment response 
(≥50% reduction in symptoms) for the portion of patients above 
the median (‘high’) and below the median (‘low’), respectively, 
based on the model-predicted HAMD17 change scores (Fig. 2e 
and Supplementary Fig. 7). For the sertraline arm, the high group 
reached a response rate of 65%, which more than tripled the 
response rate (20%) in the low group and was considerably higher 
than the response rates in the placebo arm (35% and 34% for the 
high and low groups, respectively).

Treatment prediction across study sites. To further assess the 
generalizability of the prediction models to unseen data collected 
with different EEG amplifiers, a leave-study-site-out analysis 
was performed by iteratively using three study sites’ data to train 
the model, and the fourth site’s data for testing the model. Since  
the four study sites’ EEG data were acquired with different EEG 

amplifiers and/or electrode montages (Supplementary Table 2), 
marked variability of prediction performance was observed across 
study sites (Supplementary Fig. 8). To mitigate this site effect, the 
mean of the covariance matrix was removed from each study site 
before the SELSER analysis. For the sertraline arm, only the α REO 
model was significantly predictive of the treatment outcome when 
performing leave-study-site-out cross-validation (Fig. 2f; Pearson’s 
r = 0.45, r.m.s.e. = 7.02, Bonferroni-corrected P = 9.89 × 10−6; per-
mutation test-validated using 1,000 permutations, P < 10−3).This 
demonstrates the robustness of our model for unseen data from a 
different EEG amplifier (arguably a worst-case scenario with respect 
to testing through cross-validation). An equivalent fourfold cross-
validation model sampling across all sites remained strongly predic-
tive (Pearson’s r = 0.58, r.m.s.e. = 5.63, P = 1.59 × 10−11; permutation 
test-validated using 1,000 permutations, P < 10−3). Further restrict-
ing the sample size via twofold cross-validation across all sites 
yielded a lower yet still highly significant predictive performance 
(Pearson’s r = 0.38, r.m.s.e. = 6.32, P = 2.25 x 10−5). For the placebo 
arm, none of the REO and REC models was predictive of the treat-
ment outcome when cross-validating between study sites (Pearson’s 
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Fig. 3 | Prediction of outcome specific to placebo using SELSER on α-frequency range data. a,c, A 10 × 10 stratified cross-validation prediction of HAMD17 
change in the placebo arm (n = 119) using SELSER on REO (Pearson’s r = 0.41, Bonferroni-corrected P = 2.73 × 10−5 based on the one-sided test against the 
alternative hypothesis that r > 0) (a) and REC (Pearson’s r = 0.31, Bonferroni-corrected P = 4.13 × 10−3, based on the one-sided test against the alternative 
hypothesis that r > 0) (c) α-frequency range data. b,d, Application of the REO (Pearson’s r = −0.13, P = 0.91, based on the one-sided test against the 
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r < 0.22, r.m.s.e. > 7.90, Bonferroni-corrected P > 0.07). The sertra-
line leave-study-site-out α REO predictive model also still showed 
significantly greater specificity in predicting sertraline over placebo 
response (Fisher’s z-test, z = 3.83, P = 10−4).

Comparison of SELSER predictions to previous methods. 
To benchmark SELSER against conventional machine-learning 
approaches that do not use latent-space modeling, we also trained 
linear regression models on eyes open rsEEG data by using a rel-
evance vector machine (RVM)24 on channel-level α band power25,26,  
ϑ band power27,28 and ϑ cordance13,23 (Supplementary Figs. 9 and 10).  
However, none of the models was predictive of the treatment 
outcome on cross-validation (Pearson’s r < −0.06, r.m.s.e. > 8.20, 
P > 0.74). Moreover, to demonstrate the improvement of SELSER 
over conventional latent-space modeling approaches, we also 
trained the RVM on α band power of the latent signals extracted 
with PCA29 (Supplementary Fig. 9d) or ICA25 (Supplementary  
Fig. 9e), which are among the most popular unsupervised meth-
ods to derive spatial filters from EEG (Supplementary Fig. 10). Here 
also, both models failed to predict the treatment outcome (Pearson’s 
r < 0.15, r.m.s.e. > 7.17, P > 0.09).

Treatment prediction from symptoms. Assessing brain activa-
tion for defining an individual’s sertraline-responsive phenotype 
may not be relevant in practice if lower-cost measures, such as 
clinical severity scores, demographic variables or historical factors 
like childhood trauma exposure could usefully predict outcome. 
This did not prove to be the case, however, as RVM trained with 
all of these was only modestly predictive (Supplementary Fig. 11; 
Pearson’s r = 0.26, r.m.s.e. = 7.93, P = 3 x 10−3 for sertraline, and 
Pearson’s r = 0.16, r.m.s.e. = 9.56, P = 0.05 for placebo) and worse 
if using only the Quick Inventory of Depressive Symptomatology 
(QIDS) scale (Pearson’s r = 0.12, r.m.s.e. = 6.85, P = 0.12 for ser-
traline and Pearson’s r = 0.06, r.m.s.e. = 6.72, P = 0.26 for placebo). 
Sertraline outcome prediction with clinical measures was also 
significantly weaker than the α REO rsEEG model above (Fisher’s 
z-test, z = 3.11, P = 0.0019).

Testing the generalization of the rsEEG sertraline-predictive sig-
nature. We next tested the generalizability of the SELSER rsEEG 
sertraline-predictive signature from EMBARC in a second inde-
pendent cohort of patients with depression. This cohort of patients 
were drawn from a naturalistic, longitudinal depression study in 
which rsEEG data were recorded at the baseline visit30. Patients also 
completed the Antidepressant Treatment Response Questionnaire 
(ATRQ), which provided historical information about the number 
of adequate antidepressant medication trials in the current episode, 
as well as whether patients responded to them or not. Following con-
ventional groupings, patients were categorized as either treatment 
resistant (two or more failed antidepressant trials; n = 21) or as par-
tial responders (partial response to at least one medication; n = 51). 
The mean-removal site correction procedure was performed for the 
rsEEG data, as for the leave-study-site-out analysis of the EMBARC 
study. We then applied the EMBARC-trained sertraline α-band 
rsEEG model to each patient, yielding a predicted HAMD17 change 
for each individual, which reflects their strength of expression of the 
sertraline-predictive rsEEG signature. As expected, the predicted 
HAMD17 change was higher for the partial-responder group than the 
treatment-resistant group (Fig. 4), demonstrating the generalizability 
of the EMBARC rsEEG sertraline signature to the broader construct 
of treatment responsiveness and resistance to antidepressant medica-
tion. Moreover, information on the number of within-episode failed 
antidepressant trials was available for 45 of the 72 patients. Also as 
expected, we found a negative correlation between the number  
of failed trials and the magnitude of the rsEEG sertraline signature-
predicted HAMD17 improvement (Pearson’s r = −0.34, P = 0.023).

Convergence between rsEEG- and task-fMRI-derived machine-
learning predictions. To test the convergent validity of the sertra-
line rsEEG model from EMBARC, we examined a separate dataset 
of 24 patients with depression who were assessed in a cross-sec-
tional manner (without treatment) using both rsEEG and task-
based fMRI with the emotional conflict task22. The reason for doing 
so is that we could test whether the predicted HAMD17 change 
based on the EMBARC-trained sertraline rsEEG model correlated 
with the predicted HAMD17 change based on an fMRI emotional 
conflict task-based machine-learning model that we established in 
a separate analysis of EMBARC data22 (Methods). Since the EEG 
data were recorded with yet another amplifier distinct from those 
used in EMBARC, the mean-removal site correction procedure 
was performed. The rsEEG and task-fMRI predictions were signifi-
cantly correlated with each other in these independent data (Fig. 5a; 
Pearson’s r = 0.44, P = 0.02). This finding provides convergent sup-
port, across fMRI and EEG, for the existence of a treatment-respon-
sive neurobiological phenotype in major depressive disorder across 
populations and across assessment modalities.

TMS and EEG correlates of rsEEG phenotype. Next, to provide 
further insight into the neural signals driving our sertraline-predic-
tive rsEEG-defined phenotype, we analyzed concurrent single-pulse 
TMS and EEG (spTMS and EEG)31 data from the third indepen-
dent depression sample as used above. Specifically, we sought to 
test whether cortical responsivity, as assessed by direct stimula-
tion using spTMS and EEG to regions either prominent or mini-
mal within the spatial patterns of the rsEEG latent signals, induced 
neural responses that correlated with the rsEEG-defined treatment-
predictive phenotype. The stimulated regions were the bilateral pos-
terior dorsolateral prefrontal cortices (pDLPFC), anterior DLPFC 
(aDLPFC), along with primary visual cortex (V1) and bilateral 
primary motor cortices (M1) as the control regions (Fig. 5b). We 
localized pDLPFC and aDLPFC using neuronavigation on the basis 
of their being nodes within the frontoparietal and salience resting-
state networks, respectively, as we have conducted in our previous 
work32. To quantify the correlation between the spTMS and EEG 
responses and the sertraline-predictive rsEEG phenotype, we again 
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Fig. 4 | Prediction of treatment outcome by the EMBARC-trained 
sertraline rsEEG model, applying to baseline eyes open rsEEG of the 
second depression study cohort. The plot shows the predicted HAMD17 
change for patients who are partial responders (n = 51) or resistant to 
treatment (n = 21). These data demonstrate that the predicted HAMD17 
change is significantly larger in patients who are partial responders than  
in those who are treatment resistant (two-sample and two-sided Student’s 
t-test P = 0.016). Error bars depict s.e.m.
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employed SELSER to relate spTMS and EEG data to the sertra-
line rsEEG signature (Fig. 5c). Correlations between the sertraline 
rsEEG phenotype and spTMS and EEG responses to stimulation 
observed at three of four prefrontal cortical regions survived correc-
tion for multiple comparisons. This included right aDLPFC stimu-
lation (α band, 200–400 ms, Pearson’s r = 0.60, false discovery rate 
(FDR)-corrected P = 5.5 × 10−4), left pDLPFC stimulation (γ band, 
200–400 ms, Pearson’s r = 0.58, FDR-corrected P = 8 × 10−4) and 
right pDLPFC stimulation (β band, 0–200 ms, Pearson’s r = 0.60, 
FDR-corrected P = 4.6 × 10−4). Correlation of responses to stimula-
tion of primary motor or visual cortices did not survive correction.

Sertraline signature assessment in a combined repetitive TMS 
and psychotherapy treatment study. In light of the sertraline rsEEG 
phenotype indexing cortical responsivity to stimulation at several 
DLPFC locations, we next considered whether the strength of this 
phenotype could predict outcome with rTMS treatment in depres-
sion. Analyses were performed on a fourth previously reported 
dataset of patients with depression and pretreatment rsEEG record-
ings, who received at least ten sessions of simultaneous rTMS 
and psychotherapy and were on a stable medication regimen33,34. 
Treatment involved rTMS applied with either a 10-Hz protocol over 
the left DLPFC (n = 64) or a 1-Hz protocol over the right DLPFC 
(n = 88; Methods). We computed each patient’s expression of the 

EMBARC-trained sertraline rsEEG model (expressed as predicted 
HAMD17 change) using the same mean site removal procedure as 
above. Symptoms were assessed with the Beck Depression Inventory 
(BDI) and the three subscales of the Depression, Anxiety and Stress 
Scale (DASS), separately by an rTMS protocol, using linear mixed 
models and a Bonferroni correction for eight comparisons (two fre-
quencies and four outcome measures). One relationship survived, 
wherein less rsEEG-predicted HAMD17 change with sertraline 
was associated with greater response to 1-Hz rTMS on the DASS 
(rsEEG-predicted HAMD17 sertraline change × time interaction: 
F(1,128) = 9.02, P = 4 × 10−3; Fig. 6). This suggests that patients who 
fail to respond to sertraline may be more amenable to 1-Hz right 
DLPFC rTMS, providing a potential evidence-based treatment 
selection approach for depression. This relationship was also spe-
cific to 1-Hz right DLPFC rTMS, as we found a treatment protocol 
× predicted HAMD17 change × time interaction when including 
both arms in a linear regression (F(1,126) = 4.54, P = 0.035).

Discussion
Here we developed an rsEEG-optimized latent space computational 
model, called SELSER, with which we obtained robust prediction 
of antidepressant outcome and moderation (differential predic-
tion) between outcome with an antidepressant versus placebo in  
a large placebo-controlled study. The antidepressant-predictive  
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signature identified using SELSER on α frequency range eyes-open 
rsEEG data was superior to conventional machine-learning mod-
els or latent modeling methods, such as ICA or PCA. This signa-
ture was furthermore superior to a model trained on clinical data 
alone, was able to predict outcome on rsEEG data acquired at a 
study site not included in the model training set and which used 
a different EEG amplifier and/or electrode montage and related to 
general antidepressant responsiveness and resistance in a separate 
depression sample. The attributes of our SELSER model support its 
potential utility in the context of real-world clinical care and with 
regard to stratification of future depression studies based on the 
expected antidepressant-specific treatment outcome for that indi-
vidual. Critically, though promising and highly influential signals 
for antidepressant prediction with rsEEG have been reported for the 
past two decades7–9,35, previous signals neither moderated between  
outcome with an antidepressant versus placebo, nor provided  
robust individual patient-level prediction. Our present work is thus 
distinguished from previous findings on both fronts.

We also found evidence of multimodal convergent validity for 
our rsEEG antidepressant-response signature in a third depression 
dataset by virtue of its correlation with expression of a task-based 
fMRI signature that we recently identified using EMBARC data22. 
The strength of our rsEEG signature also correlated with prefrontal 
neural responsivity, as indexed by direct stimulation with spTMS 
and EEG. This led us to test the relationship between the sertraline 
rsEEG model and treatment outcome with rTMS in a fourth sample. 
There, we found an opposite relationship between sertraline-pre-
dicted improvement and observed treatment outcome with 1-Hz 
right DLPFC rTMS. This finding also opens an exciting avenue  
for neural signature-driven treatment selection in depression.

From a neural mechanism perspective, we note that the sertraline 
SELSER model revealed both positively and negatively weighted pos-
terior cortical eyes open rsEEG signals, but only heavily negatively 

weighted prefrontal signals. Considering suggestions that resting 
α power reflects inhibitory tone in a brain region36,37, the negative 
weighting of prefrontal α in our sertraline model suggests that the 
prefrontal cortices of better treatment responders are more active 
or excitable than those of poor responders. The positive and nega-
tive weights for posterior signals suggests that optimizing the bal-
ance of distinct posterior predictive signals may be what is critical to 
establishing a robust computational model. Prediction analysis using 
electrodes exclusively from posterior regions corroborates this claim 
(Supplementary Fig. 12). Our results are broadly in line with previous 
reports of better outcomes being associated with greater posterior 
cortical α power23. However, a large-scale study that lacked a placebo 
control arm failed to replicate these findings38. Thus, as our RVM 
model trained on channel-level α power failed to predict outcome, 
the critical element in attaining individual-level robust outcome pre-
diction may be the use of a latent-space computational model.

Perhaps somewhat surprising is that only eyes open α rsEEG, 
but not eyes closed, was predictive of the treatment outcome, 
given that the α rhythm is more strongly present in the eyes closed 
condition. One explanation is that the increasing α rhythm dur-
ing the eyes closed condition is indicative of cortical areas being 
deactivated39 and thus may contribute to background noise rather 
than predictive signal. This view is consistent with motor inten-
tion decoding work, wherein the goal has been to enhance the dif-
ference between the μ motor rhythm, while suppressing the more 
broadly distributed α rhythm40,41.

The present work does not directly inform the cognitive and 
emotional information processing relevance of the antidepressant-
response rsEEG signature. However, the relationship between the 
rsEEG signature and one derived from task-based fMRI data from 
EMBARC22 suggests that individuals with stronger expression of the 
rsEEG signature may be better able to regulate emotional conflict.

We utilized a range of cross-validation methods (including on 
data from entirely unseen study sites and collected on different EEG 
equipment), compared prediction of outcome with sertraline versus 
placebo across cross-validation methods and tested for generaliza-
tion of the signals across a number of complimentary datasets. As 
such, our data provide neurobiological evidence that an antidepres-
sant-responsive phenotype exists within the biological heterogene-
ity characteristic of the broader clinical diagnosis of depression. 
These findings thereby not only advance a ‘personalized’ approach 
to depression1,5,42, but also demonstrate that antidepressants only 
seem to be modestly more effective than placebo because they are 
typically given to an unselected sample of patients with depression.

If replication and extension of this phenotype to other antide-
pressant medications is successful in progressively larger and more 
diverse datasets, the rsEEG signature we identified may be helpful 
in deciding whether a patient should continue further medication 
trials after an initial failure with an antidepressant medication or 
switch to treatments with putatively different mechanisms of action 
(such as rTMS, electroconvulsive therapy (ECT) or psychotherapy). 
Indeed, patients with depression often undergo many medication 
trials before advancing to other treatments, such as rTMS43,44, 
which are effective for some medication-resistant patients45,46. This 
could result in potentially avoidable morbidity and economic cost 
if they are switched to another intervention earlier on the basis of 
evidence of little expected benefit with an antidepressant using our 
rsEEG signature.

Our finding of an opposite relationship between predicted 
change with sertraline, and treatment outcome with 1-Hz rTMS 
and concurrent psychotherapy, directly supports the potential for 
these findings to guide treatment selection in depression, pend-
ing further replication. Furthermore, as the sertraline-predictive 
rsEEG signature did not predict outcome with 10-Hz rTMS dur-
ing concurrent psychotherapy, this suggests that it is the effect of 
the specific rTMS protocol that is being predicted rather than the 
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Fig. 6 | Prediction of treatment outcome with right DLPFC 1-Hz rTMS 
treatment by the EMBARC-trained sertraline rsEEG model, applying 
to pre-rTMS eyes open rsEEG. The scatterplot shows the pre and post-
treatment scores for patients on the Anxiety subscale of the DASS 
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effects of psychotherapy, though further investigation with rTMS 
treatment without psychotherapy is needed for this to be conclusive. 
Of note, this opposite direction prediction between antidepressants 
and rTMS is consistent with our previous work as well as that of oth-
ers. More intact default-mode network connectivity in the iSPOT-D 
study predicted better treatment outcome with antidepressant treat-
ment47, whereas more disrupted default-mode network connectivity 
predicted outcome with rTMS in a clinic-based cohort48.

There are also several limitations to consider. First, our specific 
prediction findings remain to be replicated in an entirely inde-
pendent sample and it is not known whether the sertraline signa-
ture predicts outcome with a broader class of selective serotonin 
reuptake inhibitors or antidepressant medication more generally. 
Second, EMBARC assessed all patients while they were medication-
free at baseline. Thus, while this removes potential confounders 
from the experimental design, it also limits generalizability to typi-
cal outpatients, who are often already on an antidepressant. Finally, 
SELSER is a static latent-space modeling approach that does not 
consider resting EEG dynamics. Dynamic latent-space models have 
been recently developed to predict mood from multisite intracorti-
cal human brain signals49.

In summary, we developed a rsEEG-optimized latent-space 
computation model that was capable of robustly predicting treat-
ment outcome with the antidepressant sertraline and distinguish-
ing between response to sertraline versus placebo at the individual 
patient level and which may furthermore support treatment selec-
tion between medication and rTMS. Together, these findings 
ground in individual-level neurobiology a treatment-responsive 
phenotype obscured within the broader clinical diagnosis of 
depression and its associated biological heterogeneity and lay a 
path toward machine-learning-driven personalized approaches to 
treatment in depression.
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Methods
EMBARC study. Trial registration. Establishing Moderators and Biosignatures of 
Antidepressant Response for Clinical Care for Depression (EMBARC) is registered 
with ClinicalTrials.gov (identifier: NCT 01407094).

Participants and treatment. Written informed consent was obtained from each 
participant under institutional review board (IRB)-approved protocols at 
each of the four study sites: University of Texas Southwestern Medical Center, 
Massachusetts General Hospital, Columbia University and University of Michigan. 
Data reported here are based on EMBARC participants who were randomly 
assigned to sertraline or placebo during stage 1 of the trial (N = 309 total). Key 
eligibility for the study included the following: being 18–65 years old; having major 
depression as a primary diagnosis by the Structured Clinical Interview for DSM-IV 
Axis I Disorders (SCID); at least moderate depression severity with a score ≥14 
on the QIDS Self Report scale at screening and randomization; a major depressive 
episode beginning before age 30; either a chronic recurrent episode (duration ≥2 
years) or recurrent major depressive disorder (at least two lifetime episodes); no 
antidepressant failure during the current episode. Exclusion criteria included the 
following: current pregnancy, breastfeeding or no use of contraception; lifetime 
history of psychosis or bipolar disorder; substance dependence in the past 6 months 
or substance abuse in the past 2 months; unstable psychiatric or general medical 
conditions requiring hospitalization; study medication contraindication; clinically 
significant laboratory abnormalities; history of epilepsy or condition requiring an 
anticonvulsant; ECT, vagal nerve stimulation, TMS or other somatic treatments in 
the current episode; medications (including but not limited to antipsychotics and 
mood stabilizers); current psychotherapy; high suicide risk; or failure to respond to 
any antidepressant at an adequate dose and duration in the current episode.

Clinical trial. EMBARC used a double-blind design, wherein participants were 
randomized to an 8-week course of sertraline or placebo. Randomization was 
stratified by site, depression severity and chronicity using a block randomization 
procedure. Sertraline dosing began at 50 mg using 50 mg capsules and was 
increased as tolerated if the patient did not respond until a maximum dose of 
200 mg. A similar dosing approach was used for placebo capsules.

Clinical outcome measure. Our primary outcome was the HAMD17. For participants 
lacking an endpoint HAMD17, multiple imputation by chained equations was 
conducted in R using the package mice50. The following observed variables 
were utilized to impute endpoint HAMD17 values for missing data via Bayesian 
regression: baseline HAMD17, week 1 HAMD17, week 2 HAMD17, week 3 HAMD17, 
week 4 HAMD17, week 6 HAMD17, baseline QIDS total score, baseline Mood 
and Symptom Questionnaire subscale scores for Anxious Arousal, Anhedonic 
Depression and General Distress, Snaith–Hamilton Pleasure Scale total score,  
age, years of education, sex and Wechsler Abbreviated Scale of Intelligence t-scores 
for Vocabulary and Matrix Reasoning.

Resting-state EEG acquisition. An rsEEG was recorded from each of the four study 
sites. The EEG amplifier settings are summarized in Supplementary Table 1. At all 
study sites, amplifier calibrations were performed. Experimenters were certified 
by the Columbia EEG team after demonstrating accurate EEG cap placement and 
delivery of task instructions via video conference and then submitting satisfactory 
EEG data from a pilot subject.

An rsEEG was recorded during four 2-min blocks (two blocks for eyes-closed 
and two blocks for eyes open) in a counterbalanced order. Participants were 
instructed to remain still and minimize blinks or eye movements and to fixate  
on a centrally presented cross during the eyes-open condition.

Resting-state EEG preprocessing. The recorded rsEEG data were cleaned offline with 
our in-house fully automated artifact rejection pipeline, thereby minimizing the 
biases in preprocessing possible with manual rejection of artifacts. The steps are 
briefly described as follows: (1) EEG data were resampled to 250 Hz; (2) the 60-Hz 
AC line noise artifact was removed using CleanLine (www.nitrc.org/projects/
cleanline); (3) nonphysiological slow drifts in the EEG recordings were removed 
using a 0.01-Hz high-pass filter; (4) the spectrally filtered EEG data were then re-
referenced to the common average; (5) bad epochs were rejected by thresholding 
the magnitude of each epoch. Bad channels were rejected based on thresholding 
the spatial correlations among channels. Subjects with more than 20% bad 
channels were discarded. The rejected bad channels were then interpolated from 
the EEG of adjacent channels via the spherical spline interpolation; (6) remaining 
artifacts were removed using ICA. Independent components (ICs) related to the 
scalp muscle artifact, ocular artifact and ECG artifact, were automatically rejected 
using a pattern classifier trained on expert-labeled ICs from another independent 
EEG dataset; and (7) EEG data were re-referenced to the common average. After 
artifact rejection, 54 EEG channels common to all four study sites were identified 
and extracted for each subject. Subjects whose total powers across all the channels 
were beyond three s.d. of the mean total power were discarded. Consequently, of 
the 266 patients with pretreatment EEG recordings, 228 had usable EEG data for 
analyses. The baseline sociodemographic and clinical information of these 228 
patients is provided in Supplementary Table 1. The 38 patients with unusable EEG 

recordings mainly had too many bad EEG channels and exceedingly large total 
power across channels.

Second depression study cohort (validating rsEEG antidepressant-predictive 
signature). Participants and treatment. The second depression study was carried 
out at University of Texas Southwestern Medical Center, which is one of the four 
study sites in EMBARC30. Written informed consent was obtained under an IRB-
approved protocol at University of Texas Southwestern Medical Center. Individuals 
were eligible for the study if they were aged 10 years or older and could speak, read 
and understand English. To be included, participants needed to have a lifetime 
or current diagnosis of a mood disorder (major depressive disorder, persistent 
depressive disorder, bipolar I/II/NOS, bipolar/mood disorder with psychotic 
features or depressive disorder otherwise specified (subthreshold)) based upon a 
semi-structured diagnostic interview.

Exclusion criteria included the following: history of schizophrenia, 
schizoaffective disorders or chronic psychotic disorders based upon a semi-
structured diagnostic interview; inability to provide a stable home address and 
contact information; having had any condition for which, in the opinion of the 
investigator or designee, study participation would not be in their best interest 
(including but not limited to marked cognitive impairment, unstable general 
medical condition, intoxication or active psychosis) or that could prevent, limit, 
or confound the protocol-specified assessments; or requirement for immediate 
hospitalization for psychiatric disorder or suicidal risk as assessed by a licensed 
study clinician.

Screening and baseline assessments. Whenever possible, screening and baseline 
assessments took place on the same day and began after informed consent was 
obtained. A potential participant’s eligibility was determined following review of 
the inclusion and exclusion criteria and assessment with the Mini-International 
Neuropsychiatric Interview. In addition to a number of self-reported symptom 
measures, which are outside the scope of the current analysis, patients completed 
the ATRQ at the initial visit, which is a self-rated scale for determining treatment 
resistance in major depressive disorders, within the current depressive episode.

Once eligibility requirements were met, baseline procedures were completed 
over two visits depending on the needs of the individual participant. In the event 
of a split visit, neuroimaging and EEG procedures could be performed on separate 
days. This study captured a range of information including sociodemographics, 
general clinical data, physical exam, blood and stool samples, behavioral testing, 
neuroimaging and EEG, though here we focus only on the EEG data, given the 
scope of the present study.

Resting-state EEG acquisition. EEG signals were acquired with two EEG amplifiers, 
each for a different portion of the participants. The first amplifier was the same 
62-channel NeuroScan SynAmps amplifier (NeuroScan) used in EMBARC with 
identical acquisition parameters. The second amplifier was the Net Amps 300 
amplifier with the high-density 256-channel HydroCel Geodesic Sensor Net 
(Electrical Geodesic). Cz was used as the reference electrode and the sampling rate 
was set at 1,000 Hz. Electrode impedances were kept below 50 kΩ. A total of 35 
and 37 participants’ EEG data were collected using the first and second amplifiers, 
respectively. Participants were seated on a comfortable reclining chair and were 
instructed to remain awake and let their mind naturally wander in the eyes-closed 
paradigm and then fixate a given point in the eyes-open paradigm, with each 
paradigm in two 2-min blocks.

Resting-state EEG preprocessing and analysis. The recorded rsEEG data were 
cleaned offline with the identical fully automated artifact rejection pipeline as used 
in EMBARC. After artifact rejection, 54 EEG channels common to all four study 
sites in EMBARC were identified and extracted for each subject. Subjects whose 
total powers across all the channels were beyond three s.d. of the mean total power 
were discarded.

Third depression study cohort (correlation between rsEEG antidepressant-
predictive signature and fMRI signature and with TMS and EEG response 
to probe stimulation). Participants. Written informed consent was obtained 
from each participant under an IRB-approved protocol at Stanford University. 
Participants in the study underwent several assessments during a clinical intake 
interview to determine eligibility and classification for the study. The diagnosis 
of depression (and comorbid conditions) was assessed by a clinician using the 
SCID, as for EMBARC. Key eligibility for the study included the following: age 
18–50 years old; no current psychotherapy; free of metal or ferrous implant; 
good English comprehension and nonimpaired intellectual abilities to ensure 
understanding of task instructions; no history of neurological disorders, 
brain surgery, electroconvulsive or radiation treatment, brain hemorrhage or 
tumor, stroke, epilepsy, hypo- or hyperthyroidism; no daily use of as-needed 
benzodiazepines or opiates (maximum 3× per week) or daily thyroid medications 
and no antidepressant, anticonvulsant or antipsychotic medications for >2 weeks 
(fluoxetine >6 weeks). Exclusion criteria included the following: left-handed; did 
not graduate from an English-speaking high school and English was not their first 
language; psychiatric medications (including but not limited to antipsychotics 
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and mood stabilizers) and hormonal and/or cancer medications; current 
psychotherapy; current rTMS treatment or ECT treatment; loss of consciousness 
greater than 30 min and/or a loss of memory greater than 24 h; lifetime evidence 
of psychosis, mania, hypomania or bipolar disorders and/or manic episodes on the 
SCID; diagnosis of substance dependence within the past 3 months (but not abuse). 
Overall, 24 subjects for whom resting EEG, spTMS and EEG and task-fMRI data 
were all acquired were considered in the subsequent analyses.

Resting EEG acquisition. EEG recordings were acquired with a BrainAmp 
DC amplifier (sampling rate: 5 kHz; measurement range: ±16.384 mV; cutoff 
frequencies of the analog high-pass and low-pass filters: 0 and 1 kHz) and the Easy 
EEG cap with 64 extra-flat, freely rotatable, sintered Ag–AgCl electrodes (Brain 
Products). The electrode montage followed an equidistant arrangement extending 
from below the cheekbone back to below the inion. Electrode impedances 
were kept below 5 kΩ. An electrode attached to the tip of the nose was used 
as the reference. Participants were seated on a comfortable reclining chair and 
were instructed to remain awake and let their mind wander in the eyes-closed 
paradigm and then fixate a given point in the eyes-open paradigm, each for 3 min. 
Recordings were immediately assessed for quality using a custom MATLAB 
(R2014b, The Mathworks) script and rerun if necessary.

Resting-state EEG preprocessing. The recorded rsEEG data were cleaned offline with 
the identical fully automated artifact rejection pipeline as used in EMBARC.

Emotional conflict task. This well-characterized paradigm assesses both emotional 
conflict and emotional conflict regulation51. Each trial involved presentation of 
an emotional face with either a fearful or happy expression, drawn from the set 
of Ekman and Friesen, with an overlaid emotion word (‘FEAR’ or ‘HAPPY’). 
Participants were instructed to identify the facial emotion with a key press, while 
trying to ignore the emotion word. The task consisted of 148 trials, with stimuli 
presented for 1,000 ms in a fast event-related design. Interstimulus intervals 
were 3,000–5,000 ms in a pseudo-randomized order, counterbalanced for facial 
expression, sex, word and response button. Stimuli were either congruent (such  
as, fearful face with ‘FEAR’) or incongruent (such as, fearful face with ‘HAPPY’) 
and stimuli were furthermore balanced to achieve an equal fraction of current  
and previous trial congruency, while ensuring no direct stimulus repetitions. 
Before performance of the task during neuroimaging, all participants  
underwent a practice version to ensure task proficiency was reached (minimum 
80% accuracy) and the task instructions were understood. The neuroimaging  
task lasted 13 min and 14 s.

Regulation in the emotional conflict task occurs via an implicit process 
when conflict trials are preceded by other conflict trials51,52. That is, while 
emotional conflict results in slowing of reaction times, this effect can be mitigated 
in incongruent trials that follow incongruent trials (iI trials), compared to 
incongruent trials that follow congruent trials (cI trials). This trial-to-trial adaptive 
regulation of emotional conflict reflects an active process by which the brain 
increases emotional control in response to previous trial conflict, which then 
benefits regulation of emotional conflict on the subsequent trial (captured by the 
iI–cI contrast). This regulation effect, captured through the same contrast, has 
also been extensively described for nonemotional conflict stimuli53. Critically, this 
contrast between post-incongruent incongruent and post-congruent incongruent 
trials compares brain responses to physically identical stimuli (incongruent trials) 
that differ only on the relative emotional conflict regulatory context in which they 
come due to previous trial congruency and is furthermore independent of the 
incongruent versus congruent trial (I–C) conflict response contrast. Neuroimaging 
acquisition parameters are shown in Supplementary Table 3.

fMRI preprocessing and first-level modeling. FSL tools were used to preprocess 
imaging data54. Functional images were first realigned to structural images using 
an affine registration matrix and boundary-based registration on the basis of 
tissue segmentation as implemented in FSL’s FLIRT, which was concatenated 
with a nonlinear normalization of each participant’s T1 image to the Montreal 
Neurological Institute (MNI) 152-person 1-mm3 T1 template using FNIRT 
from FSL v.5.0 to result in a single transformation step from individual native 
functional space to a structurally aligned and spatially normalized template space. 
Functional images were realigned to the middle volume of the run. Nuisance 
signals corresponding to segmented white matter and cerebrospinal fluid were 
regressed out of motion-corrected functional images. A 6-mm full-width half 
maximum isotropic smoothing kernel was then applied to preprocessed time 
series images to account for individual anatomical variability. To ensure the 
quality of imaging measures, we instituted cutoffs for absolute level of motion 
(r.m.s. of the absolute level of movement <4 mm across the mean of the squared 
maximum displacements in each of the six translational and rotational parameters 
estimated during realignment). In addition, to ensure brain activation measures 
reflect task-relevant metrics, we also instituted a minimum level of behavioral 
accuracy during completion of the emotional conflict task as an additional quality 
control metric (total accuracy ≥70% of trials correct). Functional runs displaying 
motion higher than our cutoff or accuracy below the minimum cutoff were 
excluded from further analyses.

For individual-level analyses for each participant, regressors modeling trials 
of interest were convolved with the hemodynamic response function. First-level 
general linear models were estimated in SPM 8 (ref. 55). Regressors corresponded to 
zero-duration markers set at the onset of stimuli, which were explicitly categorized 
by congruency (incongruent or congruent) and previous trial type (post-
incongruent or post-congruent) to model conflict response and regulation effects. 
This resulted in four different trial types in total, in addition to nuisance regressors 
for error trials and post-error trials (when applicable) and six motion parameters.

Single-pulse TMS and EEG acquisition. Following an anatomical MRI (T1-
weighted, 3T) to determine MRI-guided spTMS targets, subjects received 
spTMS using a Cool-B B6 5 butterfly coil and a MagPro X100 TMS stimulator 
(MagVenture). Stimulations were delivered to V1, M1, pDLPFC and aDLPFC in a 
randomized order for each subject. Among these stimulation sites, M1 was defined 
as the hand knob in the standard MNI space (MNI coordinate: (−38, −18, 64) for 
left M1 and (40, −18, 64) for right M1). V1 was defined by its MNI anatomical 
target (MNI coordinate: (0, −100, 2)). For pDLPFC and aDLPFC, the stimulation 
sites were targeted on the basis of the location of the frontoparietal (executive) 
control network and ventral attention (salience) network in separate resting-state 
fMRI data (MNI coordinate: (−32, 42, 34) for left aDLPFC, (30, 50, 26)  
for right aDLPFC, (−38, 22, 38) for left pDLPFC and (46, 26, 38) for right 
pDLPFC). Following our previous work, these targets were established using 
a group ICA on a separate cohort of 38 participants, with the pDLPFC and 
aDLPFC targets representing peak voxels within the middle frontal clusters of 
these two networks22,32. Coordinates for the pDLPFC and aDLPFC stimulation 
targets were then transformed to individual subject native space using nonlinear 
spatial normalization with FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and used 
for TMS targeting. The resting motor threshold was determined as the minimum 
stimulation intensity that produced visible finger movement of the right hand 
at least 50% of the times when the subject’s left M1 was stimulated. TMS coil 
placement was guided by Visor2 LT 3D neuronavigation system (ANT Neuro) 
based on co-registration of the functionally defined target to each participant’s 
structural MRI (T1-weighted, slice distance 1 mm, slice thickness 1 mm, sagittal 
orientation, acquisition matrix 256 × 256) acquired with a 3T GE DISCOVERY 
MR750 scanner. The TMS coil was placed in a posterior to anterior direction, 
with an angle of 45° to the nasion–inion axis (studying the optimal coil angles is 
beyond the scope of this paper). Each target site was stimulated with 60 pulses 
(biphasic TMS pulses, 280-µs pulse width, 120% resting motor threshold, 1,500-ms 
recharge delay), interleaved at a random interval of 3 s ± 300 ms. A thin foam pad 
was attached to the surface of the TMS coil to decrease electrode movement. The 
subjects were instructed to relax and to fixate at a cross located on the opposing 
wall, while stimulations were administered by a research assistant.

The same TMS-compatible 64-channel BrainAmp DC amplifier as for rsEEG 
recordings was used to record spTMS and EEG data. Electrode impedances were 
kept below 5 kΩ. An electrode attached to the tip of the nose was used as the 
reference. DC correction was manually triggered at the end of the stimulations at 
each site to prevent the saturation of the amplifier due to DC drift.

Single-pulse TMS and EEG preprocessing. The recorded spTMS and EEG data were 
cleaned offline with ARTIST, which is a fully automated artifact rejection algorithm 
for spTMS and EEG56 as follows: (1) the initial 10-ms data segment following 
TMS pulses was discarded to remove the large stimulation-induced electric 
artifact; (2) the EEG data were downsampled to 1 kHz; (3) big-decay artifacts were 
automatically removed using ICA on the basis of thresholding; (4) the 60-Hz AC 
line noise artifact was removed by a notch filter; (5) nonphysiological slow drifts 
in the EEG recordings were removed using a 0.01-Hz high-pass filter and high-
frequency noise was removed by using a 100-Hz low-pass filter; (6) the spectrally 
filtered EEG data were then re-referenced to the common average and epoched 
with respect to the TMS pulse (−500 to 1,500 ms); (7) bad trials were rejected by 
thresholding the magnitude of each trial. Bad channels were rejected on the basis 
of the spatial correlations among channels. The rejected bad channels were then 
interpolated from the EEG of adjacent channels; and (8) remaining artifacts were 
automatically removed using ICA. ICs related to the scalp muscle artifact, ocular 
artifact and ECG artifact, were rejected using a pattern classifier trained on expert-
labeled ICs from other TMS and EEG datasets.

Fourth depression study cohort (prediction of outcome with rTMS treatment). 
Participants. This study was a naturalistic open-label clinical study and has been 
previously reported in greater detail elsewhere33. Briefly, patients were drawn 
from three outpatient mental healthcare clinics in the Netherlands (neuroCare 
Clinic Nijmegen, neuroCare Clinic The Hague and Psychologenpraktijk Timmers 
Oosterhout) between May 2007 and November 2016. Inclusion criteria included 
(1) a primary diagnosis of nonpsychotic major depressive disorder or dysthymia; 
(2) BDI, second edition, Dutch version (BDI-II-NL) ≥ 14 at baseline; and (3) 
treatment with at least ten sessions of rTMS over the DLPFC or response within 
the ten sessions. All participants signed an informed consent under an approved 
IRB-approved protocol. Additional exclusion criteria included previous ECT 
treatment, epilepsy, traumatic brain injury, current psychotic disorder, wearing a 
cardiac pacemaker or metal parts in the head and current pregnancy.
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Treatment. All patients were treated with either a high-frequency (10 Hz) protocol 
over the left DLPFC or a low-frequency (1 Hz) protocol over the right DLPFC or 
both sequentially. The rTMS data included a long time span and the rTMS protocol 
applied was never based on clinical symptomatology. In the beginning (2006–2012) 
the standard protocol applied was 10-Hz left DLPFC rTMS and only in some cases 
1-Hz right DLPFC rTMS was applied (when there were concerns for safety, such 
as, paroxysmal activity or seizure risk) due to 1-Hz rTMS being considered a safer 
protocol. On first inspection of those data28, it was found that the clinical benefits 
for 10 Hz and 1 Hz were indistinguishable, after which time period the standard 
protocol became 1 Hz right DLPFC33. The analyses reported here focus on patients 
who received only 10-Hz or 1- Hz rTMS, as too few datasets were available on 
patients who received both treatments or switched treatments mid-way. There 
were 73 patients in the 10-Hz arm, of which 64 had high quality EEG data, whereas 
in the 1-Hz arm there were 104 patients, of which 88 had high quality EEG data. 
Selection of the treatment protocol was not performed in a randomized manner, 
but rather in the context of clinical care and thus each arm is analyzed separately. 
rTMS was performed using a Magstim Rapid2 (Magstim Company) or a Deymed 
DuoMag XT-100 stimulator with a figure-of-eight coil, 70 mm in diameter. For the 
10-Hz protocol, rTMS was administered at 10 Hz over the left DLPFC, 110–120% 
of the resting motor threshold, 30 trains of 5-s duration, inter-train interval of 30 s 
and 1,500 pulses per session. The 1-Hz protocol consisted of rTMS at 1 Hz over the 
right DLPFC, 110–120% motor threshold, 120 trains of 10 s duration, inter-train 
interval of 1 s and 1,200 pulses per session. In the case of both protocols,  
the low-frequency protocol was administered first with a shorter duration of 1,000 
pulses per session and subsequently the high-frequency protocol was administered 
at full length. The DLPFC was localized using either the 5-cm rule or the Beam 
F3/F4 method. Furthermore, rTMS treatment was complemented with cognitive 
behavioral psychotherapy by a trained psychologist. Psychotherapy was performed 
concurrently with the rTMS treatment in 45-min sessions (rTMS lasting 20 min). 
Sessions took place with a minimum frequency of two to three times per week and 
a maximum frequency of two per day, as per the patient’s availability.

As these data were drawn from naturalistic clinical care, the total number of 
sessions depended on clinical decisions and thus varied across patients. Decisions 
to continue treatment were based on the response to treatment, clinical evaluation 
of symptom severity and the patient’s own request. Decisions followed several 
rules: if a BDI decrease was observed of at least 20% from baseline ten sessions, 
the treatment was continued and re-evaluated every five sessions. If no response 
occurred by session 20–25, treatment was recommended to be terminated unless 
the patient requested to extend it. If BDI scores reached 12 or below for five 
sessions, which indicated remission, the patient was given the option of ending 
or tapering treatment, with an option to extend into maintenance sessions (one 
session every 6–8 weeks). However, if the threshold of BDI = 12 was reached,  
but symptom improvement continued, treatment was continued until BDI  
scores ceased improving.

Clinical outcome measures. Clinical outcome was assessed on the BDI (which was 
the primary outcome measure for the decision rules above) as well as the DASS57. 
The DASS is a self-report questionnaire and consists of three subscales: depression 
(DASSD), anxiety (DASSA) and stress (DASSS). Each scale consists of 14 items  
with a four-point severity score, with a maximum total score of 42 on each scale. 
The patient is asked to fill in the items based on experiences in the previous week.

Resting EEG acquisition. EEG data were acquired from 26 channels according to the 
10–20 electrode international system (Quickcap; NuAmps). Data were referenced 
to averaged mastoids with a ground at Fpz. The sampling rate of all channels was 
500 Hz. A low-pass filter with attenuation of 40 dB per decade above 100 Hz was 
employed before digitization. Subjects were asked to rest quietly with their eyes 
open and eyes closed for 3 min each.

Preprocessing of resting-state EEG and clinical outcome metrics. The recorded rsEEG 
data were cleaned offline with the identical fully automated artifact rejection 
pipeline as used in EMBARC. Missing data in the clinical metrics were imputed in 
the same manner as in the EMBARC data, separately by treatment arm.

Machine-learning analysis. Sparse EEG latent-space regression. We developed an 
end-to-end machine-learning algorithm for predicting the treatment outcome 
from the baseline resting EEG. This algorithm, referred to as SELSER, optimizes 
a latent-space model that maps the resting EEG data to the treatment outcome by 
minimizing the prediction error, subject to a constraint on the dimensionality of 
the latent signals. The band powers in each of the four canonical EEG frequency 
bands (ϑ, 4–7 Hz; α, 8–12 Hz; β, 13–30 Hz; γ, 31–50 Hz; filtered using zero-phase 
FIR filters) are employed as the features. Due to the volume conduction, these band 
power features are best captured in a latent space rather than in the sensor space. 
For this purpose, SELSER optimizes a set of spatial filters to linearly transform the 
multichannel EEG signals in the sensor space to low-dimensional latent signals.  
A linear regression model is then built to relate the band powers of the latent 
signals to the treatment outcome.

More formally, SELSER models the treatment outcome yi for the ith subject  
as follows (i = 1, …, M):

ŷi ¼ f Xi; fwkgLk¼1; fβkg
L
k¼1; b

� 
¼

XL

k¼1

βkw
T
kXiX

T
i wk=N þ b ð1Þ

where Xi 2 RC ´N

I
 denotes the filtered EEG data for the ith subject, C is the number 

of channels and N is the number of sampled time points. ŷi
I

 denotes the predicted 
treatment outcome for the ith subject. wk 2 RC

I
 is the kth spatial filter (k = 1, …, L), 

βk is the kth weight coefficient of a linear regression model and b is the intercept of 
the linear regression model. As can be seen in Supplementary Fig. 10a, prediction 
is carried out in three phases: (1) the multichannel EEG signals are transformed 
to L latent signals fskgLk¼1

I
 via L spatial filters fwkgLk¼1 : sk ¼ XT

i wk

I
; (2) the band 

powers of the L latent signals fzkgLk¼1
I

 are calculated: zk ¼ sTk sk=N
I

; and (3) a linear 
regression model βk; bf gLk¼1

I
 is used to combine the band powers of the latent 

signals to predict the treatment outcome: ŷi ¼
PL
k¼1

βkzk þ b

I

. It is expected that each 
latent signal captures a certain portion of information predictive of the treatment 
outcome, quantitated by the band power of the rhythmic EEG activity.

Unlike conventional approaches, where the unknown parameters in the spatial 
filters and regression model, namely wk; βk; bf gLk¼1

I
, were optimized separately 

under distinct objective functions which may or may not be directly associated 
with the treatment outcome, we proposed a computationally efficient algorithm 
(see next section) for optimizing all the model parameters by directly minimizing 
the mean-squared prediction error PN

i¼1
ŷi � yið Þ2

I

 while preventing L from getting 

too large to guard against overfitting.

Parameter optimization in SELSER. Let Ci ¼ XiXT
i =N

I
 denote the EEG spatial 

covariance matrix. The predicted treatment outcome can be represented 
alternatively as the following58:
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 is a symmetric matrix. Tr ð Þ

I
 stands for the 

trace operator, which takes the sum of the diagonal elements of a matrix. Suppose 
the spatial filters fwkgLk¼1

I
 are orthogonal to each other, then fwkgLk¼1

I
 and fβkgLk¼1

I
 

are the eigenvectors and eigenvalues of W, respectively. As a result, optimizing 
fwkgLk¼1
I

 and fβkgLk¼1
I

 amounts to optimizing W, after which fwkgLk¼1
I

 and fβkgLk¼1
I

 
can be obtained by performing eigendecomposition of W.

However, the number of unknown parameters in W, C(C + 1)/2, is typically 
much larger than the number of training samples, hence simply minimizing the 
prediction error is prone to model overfitting. To address this issue, in addition to 
minimizing the prediction error, we added the rank of W, which is equal to L, as 
a penalty term into the objective to limit the dimensionality of the latent signals, 
yielding the following optimization problem:

min

W; b

XM

i¼1

ŷi � yið Þ2 þ λ Wk k0; ð3Þ

where Wk k0
I

 denotes the rank of W. However, equation (3) is NP-hard  
(requiring non-deterministic polynomial time) and the rank penalty  
is nonsmooth. Alternatively, the following nuclear norm has been widely  
used as a convex surrogate of the rank of matrices in a wide range of  
applications in signal processing and machine learning58–60:

Wk k*¼
XL

k¼1

σk; ð4Þ

where σkf gLk¼1
I

 are the singular values of W. Consequently, replacing W0 with  
W*, yields

min

W; b

XM

i¼1

ŷi � yið Þ2þλ Wk k*: ð5Þ

Equation (5) is a convex optimization problem, as the objective function is a 
convex function of W and b. The global minimum solution can be obtained with 
the accelerated proximal gradient method61.

To remove the intersubject variability due to the overall power variation, 
for each subject Ci is normalized by dividing its trace before SELSER analysis: 
Ci ¼ Ci=TrðCiÞ
I

.

RVM. To compare with SELSER, RVM24 with the linear kernel was used to 
build sparse linear regression models for treatment prediction from non-
SELSER-optimized features. By leveraging a sparse prior to penalize overly 
complex models under the sparse Bayesian learning framework, RVM is able 
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to automatically select relevant features for prediction via marginal likelihood 
maximization. Hence, RVM obviates the need of additional validation data to 
determine the hyperparameters.

Treatment prediction using SELSER. We applied SELSER to each canonical EEG 
frequency band to predict the treatment outcome. To increase the sample size, each 
of the two blocks of EEG in each resting-state condition (eyes open or eyes closed) 
was treated as a separate sample for training the model. However, during the leave-
subject-out cross-validation, the two blocks from each subject were always grouped 
together, such that if one block was included in the training set, the other was also 
included. The predicted outcome of each subject was the average of the predicted 
outcomes of the two EEG blocks from the subject.

Visualizing spatial maps of latent signals. Each latent signal has a spatial map 
that could be visualized on both the scalp and cortical surface to facilitate 
neurophysiological interpretation. The scalp spatial maps were calculated  
as follows18:

As ¼ �C  V  �Cz ð6Þ

where As 2 RCxL

I
 contains the scalp spatial maps of the latent signals as columns, 

�C ¼
PN
i¼1

Ci 2 RCxC

I

 is the mean spatial covariance matrix of the EEG signals across 
subjects, V ¼ w1;    ;wL½  2 RCxL

I
 and �Cz ¼ VT �CV 2 RL ´ L

I
 is the mean covariance 

matrix of the latent signals across subjects.
To obtain the cortical spatial maps of the latent signals, a three-layer (scalp, 

skull and cortical surface) boundary element head model was computed with 
OpenMEEG62 based on the FreeSurfer average brain template63. A total of M 
(M = 15,002) fixed-orientation dipoles whose orientations were normal to the 
cortical surface were generated. The lead-field matrix B 2 RMxC

I
 relating the dipole 

activities to the EEG was obtained as a result of the boundary element modeling. A 
linear inverse matrix H 2 RCxM

I
 that maps the EEG signals to the cortical sources 

was then computed via the sLORETA algorithm64. The cortical spatial maps could 
subsequently be calculated as follows:

Ac ¼ H  As ð7Þ

where Ac 2 RMxL

I
 contains the cortical spatial maps of the latent signals as columns.

The spatial maps used for visualization were obtained by training SELSER on 
the entire EMBARC sample.

Treatment prediction using the channel-level α-band power or ϑ cordance features. 
To contrast with prediction approaches based on channel-level measures,  
we trained the RVM using the channel-level α-band power (Supplementary 
Fig. 10c) and ϑ cordance features, respectively. Cordance is a quantitative EEG 
measure that has been implicated as a predictive biomarker for antidepressant 
treatment13. In particular, it was reported that lower prefrontal ϑ cordance during 
the placebo lead-in phase predicted better antidepressant (fluoxetine, which is 
an selective serotonin reuptake inhibitor and venlafaxine, which is a serotonin–
norepinephrine reuptake inhibitor) treatment outcome65. The ϑ cordance  
was calculated for each participant via the following steps. (1) EEG power  
re-attribution: absolute re-attributed ϑ power of each electrode was calculated 
as the average of the ϑ band (4–7 Hz) power of all bipolar neighboring electrode 
pairs that share that electrode and absolute re-attributed total power of each 
electrode was calculated as the average of the total (1–50 Hz) power of all  
bipolar neighboring electrode pairs that share that electrode. Relative re-
attributed power of each electrode was calculated as the absolute re-attributed  
ϑ power divided by the average of the absolute re-attributed total power. (2) 
Spatial normalization: the absolute and relative re-attributed ϑ power values  
were each normalized by their average across channels. (3) Combination of 
absolute and relative power: ϑ cordance was calculated as the sum of the  
spatially normalized absolute and relative re-attributed ϑ power.

Treatment prediction using band power features of the latent signals extracted with 
ICA or PCA. SELSER was also benchmarked against prediction approaches using 
band power features of the latent signals estimated by ICA and PCA, respectively. 
ICA and PCA are widely used unsupervised approaches for estimating latent 
signals from EEG signals66,67, based on different statistical criteria (statistical 
independence is maximized among latent signals in ICA, whereas variances of 
the latent signals are maximized in PCA). Over the years, a multitude of ICA 
algorithms have been developed, as statistical independence could be quantified in 
a variety of ways68. In this work, we used the information maximization (Infomax) 
algorithm20 for performing ICA.

To align with the SELSER analyses, the prediction framework based on  
ICA and PCA followed the same workflow as used in SELSER (Supplementary  
Fig. 10b). Each subject’s EEG signal was first normalized by dividing the square 
root of its total power across channels. The latent signals were then estimated by 
applying ICA or PCA to temporally concatenated EEG signals across subjects. 
After that, the band powers of the full set of latent signals were computed as the 

features, followed by an RVM with the linear kernel that related the band power 
features to the HAMD17 score changes.

Performance evaluation using cross-validation. Stratified tenfold leave-subject-out 
cross-validation69 (Supplementary Fig. 2) was employed to assess the predictive 
performance of each prediction approach. More specifically, the data were 
randomly partitioned into ten subsets, such that each subset containing an 
approximately equal number of subjects from each of the four study sites. A subset 
was left out as the test data, and the remaining nine subsets were used as the 
training data. For SELSER, the regularization parameter λ was determined using an 
inner tenfold cross-validation on the training data. The process was then repeated 
ten times, where each of the ten subsets was used exactly once as test data. As a 
result, each subject had a predicted HAMD17 score change. To enhance the stability 
of the prediction, the data were randomized ten times and the stratified tenfold 
cross-validation was run on each randomized data. The median of the resulting ten 
predicted HAMD17 score changes of each subject was used as the final prediction. 
The prediction performance was then quantified by the Pearson’s correlation 
coefficient and r.m.s.e. between the cross-validated prediction of the HAMD17 
score change and the true HAMD17 score change. The P value for the one-tailed 
alternative hypothesis that the Pearson’s correlation coefficient was greater than  
0 was also reported.

Specificity of the prediction was tested by applying, at each fold of stratified 
10 × 10 cross-validation, the prediction model to the data from the other treatment 
arm, which was summarized for each participant by taking the median of the 100 
folds of cross-validation.

Statistical test. A nonparametric permutation test was used to assess the statistical 
significance of the treatment prediction results. The observed HAMD17 score 
changes were randomly shuffled across subjects 1,000 times. Each time the cross-
validated prediction procedure was repeated, resulting in a distribution of the 
Pearson’s correlation coefficient. The P value was then defined as the proportion of 
cross-validated correlation coefficients that were greater than the cross-validated 
correlation coefficient without permutation.

Application of machine-learning models to independent major depressive 
disorder data. Calculating rsEEG predictions in the second major depressive disorder 
study. We applied the result of the α SELSER model trained on the sertraline 
arm of the EMBARC sample to data from the second major depressive disorder 
study in which rsEEG data were collected from 72 patients with depression who 
were assessed cross-sectionally at the baseline visit. Because 37 patients’ EEG 
data were recorded with a new amplifier (EGI Net Amps 300) distinct from those 
used in EMBARC, the mean-removal site correction procedure was performed 
on both the EMBARC data to train the model and the 37 patients’ EEG data in 
the second study, as in the leave-study-site-out analysis. The rsEEG were fed into 
equation (1) to yield predictions with the SELSER model trained at each fold of 
cross-validation in EMBARC. The prediction was summarized for each participant 
by taking the median of the predictions from the 100 folds of cross-validation. 
This yielded a measure of the EMBARC SELSER model expression strength for 
each individual in the second major depressive disorder study, expressed as a 
predicted HAMD17 change for each patient. Given the focus in the present study 
on testing the generalizability of the EMBARC sertraline-predictive signature in an 
independent dataset, we compared the SELSER model-predicted HAMD17 change 
scores between patients with a treatment-resistant profile on the ATRQ (failed two 
or more medications in the current episode) versus those who showed a partial 
response to antidepressant treatment within-episode.

Calculating rsEEG predictions in the third major depressive disorder study. We 
applied the result of the α SELSER model trained on the sertraline arm of the 
EMBARC sample to data from the third major depressive disorder study, in which 
rsEEG data were collected from 24 patients with depression who were assessed in 
a cross-sectional manner (without treatment). Since the EEG data were recorded 
with yet another amplifier distinct from those used in EMBARC, the mean-
removal site correction procedure was performed, as for the leave-study-site-out 
analysis. Due to the difference of electrode montages between this study and 
EMBARC, the SELSER model trained on EMBARC cannot be directly applied 
to this study. To address this issue, we source localized the rsEEG from the study 
based on the linear inverse matrix obtained similarly as in EMBARC and then 
mapped the source activity to the EMBARC electrodes via the lead-field matrix 
from EMBARC. Next, the mapped rsEEG at EMBARC electrodes were fed into 
equation (1) to yield predictions with the SELSER model trained at each fold of 
cross-validation in EMBARC. The prediction was summarized for each participant 
by taking the median of the predictions from the 100 folds of cross-validation.

Calculating task-fMRI predictions in the third major depressive disorder study. We 
also applied a previously described RVM model trained on emotional conflict 
task-fMRI data from EMBARC to data from the third major depressive disorder 
study22. Development of the model on EMBARC data is described in brief below. 
Extractions were conducted on cortical regions of interest (ROIs), defined based 
on a recently published cortical parcellation derived from applying a combination 
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of local gradient analysis and global signal similarity on an independent resting-
state fMRI cohort70. Since functional parcellations typically rely on resting-state 
connectivity patterns, which may or may not adequately describe activity patterns 
in the emotional conflict task, we pooled ROIs from the 200, 400 and 600 region 
parcellations to limit parcellation-related specificity. ROIs were mapped to seven 
previously identified functional networks based on the spatial overlap between 
each ROI and each network70. In addition to these cortical ROIs, subcortical ROIs 
included striatal and cerebellar parcellations based on the same seven functional 
networks, amygdala ROIs, anterior and posterior hippocampal ROIs and the 
thalamus. We then regressed imaging sites out of these data using multiple 
linear regression within the training set at each run of the RVM model and the 
residualized brain signals were then used for predicting the HAMD17 score change 
with the RVM model trained at each fold of cross-validation in EMBARC. The 
prediction was summarized for each participant by taking the median of the 
predictions from the 100 folds of cross-validation. The fMRI data from our  
third major depressive disorder study were preprocessed in the same manner,  
and the EMBARC-derived weight vector was applied to the extracted ROI  
data to determine each participant’s strength of expression of the EMBARC  
fMRI RVM model.

Correlating spTMS and EEG with rsEEG predictions in the third major depressive 
disorder study. To quantify in the third major depressive disorder study the 
correlation between the spTMS and EEG responses and the EMBARC-defined 
rsEEG phenotype, we employed SELSER to learn predictive models from the 
spTMS and EEG data to the rsEEG predictions and calculated the leave-one-out 
cross-validated Pearson’s correlation coefficients between the predicted rsEEG 
predictions and true rsEEG predictions. The SELSER analysis was performed 
separately for the seven stimulation sites (bilateral pDLPFC, bilateral aDLPFC, 
bilateral M1 and V1), with the same set of frequency bands as used in the rsEEG 
prediction analysis (ϑ, α, β and γ) and for three time windows relative to the TMS 
pulse (0–200 ms, 200–400 ms and 400–600 ms). For each SELSER analysis, the 
spTMS and EEG data were concatenated across trials. Significance was evaluated 
after correcting for the FDR (P < 0.05) across all SELSER models (encompassing 
stimulation sites × frequency bins × time windows).

Testing the relationship between rsEEG predictions and treatment outcome in the 
fourth major depressive disorder study. We computed each patient’s expression of 
the EMBARC-trained SELSER rsEEG model (expressed as predicted HAMD17 
change) using the same mean site removal procedure as above. We then conducted 
linear mixed models (SPSS v.25, IBM Corporation) between the SELSER rsEEG-
generated predicted HAMD17 change and outcome on the BDI as well as each of 
the DASS subscales, separately by rTMS protocol. Terms were time, predicted 
HAMD17 change and predicted HAMD17 change × time, using a random intercept 
and fixed slope. A Bonferroni correction for eight comparisons (two stimulation 
frequencies and four outcome measures) was then conducted on the predicted 
HAMD17 change × time results.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The EMBARC data are publicly available through the National Institute of Mental 
Health (NIMH) Data Archive (https://nda.nih.gov/edit_collection.html?id=2199).

Code availability
Code for SELSER is available for noncommercial use only at altoneuroscience.com. 
For commercial use, please contact Alto Neuroscience at info@altoneuroscience.com.
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Supplementary Figure 1 

EMBARC CONSORT Flow Diagram for the patients included in the treatment prediction analyses 

For this analysis, patients were included (1) regardless of their HAMD17 score, and (2) if they had resting-state EEG data of sufficient 
quality. 



 

Supplementary Figure 2 

Illustration of SERLSER training and evaluation using 10-fold stratified cross-validation. 

Study sites were Columbia University (CU), University of Texas Southwestern Medical Center (TX), University of Michigan (UM) and 
Massachusetts General Hospital (MG). Data were randomly partitioned into 10 subsets, such that each subset containing an 
approximately equal number of subjects from each of the four study sites. A subset was left out as the test data, and the remaining 9 
subsets were used as the training data. The process was then repeated 10 times, where each of the 10 subsets was used exactly once 
as the test data. As a result, each subject had a predicted HAMD17 score change. The prediction performance was then quantified by 
the Pearson’s correlation coefficient and root mean square error (RMSE) between the cross-validated prediction of the HAMD17 score 
change and the true HAMD17 score change. 



 

Supplementary Figure 3 

Singular values associated with alpha SELSER latent signals for the sertraline arm of EMBARC. 

From left to right, the latent signals are sorted according to decreasing singular values (note that the singular values are the absolute 
values of the eigenvalues for a symmetric matrix). The alpha rsEEG data from all the participants in the sertraline arm were used to 
train the SELSER model. 



 

Supplementary Figure 4 

Prediction of outcome specific to sertraline (n = 109) using SELSER trained on resting eyes open alpha-frequency range data 
of different lengths. 

Prediction performance was assessed with 10x10 stratified cross-validation prediction. (a) 1.5 minutes/block. Pearson’s r = 0.58, p = 
3.1x10

-11 
based on the one-sided test against the alternative hypothesis that r > 0. (b) 1 minute/block. Pearson’s r = 0.44, p = 1.06x10

-6 

based on the one-sided test against the alternative hypothesis that r > 0. (c) 30 seconds/block. Pearson’s r = 0.34, p = 1.42x10
-4 

based 
on the one-sided test against the alternative hypothesis that r > 0. 



 

Supplementary Figure 5 

Prediction of outcome specific to sertraline (n = 109) using SELSER trained on resting eyes open alpha-frequency range data 
of different blocks. 

Prediction performance was assessed with 10x10 stratified cross-validation prediction. (a) Block 1. Pearson’s r = 0.47, p = 1.07x10
-7 

based on the one-sided test against the alternative hypothesis that r > 0. (b) Block 2. Pearson’s r = 0.35, p = 1.14x10
-4 

based on the 
one-sided test against the alternative hypothesis that r > 0. (c) Block 1 prediction vs. block 2 prediction. Pearson’s r = 0.58, p = 5.23x10

-

11 
based on the one-sided test against the alternative hypothesis that r > 0. 



 

Supplementary Figure 6 

Scalp and cortical spatial patterns of the placebo (PBO) alpha SELSER latent signals (n = 119). 

(a, c) Spatial patterns of the SELSER latent signals for the resting eyes open (REO) condition, with the most positive (  = 556.50.31; 

left) and negative (  = -773.49; right) regression weights, respectively. (b, d) Spatial patterns of the SELSER latent signals for the 

resting eyes closed (REC) condition, with the most positive (  = 840.85; left) and negative (  = -801.23; right) regression weights, 
respectively. 



 

Supplementary Figure 7 

Treatment stratification using the rsEEG predictive signature. 

Patients in each arm were partitioned into the low and high groups by applying a median split on the cross-validated predicted HAMD17 
score changes for sertraline response. n = 109 for the sertraline arm, and 119 for the placebo arm. Each dot represents one patient. 
For each box, the central line depicts the median, the box extends vertically between the 25th and 75th percentiles, and the whiskers 
extend to the most extreme date that are not considered outliers. Dashed line indicates 50% change in the true HAMD17 score. SER = 
sertraline, PBO = placebo. 



 

Supplementary Figure 8 

Influence of site correction on leave-study-site-out cross-validation performance (n = 109). 

Study sites were Columbia University (CU), University of Texas Southwestern Medical Center (TX), University of Michigan (UM) and 
Massachusetts General Hospital (MG). Treatment prediction across study sites was assessed by a leave-study-site-out cross-validation 
on the alpha REO sertraline model. (a) Treatment prediction when site effect was not accounted for. Pearson’s r = 0.34, Bonferroni-
corrected p = 2.6x10

-3 
based on the one-sided test against the alternative hypothesis that r > 0. (b) Comparison of root mean square 

error (RMSE) without and with site correction. 



 

Supplementary Figure 9 

Machine learning prediction of treatment outcome using previously-suggested predictive metrics (alpha power, theta power, 
and theta cordance) and conventional latent space modeling approaches (PCA and ICA) on eyes open rsEEG data of the 
sertraline arm (n = 109). 

10x10 stratified cross-validation prediction using the relevance vector machine (RVM) on channel-level alpha power (a; Pearson’s r = -
0.07, p = 0.75

 
based on the one-sided test against the alternative hypothesis that r > 0), theta power (b; Pearson’s r = -0.23, p = 0.99

 

based on the one-sided test against the alternative hypothesis that r > 0), theta cordance (c; Pearson’s r = -0.16, p = 0.95
 
based on the 

one-sided test against the alternative hypothesis that r > 0), alpha power of the PCA-extracted latent signals (d; Pearson’s r = 0.14, p = 
0.1

 
based on the one-sided test against the alternative hypothesis that r > 0), or alpha power of the ICA-extracted latent signals (e; 

Pearson’s r = -0.04, p = 0.6
 
based on the one-sided test against the alternative hypothesis that r > 0) do not significantly predict 

outcome for sertraline. 



 

Supplementary Figure 10 

Comparison of different band-power based treatment prediction approaches. 

(a) End-to-end prediction with SELSER. All the unknown parameters (spatial filters and linear regression weight coefficients) are 
optimized in conjunction under a unified objective function via convex optimization. (b) Prediction with ICA/PCA. Spatial filters are 
optimized via ICA/PCA, and linear regression weight coefficients are optimized via RVM with a linear kernel. (c) Prediction with 
channel-level band power. EEG band power of each channel is fed directly into the linear regression model, which is optimized via RVM 
with a linear kernel. S1, S2, and SN refer to Subject 1, Subject 2, and the Nth Subject, respectively. C1, C2, F1, F2 and Pz refer to 

electrode locations according to the 10/10 international system. (   )2
 denotes the square operator, and  t denotes the average of a time 

series over time. 



C

 

Supplementary Figure 11 

Machine learning prediction of treatment outcome from symptoms. 

Prediction performance was assessed with 10x10 cross-validation prediction using the relevance vector machine (RVM). Included 
symptom measures were the Spielberger State-Trait Anxiety Inventory, the Quick Inventory of Depressive Symptoms, the Mood and 
Anxiety Questionnaire, the Childhood Trauma Questionnaire, age, and education. (a) Sertraline arm (n = 109). Pearson’s r = 0.26, p = 
3x10

-3 
based on the one-sided test against the alternative hypothesis that r > 0. (b) Placebo arm (n = 119). Pearson’s r = 0.16, p = 0.05

 

based on the one-sided test against the alternative hypothesis that r > 0. 



 

Supplementary Figure 12 

Prediction of outcome specific to sertraline using SELSER trained on resting eyes open alpha-frequency range data of 
posterior channels (n = 109). 

A total of 16 posterior electrodes were included: P1, P2, P3, P4, P5, P6, P7, P8, PO3, PO4, PO7, PO8, POz, O1, O2, and Oz. 
Prediction performance was assessed with 10x10 stratified cross-validation prediction. Pearson’s r = 0.40, p = 8.22x10

-6 
based on the 

one-sided test against the alternative hypothesis that r > 0. The most positive regression weight is 759.31 and the most negative 
regression weight is -853.13. 
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Supplemental Table 1. Baseline sociodemographic and clinical variables for the EMBARC 
study. Statistics reflect comparisons of the Sertraline and Placebo arms 
 
 Sertraline Placebo   
Categorical 
variables 

n % n % χ2 p value 

Gender     4.15 0.04 
Male 30 27.52 48 40.34   

Female 79 72.48 71 59.66   
Race     1.73 0.42 

White 68 62.39 83 69.75   
African 

American 
20 18.35 20 16.81   

Other 21 19.27 16 13.45   
Employment 
status 

    0.12 0.94 

Employed 58 53.21 66 55.46 
Unemployed 46 42.20 48 40.34   

N/A or 
Missing 

5 4.59 5 4.20   

       
Continuous 
variables 

Mean SD Mean SD t value p value 

Age 37.06 13.94 38.41 12.63 -0.77 0.44 
Age of onset 16.36 5.90 15.94 5.60 0.55 0.59 
Years of 
education 

15.06 2.57 15.36 2.54 -0.87 0.38 

Number of 
MDE 

30.78 121.29 45.43 160.15 -0.77 0.44 

Duration of 
current 
episode 

42.70 74.64 51.90 117.91 -0.70 0.49 

HAMD17 18.16 4.70 18.72 4.41 -0.94 0.35 
Medication 
dose 

103.48 32.28 108.67 29.73 -1.18 0.24 

 
Note. χ2 = Pearson’s chi-squared test. MDE = major depression episodes; *4 MDD participants 
(1 placebo, and 3 with sertraline) with no employment status.  
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Supplemental Table 2. EEG amplifier settings across study sites for the EMBARC study.  
 
 CU TX UM MG 
Amplifier BioSemi NeuroScan 

Synamp 
NeuroScan 

Synamp 
Geodesic Net 

# channels 72 62 60 129 

Sampling rate (Hz)  256 250 250 250 

Online filter (Hz) 0-251.3 0-100 0.5-100 0.01-100 

Reference 
electrode 

PPO1, PPO2 nose nose Cz 

 
Note. CU = Columbia University; TX = University of Texas Southwestern Medical Center; UM = 
University of Michigan; MG = Massachusetts General Hospital. For the MG site, EEG data were 
collected at McLean Hospital.   
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Supplemental Table 3. Structural MRI and fMRI acquisition scanning parameters 
for the third MDD study 
 
 

 
Scanner General Electric 3T 750 

Structural 
 

 
Series = FSPGR BRAVO 
TR/TE = 8.57ms/3.38ms 
Flip Angle =15° 
Thickness = 1mm 
Resolution = 0.9375×0.9375mm2 
Duration = 5min 

fMRI 
 

Spiral in/out acquisition 
TR/TE=2000/30msec 
Flip Angle = 80° 
Res.=3.4375x3.4375mm2 
Thickness = 4.0mm 
Matrix = 64×64 
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