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Abnormalities in electroencephalographic microstates are state
and trait markers of major depressive disorder
Michael Murphy 1,2, Alexis E. Whitton 1,2,4, Stephanie Deccy2,5, Manon L. Ironside2,6, Ashleigh Rutherford2,7, Miranda Beltzer2,8,
Matthew Sacchet1,2 and Diego A. Pizzagalli 1,3

Neuroimaging studies have shown that major depressive disorder (MDD) is characterized by abnormal neural activity and
connectivity. However, hemodynamic imaging techniques lack the temporal resolution needed to resolve the dynamics of brain
mechanisms underlying MDD. Moreover, it is unclear whether putative abnormalities persist after remission. To address these gaps,
we used microstate analysis to study resting-state brain activity in major depressive disorder (MDD). Electroencephalographic (EEG)
“microstates” are canonical voltage topographies that reflect brief activations of components of resting-state brain networks. We
used polarity-insensitive k-means clustering to segment resting-state high-density (128-channel) EEG data into microstates. Data
from 79 healthy controls (HC), 63 individuals with MDD, and 30 individuals with remitted MDD (rMDD) were included. The groups
produced similar sets of five microstates, including four widely-reported canonical microstates (A-D). The proportion of microstate
D was decreased in MDD and rMDD compared to the HC group (Cohen’s d= 0.63 and 0.72, respectively) and the duration and
occurrence of microstate D was reduced in the MDD group compared to the HC group (Cohen’s d= 0.43 and 0.58, respectively).
Among the MDD group, proportion and duration of microstate D were negatively correlated with symptom severity (Spearman’s
rho=−0.34 and −0.46, respectively). Finally, microstate transition probabilities were nonrandom and the MDD group, relative to
the HC and the rMDD groups, exhibited multiple distinct transition probabilities, primarily involving microstates A and C. Our
findings highlight both state and trait abnormalities in resting-state brain activity in MDD.
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INTRODUCTION
Major depressive disorder (MDD) is a prevalent psychiatric illness
and major source of disability [1]. Converging evidence suggests
that MDD is a disconnection syndrome [2]. According to this
model, psychiatric symptoms are related to disconnection
between brain regions and effective treatments may act by
normalizing or compensating for this dysconnectivity. Fitting this,
functional magnetic resonance imaging (fMRI) and electroence-
phalography (EEG) findings implicate abnormal functioning in
MDD within and between multiple resting-state brain networks
[2, 3]. Therefore, in order to better elucidate the pathophysiology
of MDD, it is important to advance our understanding of dynamics
of large-scale brain networks.
EEG can be used to study the coordinated action of large

populations of neurons with exquisite temporal resolution.
Crucially, resting-state EEG is dominated by a small number of
characteristic semi-stable voltage topographies [4, 5]. During an
EEG recording, a specific topography (or “microstate”) will persist
for tens of microseconds, and then transition to a different
topography. This observation led to the development of

microstate analysis, which is the identification and quantification
of these topographies [6]. Advancements in clustering algorithms
and computing power have allowed for more precise study of
microstates, and multiple studies have confirmed the basic
principle that a large amount of the EEG signal can be
parsimoniously explained by a small number of characteristic
microstates [7, 8]. Microstates are consistent across studies, with a
canonical set of four microstates “A-D” being identified in most
reports [7]. Microstates are generated by distinct, but overlapping,
neural assemblies and their parameters and topographical
transitions provide information about large-scale brain connectiv-
ity [8–10]. Taken together, microstate analysis is a powerful data-
driven approach for functional mapping of large-scale brain
networks.
While microstate analysis has been widely used to study brain

function, few studies have probed microstates in affective
disorders [11]. This literature is equivocal, with reports of
inconsistent abnormalities in microstate duration and transition
probabilities [12–14]. Furthermore, previous studies have used
diagnostically mixed populations, aggregating individuals with
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unipolar and bipolar depression [14]. This is problematic because
unipolar and bipolar depression respond to different treatments
suggesting different pathophysiologies. Here, we critically expand
on past research by performing the largest microstate study
entirely of patients with MDD. A group with remitted MDD (rMDD)
was also included, allowing us to identify putative state vs. trait
microstate markers of depression. We hypothesized that micro-
state dynamics would differ between patients with MDD and
healthy controls and that these differences would be partially
attenuated in patients with rMDD.

METHODS
Participants and procedure
This work complies with the ethical standards of the relevant
national and institutional committees on human experimentation
and with the Helsinki Declaration of 1975, as revised in 2008. All
procedures were approved by the Institutional Review Board of
Partners Healthcare. Participants provided written informed consent
for all study procedures. Data from 65 patients with MDD, 30
individuals with rMDD, and 79 age-matched healthy controls (HC)
were available for analyses and were collected as part of a prior
study [3]. Twenty-nine patients with MDD were treatment-seeking,
10 were taking psychotropic medication. We excluded individuals
with a history of neurological disorder, seizures, and head injury.
Participants were required to have a negative urine drug screen.
MDD participants were required to have an MDD diagnosis
according to the Structured Clinical Interview for DSM-IV (SCID)
and to have had no changes to their psychiatric medications in the
past eight weeks or have taken no medication for two weeks (six for
venlafaxine). RMDD participants were required to have had a major
depressive episode within the past five years, to be in remission for
the past eight weeks (assessed with the SCID), and not be taking
psychotropic medications [15]. Control participants had no history of
psychiatric illness, no first-degree relatives with psychiatric disorders,
and no history of psychiatric medication use. All participants were
administered the SCID to establish diagnosis and the Beck
Depression Inventory II (BDI-II) to assess depressive severity [16].
Subject characteristics are summarized in Table 1. For one MDD
participant, BDI-II, medication, and education data were not
available.

Electroencephalography
EEG data were collected in an electrically and acoustically shielded
room using a 129-channel Ag-AgCl electrode Hydrocel Geodesic
Sensor Net (Electrical Geodesics; Koninklijke Philips, Amsterdam,
The Netherlands). Data were collected at a 250 Hz sampling rate,
vertex-referenced, with impedances <100 kΩ. Eight minutes of
resting-state data were recorded in one-minute segments, four
segments with eyes open and four with eyes closed. The order of
recording was counterbalanced across participants. Consistent

with past work, only eyes closed data were analyzed [17]. Data
were exported to BrainVision Analyzer 2.0 (Brain Products GmbH,
Gilching, Germany). Artifactual segments were identified by visual
inspection and removed. Independent component analysis was
used to remove eye blinks and electrocardiogram artifact [18].
Corrupted channels were visually identified and spline interpo-
lated [19]. Data were then re-referenced to the average reference.
Two MDD participants did not have sufficient data for microstate
analyses and were excluded. The final MDD group was thus
comprised of 63 individuals.

Microstate analysis
Microstate analysis was performed using CARTOOL (brainmap-
ping.unige.ch/cartool, Denis Brunet). For each participant, we
calculated the global mean field power (GFP) across all electrodes.
For microstate segmentation, we downsampled the data by only
including points where the GFP had a local maximum. Microstate
transitions preferentially occur at GFP local minima and this
downsampling does not significantly impact microstate segmen-
tation results [20, 21]. The data were then spatially filtered to
enhance signal-to-noise ratio [22]. Next, the data were run
through a series of polarity-insensitive k-means clustering analyses
with k ranging from 1 to 12. A meta-criterion based on taking the
median value of six distinct functions was used to determine the
optimal number of microstates [23–26]. We subsequently ran a
second round of clustering on the pooled microstates for subjects
within the control, MDD, and rMDD groups. The meta-criterion
was used to determine the optimal number of microstates. For
microstate fitting, for each time point in the original data, we
chose the microstate map from the subject’s group that most
closely resembled the voltage topography insensitive to polarity
[21]. Fits were smoothed on 3 sample half-windows with Besag
factor 10 [27]. We obtained a sequence of microstate labels with
the same length as the original data set. For each record and
microstate, we calculated three parameters. Proportion was the
amount of the record covered by each microstate, duration was
the average length of time a microstate lasted, and occurrence was
the number of times that microstate occurred per second. For the
fitted microstate sequences, we calculated a Markov matrix on the
observed transitions between microstates [28]. We also calculated
an expected Markov matrix by computing the expected transition
probabilities given the distribution of microstate labels.

Source modeling
Source modeling was conducted using the Brainstorm toolbox in
MATLAB (The MathWorks, Inc., Natick, MA) [29]. A standardized set
of electrode locations was co-registered to the ICBM152 template
head [30]. This was used to create a boundary-element head
model which models propagation of electrical current from a set
of cortical voxels through the head to the EEG channels.
Unconstrained, standardized low-resolution electromagnetic
tomography (sLORETA) with Tikhonov regularization, was used
to normalize the minimum norm estimate and model cortical
currents underlying the EEG microstate topographies [31]. Ideally,
source modeling would be performed on all the EEG data and
grouped by microstate label as the microstate maps are highly
smoothed artificial topographies [26]. Given the large amount of
EEG data, this was computationally intractable and therefore we
performed source modeling on the microstate template maps. In
order to compare localizations across microstates, the cortical
topographies associated with each microstate were normalized by
the maximum current across voxels. Then, each voxel was
assigned to the microstate label for which it had the largest
normalized current value.

Statistics
Statistical analyses were performed using MATLAB. To evaluate
group differences in microstate parameters (proportion, duration,

Table 1. Demographic and clinical data.

Controls MDD rMDD

Sample size 79 63 30

Age in years, mean (SEM) 27.5 (0.9) 29.2 (1.1) 32.7 (2.7)

Sex, Nmale/Nfemale 21/58 21/42 8/22

Education, years (SEM) 16.5 (0.3) 16.0 (0.3) 16.5 (0.4)

Current psychotropic medication, N 0 10 0

BDI-II Score, mean (SEM) 0.7 (0.2) 26.7 (1.2) 2.8 (0.6)

HC healthy control, MDD major depressive disorder, rMDD remitted major
depressive disorder, SEM standard error of the mean, BDI-II Beck Depression
Inventory-II.
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and occurrence), we ran one-way ANOVAs and then used the
Bonferroni correction for five comparisons (i.e., microstates) to
adjust p-values. Post-hoc testing was performed using the Tukey
test (HSD). For microstates revealing group differences, Spearman
correlation were used to analyze associations between microstate
parameters and symptom scores and Wilcoxon tests were
computed to evaluate effects of medications status.

RESULTS
Control, MDD, and rMDD groups produce similar sets of
microstates
Microstate segmentation of resting-state EEG data from the HC,
MDD, and rMDD groups produced five microstate topographies
(Fig. 1a) that were consistent across groups. The magnitude of the
spatial correlation of the topographies between groups ranged
from 0.889 (Map D, HC vs MDD) to 0.997 (Map A, HC vs rMDD).
Previous studies have reported four canonical microstate topo-
graphies and these topographies are reflected in microstates A-D
in the current data [11, 32]. Moreover, some groups have reported
additional microstates which resemble the current microstate E
[14, 26]. Microstate fits were calculated by measuring the
correlation between the topography at each time point and its
assigned microstate topography. The fits were equal across the
three groups with average correlation coefficients and standard
errors (SEM) of 0.699 (0.003) for the HC, 0.701 (0.003) for the MDD,
and 0.700 (0.005) for the rMDD group. Within the MDD group,
there was no statistically significant effect of medication on
average correlation coefficient (unpaired t-test, t(59) = 0.31, p=
0.76). The global explained variance (GEV) of the models were also

equal across groups with 0.606 (SEM 0.006) for the HC, 0.613 (SEM
0.006) for the MDD and 0.600 (SEM 0.012) for the rMDD.
Previous research suggests that patterns of neural activity that

contribute to EEG microstates overlap with components of
multiple resting-state networks [8]. To determine the cortical
correlates of our microstates, the sLORETA algorithm was used to
model the cortical currents associated with microstate topogra-
phies. To isolate how the cortical generators of microstates
differed from each other, we focused our analysis on brain
regions that were most strongly associated with each microstate
and therefore possibly activated upon transition to that
microstate (Fig. 1b). These regions were not uniquely activated
during their associated microstate, but were most strongly
associated with that microstate. These regions could be
contiguous as in microstate C, which mostly involves the
posteromedial cortex, or discontinuous as in microstate A, which
involves the coordinated action of separate frontal and posterior
cortical regions. Our microstates do not map precisely onto fMRI
resting-state networks. Rather, microstate A appears to involve
anterior cingulate cortex, left insula, and occipital cortex;
microstate B involves posterior cingulate, right insula, and
temporal cortex; microstate C involves precuneus, postcentral
cortex, and occipital cortex; microstate D involves parietal and
left insular cortex; and, finally, microstate E involves temporal,
insular, and parietal cortices. Like the EEG topographies, the
source models for the microstate templates were highly
consistent across groups (spatial correlation across groups
> .979). We note that although this method of source modeling
the microstate templates may introduce bias, our source
modeling results are consistent with previous work [26].

Fig. 1 All three groups produced similar sets of microstates which involve distinct but overlapping, cortical correlates. a EEG topoplots of
microstate topographies obtained independently from the HC, MDD, and rMDD groups. Blue regions are negative and red are positive relative
to average reference. Note that microstates are polarity invariant. These microstates are qualitatively similar across groups and include the
canonical microstates A–D. b Top row shows the EEG topoplots for the microstates identified in the HC group. Below each microstate is a set
of cortical source-localized maps indicating which voxels (yellow) were most strongly associated with the particular microstate.
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Microstate proportion, duration, and occurrence are altered in
MDD and rMDD
Features of the fitted microstate sequences were compared across
groups. We calculated the proportion of each EEG recording that
was best fitted by each of the five microstates (Fig. 2a). Then, for
each microstate, we calculated a one-way ANOVA comparing
microstate proportions among groups. After correction for five
multiple comparisons, we found evidence for a group effect for
microstate D (F2,171= 9.49, padjusted= 0.0006). Post hoc testing
(Tukey’s HSD) clarified that microstate D covered a greater
proportion of the recording in the HC (0.208, SEM 0.006) than
MDD (0.170, SEM 0.006, p= 0.002, Cohen’s d= 0.63) or rMDD
group (0.165, SEM 0.011, p= 0.0005, Cohen’s d= 0.72). There were

no statistically significant effects of age or years of education (all p
> 0.05).
Next, we compared the occurrence of microstates in the three

groups (Fig. 2b). ANOVA of microstate occurrence showed
evidence for a group effect for microstate D (F2,171= 4.81 p=
0.008). Post-hoc tests clarified that microstate D had higher
average occurrence in the HC group (5.72, SEM 0.13 states/sec)
compared to the MDD (5.11, SEM 0.20 states/sec, Tukey’s HSD,
p= 0.031, Cohen’s d= 0.44) and rMDD (4.92, SEM 0.30 states/sec,
Tukey’s HSD, p= 0.024, Cohen’s d= 0.56) groups while there were
no differences between MDD and rMDD. Post-hoc tests also
showed that microstate A occurred more frequently in MDD (5.88,
SEM 0.15 states/sec) than in HC (5.14, SEM 0.15 states/sec, Tukey’s

Fig. 2 Microstate D is decreased in MDD. a Violin plots showing the average proportion of each microstate in each of the three groups. Red
lines are medians, black lines are means. Blue is the HC group, red is MDD, and gray is rMDD. b Violin plots showing average occurrence for
each microstate in each of the three groups. c Violin plots showing average duration for each microstate in each of the three groups. *p < 0.05.
**p < 0.01 Tukey’s HSD test following one-way following one-way ANOVA.
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HSD, p= 0.002, Cohen’s d= 0.59) or rMDD (5.16, SEM 0.23 states/
sec, Tukey’s HSD, p= 0.03, Cohen’s d= 0.58).
We then compared the average durations of microstates in the

three groups (Fig. 2c). For microstate D, the ANOVA showed a
main effect of group (F2,171= 3.99 p= 0.02). Post-hoc tests
clarified that microstate D had lower average duration in the
MDD (25.54, SEM 0.75ms) compared to HC group (28.01, SEM 0.60
ms, Tukey’s HSD, p= 0.021, Cohen’s d= 0.43). The rMDD (25.86,
SEM 0.94ms) group did not differ from the HC (Tukey’s HSD, p=
0.16) or the MDD group (Tukey’s HSD, p= 0.96).
Finally, we examined the relationship between microstate

parameters for microstates A and D and depression symptoms
(Fig. 3). In the MDD group, 61 of the 63 individuals had BDI-II

scores greater than 9, indicating at least mild depression. Within
this group, we found that microstate D proportion and duration
were negatively associated with BDI-II scores (Spearman’s rho=
−0.34, p= 0.009 and Spearman’s rho=−0.46, p= 0.0002, respec-
tively). No statistically significant relationship emerged between
microstate A or D occurrence and BDI-II scores (Spearman’s rho =
0.13, p= 0.33 and Spearman’s rho=−0.16, p= 0.22, respectively).
Within the MDD group, there was no statistically significant
relationship between medication status and microstate D propor-
tion, duration, or occurrence (unpaired t-tests, t(59)= 0.08, p=
0.94; t(59)=−0.53, p= 0.60; t(59)= 0.28, p= 0.78), or between
medication status and symptom scores (Wilcoxon rank sum test,
p= 0.65).

Fig. 3 Microstate D is negatively correlated with depression symptoms. a Scatterplot of proportion of microstate D and Beck Depression
Index-II (BDI) total scores in patients with at least mild MDD (BDI > 9). Spearman’s rho=−0.34, p= 0.016. b Scatterplot of duration of
microstate D vs BDI scores in patients with at least mild MDD. Spearman’s rho=−0.46, p= 0.0013.
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Transitions between microstates are non-random and some
transitions are selectively altered in MDD
In order to study microstate syntax, we used a Markov analysis in
which we conditioned the proportion of microstate transitions
between each pair of states by the proportion of such transitions
that would be expected by a random process given the distribution
of microstate labels for each recording [21]. We found evidence that
specific transitions that were clearly preferred and others that were
relatively disfavored relative to what would be expected from a
random process (Fig. 4a). For all groups, most observed transition
probabilities were statistically significantly different from the
expected transition probabilities (Fig. 4a, paired t-tests, with
pBonferroni < 0.05). Overall, there was a qualitatively similar pattern
of transition results across the three groups. In general, microstates
A and B transitioned to microstates D and E less often than would be
expected by the distribution of labels, and vice versa. Microstates D
and E preferentially transitioned to microstate C.
We next tested whether there were differences in these

distribution-adjusted microstate transitions among the HC, MDD,
and rMDD groups. For each type of transition, we performed an
ANOVA across groups. The p-values from the ANOVAs were
Bonferroni-corrected for the 20 transitions. Post-hoc tests showed
several differences between the HC and MDD groups and
between the rMDD and MDD groups, but no significant
differences between the HC and rMDD groups (Fig. 4b). Most of
these transition differences involved microstate C. Relative to both
the HC and rMDD group, the MDD group had more transitions
from microstate A and B to C, and more from microstate E to C. In
addition, relative to both the HC and rMDD groups, the MDD
group had fewer transitions from microstate B to microstate A.
Finally, we assessed the association between microstate A to C,

B to C, and E to C transition probabilities and BDI-II scores. Within
MDD patients with BDI-II scores greater than 9, we found a
positive correlation between microstate B to C transitions and BDI-
II scores (Spearman’s rho = 0.31, pBonferroni= 0.043). There were no
statistically significant correlations between medication status and
any transition probability (all unadjusted p > 0.13).

DISCUSSION
We used microstate analysis to characterize resting-state EEG in
HC, MDD, and rMDD. For all groups, five microstates best fit the
data. These sets of microstates included four widely reported
canonical microstates A-D. The additional microstate E has also

been reported in previous studies [8, 14]. The cortical correlates of
these microstates overlap with multiple fMRI resting-state net-
works. Because resting-state networks have previously been found
to be abnormal in MDD, we hypothesized that there would be
differences in microstates between MDD patients and controls [2].
We found that microstate D proportion and occurrence were
decreased in both the MDD and rMDD compared to the HC group
and microstate D duration was decreased in the MDD group.
Moreover, microstate A occurrence was increased in MDD relative
to HC and rMDD. Microstate transitions, particularly involving
microstate C, were different in MDD compared to HC and rMDD.
The effects were unrelated to age, education, or medication.

Microstates as a tool to probe brain function
Microstate analyses provide information about the activity of large-
scale neural assemblies [11], with microstate topography being
determined by the spatial distribution of underlying assemblies.
Microstate duration is a measure of how long the brain maintains
each semi-stable state, and is influenced by cortical and subcortical
brain function [10, 33]. The cortical generators of EEG microstates
have been related to fMRI resting-state networks [34, 35]. The details
of this relationship are controversial, with some proposing that there
are clear, one-to-one mappings between microstates and resting-
state networks [34] and others arguing that the cortical generators of
microstates overlap with, but are distinct from, resting-state networks
or that microstate analysis shows that fMRI-defined resting-state
networks can be subdivided into functionally distinct sub-networks
[9, 10, 26]. Our results suggest that microstates do not directly
correlate with fMRI resting-state networks and instead provide
unique information about the activity of neural assemblies.
Accordingly, microstate analysis provides new information about
the brain and additional insight into the pathophysiology of
psychiatric diseases.

Microstates and MDD
There is limited research capitalizing on microstate analysis to
investigate affective disorders, and no previous study has
specifically focused on MDD or included an rMDD sample. Results
have been inconsistent, with reports that (1) the longest duration
microstates were shorter in a mixed depressive cohort when
compared to controls, but that overall mean duration was
equivalent [12]; (2) microstates in the beta frequency band
showed no difference in overall mean microstate duration
between MDD and HC [36]; (3) electroconvulsive therapy-

Fig. 4 Microstate transition probabilities are non-random and are abnormal in MDD. a Matrix showing the observed transition
probabilities given the known distribution of microstate labels minus the expected transition probabilities. Positive values indicate more
transitions than would be expected by chance, negative values indicate fewer transitions. Colored boxes and text indicate statistically
significant differences as calculated by Bonferroni-adjusted t-tests. b Comparisons of observed minus expected transitions between HC, MDD,
and rMDD groups. Positive values indicate that there are more transitions in the first listed group compared to the second, red values indicate
that there are more transitions in the second listed group compared to the first. Colored boxes and text indicate statistically significant
differences as calculated by ANOVAs with post-hoc HSD test (p < 0.05).
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induced increased duration of microstate A and decreased
occurrence of microstates B, C, and D in patients with
treatment-resistant depression, with effects most pronounced in
treatment responders [37]; (4) a small, mixed cohort of patients
with active depressive disorders did not differ from controls in
microstate topography, occurrence, or duration but microstate A
occurrence was positively correlated with depression symptoms
[14]; and (5) a mixed sample of patients with mood and anxiety
disorders did not differ from controls in microstate topography
but was characterized by decreased transitions from microstate B
to D and increased transitions from A to D and B to C [13].
The current work is the largest microstate study of patients with

affective disorders to date that focuses specifically on unipolar MDD.
Our findings partially agree with prior results. We report similar
microstate topographies in the HC, MDD, and rMDD groups
suggesting that the cortical generators of the microstate maps are
largely preserved. Unlike prior reports, a clear decrease in microstate
D (in proportion, duration, and occurrence) emerged. In agreement
with Al Zoubi et al., we note increased transitions from microstate B
to C [13]. However, they described other transitions that are not
abnormal here and we report disorder-related transition differences
that they did not detect. These discrepancies may result from
differences in data acquisition and/or analysis. In particular, they
note multiple transitions involving canonical microstate D. While we
did identify microstate D, a topography resembling our microstate E
has been previously labeled microstate D in other studies [38, 39].
This suggests that Al Zoubi et al.’s microstate D may be the sum of
our microstates D and E. Decreased microstate D has also been
reported in psychotic disorders suggesting a common pathophy-
siological process across affective and psychotic disorders [40]. This
process may be related to microstate D’s proposed association with
cognitive control and ability to attend to environmental stimuli and
which may manifest as rumination in depression or thought disorder
in psychosis [26]. Fitting prior reports, we showed that microstates A
and B preferentially transition between each other [17]. This pattern
is also disrupted in psychotic disorders, highlighting a potential
shared neural abnormality between affective and psychotic
disorders [17].
Microstate C has been related to activity in the precuneus in the

current and previous work [8]. The association between precuneus
activity and multiple different microstates has led to the
hypothesis that the precuneus links multiple functional networks
[8]. We note that the altered transition probabilities mostly involve
microstate C. This suggests that there may be dysfunction in the
ability of the precuneus to appropriately sequence transitions
between large scale networks in patients with MDD. Increased
transitions from microstate A and B to microstate C implicate
increased connectivity from components of the default mode
network and fronto-parietal network to the precuneus. This is in
agreement with past work showing increased default mode
network and fronto-parietal network connectivity in MDD (for
review see [3]). However, we found that only some components of
these networks have increased connectivity. Therefore, different
components within a given resting-state network have distinct
connectional abnormalities in MDD. We note that the changes in
microstate transitions are not driven by an increase in noise,
rather, there are distinct, statistically significant deviations from
random that exist uniquely in the MDD data. There may be
abnormal processes that shape microstate transitions in patients
with MDD and that remission is accompanied by cessation of, or
compensation for, these processes. Previous work has demon-
strated anatomical abnormalities in the precuneus in patients with
both MDD and rMDD [41, 42]. Therefore, the recovery of normal
microstate transition probabilities that we observed in rMDD
group is likely driven by compensatory processes occurring
outside the precuneus.
In sum, previous functional and structural MRI work suggests that

MDD is a disconnection syndrome [2, 43]. Our findings agree with,

and expand on, these prior studies. Past work has demonstrated
hyperconnectivity between anterior and posterior components of
the default mode network in MDD [2]. Microstates A and B include
many of the anterior and posterior components of this network, and
we found that transitions between these two microstates are
increased in MDD. Alternatively, we note that decreased transitions
from microstate C to microstate A and B, as well as the increased
transitions from microstate C to microstate E, have no clear correlate
in the fMRI literature. Our findings suggest that MDD is associated
with dysconnectivity. This may be due to subcortical structures,
which are also known to be disrupted in MDD [44]. While subcortical
activity may contribute to the EEG, the relationship between this
component of EEG and microstates is unclear [45]. Remission of
MDD may require large-scale compensatory changes in brain
connectivity, even in regions that are not directly implicated in
MDD. Collectively, our findings provide evidence that EEG micro-
state analysis provides novel information about brain function.

Limitations
Several limitations should be considered. First, understanding the
cortical correlates of EEG microstates relies on source modeling
techniques, which have, at best, limited spatial resolution. These
methods rely on multiple biophysical assumptions and simplifica-
tions that are still undergoing refinement [46]. Second, groups
using various analysis techniques and acquisition setups have
reported sets of EEG microstates with different topographies and
longer durations [11, 13, 14]. However, the majority of studies
have reported at least the four canonical microstates that we also
found. Third, although the inclusion of a rMDD group enabled
inferences regarding clinical state, a longitudinal approach would
provide additional certainty that microstate syntax differences are
truly state-markers of MDD.
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