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IMPORTANCE Despite the widespread awareness of functional magnetic resonance imaging
findings suggesting a role for cortical connectivity networks in treatment selection for major
depressive disorder, its clinical utility remains limited. Recent methodological advances have
revealed functional magnetic resonance imaging–like connectivity networks using
electroencephalography (EEG), a tool more easily implemented in clinical practice.

OBJECTIVE To determine whether EEG connectivity could reveal neural moderators of
antidepressant treatment.

DESIGN, SETTING, AND PARTICIPANTS In this nonprespecified secondary analysis, data were
analyzed from the Establishing Moderators and Biosignatures of Antidepressant Response in
Clinic Care study, a placebo-controlled, double-blinded randomized clinical trial. Recruitment
began July 29, 2011, and was completed December 15, 2015. A random sample of 221 outpatients
with depression aged 18 to 65 years who were not taking medication for depression was
recruited and assessed at 4 clinical sites. Analysis was performed on an intent-to-treat basis.
Statistical analysis was performed from November 16, 2018, to May 23, 2019.

INTERVENTIONS Patients received either the selective serotonin reuptake inhibitor sertraline
hydrochloride or placebo for 8 weeks.

MAIN OUTCOMES AND MEASURES Electroencephalographic orthogonalized power envelope
connectivity analyses were applied to resting-state EEG data. Intent-to-treat prediction linear
mixed models were used to determine which pretreatment connectivity patterns were
associated with response to sertraline vs placebo. The primary clinical outcome was the total
score on the 17-item Hamilton Rating Scale for Depression, administered at each study visit.

RESULTS Of the participants recruited, 9 withdrew after first dose owing to reported adverse
effects, and 221 participants (150 women; mean [SD] age, 37.8 [12.7] years) underwent EEG
recordings and had high-quality pretreatment EEG data. After correction for multiple
comparisons, connectome-wide analyses revealed moderation by connections within and
between widespread cortical regions—most prominently parietal—for both the
antidepressant and placebo groups. Greater alpha-band and lower gamma-band connectivity
predicted better placebo outcomes and worse antidepressant outcomes. Lower connectivity
levels in these moderating connections were associated with higher levels of anhedonia.
Connectivity features that moderate treatment response differentially by treatment group
were distinct from connectivity features that change from baseline to 1 week into treatment.
The group mean (SD) score on the 17-item Hamilton Rating Scale for Depression was 18.35
(4.58) at baseline and 26.14 (30.37) across all time points.

CONCLUSIONS AND RELEVANCE These findings establish the utility of EEG-based network
functional connectivity analyses for differentiating between responses to an antidepressant
vs placebo. A role emerged for parietal cortical regions in predicting placebo outcome. From a
treatment perspective, capitalizing on the therapeutic components leading to placebo
response differentially from antidepressant response should provide an alternative direction
toward establishing a placebo signature in clinical trials, thereby enhancing the signal
detection in randomized clinical trials.
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D espite substantive evidence supporting the efficacy of
antidepressants vs placebo for major depressive dis-
order (MDD),1,2 the lack of an accepted signature of pla-

cebo response has stymied the development of antidepres-
sant drugs. As a result, trials in an otherwise heterogeneous
sample of patients with MDD include many placebo respond-
ers, resulting in modest effect sizes (Cohen d ~ 0.3)1,3,4 and
many failed trials. One avenue for improving the yield of drug
development lies in grounding an understanding of the neu-
ral functioning associated with placebo response.

With 40% to 50% of patients with MDD not responding to
antidepressant treatment,5-7 coupled with the low predictive
value of clinical and sociodemographic variables,8,9 substan-
tial attention has been directed at identifying pretreatment neu-
ral features that predict treatment response in MDD.6,7 Resting-
state functional magnetic resonance imaging (fMRI) studies, for
example, found that increased connectivity with the cognitive
control network and decreased connectivity with the default
mode network have been associated with antidepressant treat-
ment response.6,7,10,11 However, prior work has not included a
placebo control group, thus confounding treatment effects with
nonspecific symptom change across time. Functional MRI is also
ultimatelylimitedbyitscostandrequirementforsignificanttech-
nical expertise.12

Electroencephalography (EEG), by contrast, provides a
financially and logistically favorable neural assessment tool,
with the additional benefits of its high temporal resolution and
more direct measurement of neural function. With the use of
EEG, increased frontal and parieto-occipital alpha power, in-
creased anterior cingulate theta power, and greater global sig-
nal entropy have been found to be associated with better an-
tidepressant treatment response.7,10,11,13-23 However, as with
fMRI, the identification of EEG neural markers predictive of
antidepressant response is limited by the lack of placebo-
controlled clinical trials with sufficient statistical power.10,13

Moreover, one of the most promising treatment predictive find-
ings from antidepressant treatment studies (namely, rostral cin-
gulate theta power) appears to predict outcome for antide-
pressants and placebo.18,24 A recent meta-analysis suggests
that, while there is great promise in EEG-guided MDD bio-
marker prediction, the field is currently limited by several
factors, including sample size and lack of out-of-sample
validation.19

Although EEG has great promise with respect to clinical
translation, its low spatial precision and sensitivity to vol-
ume conduction (which leads to signal blurring) limit its util-
ity for network-level connectivity analyses. This challenge has
been addressed by recent advances in analytical methods, first
in magnetoencephalography and then in EEG.25,26 By orthogo-
nalizing source-estimated signals for instantaneous correla-
tions, which arise primarily owing to volume conduction, and
then correlating the power envelope (ie, instantaneous power)
time series across different parts of the brain, studies have
found large-scale connectivity patterns consistent with an
fMRI-derived understanding of canonical human cortical
networks.25,27

We therefore sought to investigate how individual differ-
ences in EEG power envelope connectivity (PEC)–estimated

cortical networks in MDD differentially predicted outcome with
an antidepressant vs placebo (ie, whether it could serve as a
baseline moderator of treatment response). We did so using
the largest neuroimaging-coupled, placebo-controlled ran-
domized clinical trial in depression to date, to our knowledge—
the Establishing Moderators and Biosignatures of Antidepres-
sant Response in Clinic Care (EMBARC) study.27 We calculated
resting-state interregional PEC and graphed theoretical cen-
trality measures to characterize EEG functional connectivity
networks at baseline, and we examined within an intent-to-
treat analytic framework how connectivity associated with
treatment outcomes. Consistent with prior work,6,7,10,11 we hy-
pothesized that greater PEC and node strength localized to
the frontal and parietal cortices would predict better anti-
depressant treatment response specific to the antidepressant
sertraline hydrochloride vs placebo.

Methods
Participants
This study is a nonprespecified secondary analysis of a ran-
domized clinical trial. Additional details on study methods
and participant characteristics are in eAppendix 1 and eTable 1
in the Supplement and in prior publications.18,27 Outpatients
aged 18 to 65 years with a diagnosis of MDD28 were recruited
from July 29, 2011, to December 15, 2015, and assessed at 4
clinical sites (Columbia University, Massachusetts General
Hospital, University of Michigan, and University of Texas
Southwestern Medical Center). The study was approved by
the institutional review boards of all sites, and participants
provided written consent and received financial compensa-
tion. This study followed the Consolidated Standards of
Reporting Trials (CONSORT) reporting guideline.

Assessments and Treatment Protocol
The EMBARC trial used a double-blind design, with randomiza-
tion to 8 weeks of sertraline or placebo (N = 296; eFigure 1 in the
Supplement). Randomization was stratified by site, depression
severity, and chronicity using a block randomization proce-
dure. The primary clinical outcome was total score on the 17-
item Hamilton Rating Scale for Depression, administered at each
study visit (baseline and weeks 1, 2, 3, 4, 6, and 8).

Key Points
Question What electroencephalographic connectivity features
are neural moderators of antidepressant treatment response?

Findings In this secondary analysis of a randomized clinical trial,
greater alpha-band and lower gamma-band connectivity—
most prominently parietal—predicted better placebo treatment
response and worse antidepressant treatment response. Lower
connectivity levels in these moderating connections were
associated with higher levels of anhedonia.

Meaning Key cortical features differentiating placebo response
from antidepressant response were identified, providing an
alternative direction toward establishing a placebo signature in
clinical trials.
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Electroencephalography
Each study site recorded data with a different EEG system and
channel-space montage (eTable 2 in the Supplement). All data
were sampled at 250 Hz, over 60 to 128 channels, depending
on the site. Variables corresponding to site differences, includ-
ing their multiplicative interaction with all other terms in the
linear mixed models, were controlled for to reduce the possi-
bility of site effects on results (see Statistical Analysis sub-
section; eTable 3 in the Supplement). Electroencephalogra-
phy was performed during 8 total minutes of resting-state
activity by alternating between 2-minute blocks of eyes-open
(REO) and eyes-closed (REC) conditions.18

Analyses
A total of 268 treatment-randomized patients underwent EEG.
Of these, 221 (82.5%) were included in the analyses (217 of whom
had both REO and REC conditions), excluding 47 data sets be-
cause of poor EEG data quality. Of these patients, 106 were ran-
domized to receive sertraline and 115 were randomized to re-
ceive placebo (eFigure 1 in the Supplement). Final data included
217 REC data sets (105 sertraline and 112 placebo) and 221 REO
data sets (106 sertraline and 115 placebo) (see eTable 5 in the
Supplement for participant identifiers included in the analy-
ses). See eAppendix 1 in the Supplement for EEG preprocessing
and analysis details. A repeated k-fold cross validation analysis
was conducted and reported in eTable 12 in the Supplement. Re-
ceiver operator characteristics (area under the curve), odds ra-
tios, and effect sizes are reported for all analyses in eTable 13 in
the Supplement. Analyses controlling for effects of sex and age
are reported in eTable 15 in the Supplement.

Power Envelope Connectivity
All connectivity analyses were performed in source-space
owing to the variability in montages across sites; therefore,
each site’s montage was retained. Source localization was
performed in MATLAB 2014b (MathWorks Inc) using custom
code for nonparametric minimum norm estimates.29 All con-
nectivity analyses were computed at the vertex level using
3003 vertices in MNI (Montreal Neurological Institute) tem-
plate space, then averaged into 31 regions of interest (ROIs) in
MNI space (eTable 4 in the Supplement). Power envelope
connectivity26 was derived from the following 4 canonical
frequencies: theta (4.5-7.5 Hz), alpha (8-12 Hz), beta (12.5-30
Hz), and gamma (31-50 Hz). Further details can be found in
eAppendix 1 and eFigure 2 in the Supplement.

Node Strength Computation
The graph theoretical metric of node strength was computed
for each ROI using MATLAB’s implementation of the Brain
Connectivity Toolbox.30 Undirected node strength, quanti-
fied as the sum of weights of links connected to the node, was
calculated on the orthogonalized PEC estimates.31

Statistical Analysis
Statistical analysis was performed from November 16, 2018,
to May 23, 2019. Because our primary investigation was of the
moderation of the linear trajectory of treatment outcome, we
chose to perform prediction linear mixed-effects models, which

furthermore maintained an intent-to-treat framework. Lin-
ear mixed-effects models were applied to each ROI-to-ROI con-
nectivity estimate and node strength measure.32

Models predicted a linear trajectory of repeated 17-item
Hamilton Rating Scale for Depression scores across time at
baseline and week 1, 2, 3, 4, 6, and 8 (ie, end point) assess-
ment points. Analyses were conducted using the NLME
package in R, version 3.4.4 (R Foundation for Statistical
Computing).33 The brain metric × treatment group × time in-
teraction, the primary term of interest, assessed differential
symptom trajectories by treatment group as a function of EEG
connectivity moderators (eTable 3 and eAppendix 1 in the
Supplement). All P values were false discovery rate (FDR) cor-
rected for multiple comparisons across all ROIs and fre-
quency bands to control for type I errors (eAppendix 1 in the
Supplement). All P values were from 2-sided tests and results
were deemed statistically significant at an FDR-corrected
P ≤ .0125.

To further understand the clinical significance of treat-
ment-moderating connectivity measures, we performed Pear-
son correlations of the FDR-significant connectivity and nodal
strength effects with several clinical indices (correcting for mul-
tiple corrections across all correlations performed) across the
entire sample. The clinical measures were the Childhood
Trauma Questionnaire,34 the Quick Inventory of Depressive
Symptomatology,35 the Mood and Anxiety Symptom
Questionnaire,36 the State-Trait Anxiety Questionnaire,37 and
the Snaith-Hamilton Pleasure Scale,38 as well as the duration
of the current depressive episode. P values extracted from the
correlational analyses between clinical scales and connectiv-
ity features were FDR-corrected for multiple comparisons si-
multaneously across all pairwise comparisons of all scales and
FDR-significant connectivity features. A supplementary analy-
sis was conducted to assess connectivity features that change
from baseline to 1 week into treatment (eTable 14, eFigure 3,
and eAppendix 2 in the Supplement).

Results
A total of 221 participants underwent EEG recordings and had
high-quality pretreatment EEG data. Participants included in
the analyses were aged 18 to 65 years (150 women; mean [SD]
age, 37.8 [12.7] years). The group mean (SD) score on the 17-
item Hamilton Rating Scale for Depression was 18.35 (4.58) at
baseline and 26.14 (30.37) across all time points.

PEC Moderators of Treatment Outcome
Initial Identification of Moderators
After correcting for multiple comparisons across all pairwise
connectivity features and frequency bands, significant
moderation effects for the REC condition were identified at 40
ROI-to-ROI pairwise power envelope connections using the al-
pha carrier frequency and at 31 connections using the gamma
carrier frequency (eTable 6 in the Supplement; Figure 1B and
C). The regions associated with these connections were pri-
marily frontal, parietal, temporal, and visual and somatosen-
sory (Figure 1B and C).

Cortical Connectivity Moderators of Antidepressant vs Placebo Treatment Response in Depression Original Investigation Research

jamapsychiatry.com (Reprinted) JAMA Psychiatry April 2020 Volume 77, Number 4 399

© 2020 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by a Harvard University User  on 06/16/2020

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2019.3867?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867
http://www.jamapsychiatry.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2019.3867


Figure 1. Cortical Regions of Interest (ROIs), Alpha Power Envelope Connectivity (PEC), and Gamma PEC
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A, A total of 31 ROIs (right and left ROIs are numbered the same; 14 bilateral ROIs [28 total] and 3 midline ROIs) were defined in Montreal Neurological Institute
space, derived from independent components analysis parcellation of resting-state functional magnetic resonance imaging connectivity from 38 participants.26

B, Resting eyes-closed PEC between left mid-temporal gyrus and right angular gyrus moderation of outcome with sertraline (SER) vs placebo (PLA) treatment within
the alpha band. C, Resting eyes-closed PEC between left anterior mid-frontal gyrus and right mid-temporal gyrus moderation of outcome with SER vs PLA treatment
within the gamma band. Left panel: z scores for significantly moderating ROIs are represented in the ROI × ROI matrix plots. Middle panel: summed cortical
connectivity (z scores) at each significantly moderating ROI. Right panel: visualization of moderation results reveals that significant prediction of treatment only in
the PLA group was probably the cause of the moderation results. Shown are model-predicted 17-item Hamilton Rating Scale for Depression (HAMD17) values for the
PLA and SER groups using an arbitrary median split on PEC for visualization purposes only. Low = below-median connectivity and high = above-median connectivity.
The 2 ROIs comprising the pairwise connectivity feature visualized are outlined in red on the cortical images. AMFG indicates anterior mid-frontal gyrus;
ANG, angular gyrus; DACC, dorsal anterior cingulate cortex; FEF, frontal eye fields; IFJ, inferior frontal junction; INS, insular cortex; IPL, inferior parietal lobe;
IPS, inferior parietal sulcus; L, left; MPFC, medial prefrontal cortex; MTG, mid-temporal gyrus; ORB, orbitofrontal cortex; PCC, posterior cingulate cortex;
PMFG, posterior mid-frontal gyrus; R, right; SEF, superior eye fields; SMC, sensorimotor cortex; SUP, supramarginal gyrus; and VI, bilateral primary visual cortex.
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A total of 24 connections within the alpha, gamma, and beta
frequencies significantly moderated treatment effect within the
REO condition. Alpha-band moderators were primarily within
the visual and parietal regions, whereas beta-band modera-
tors were specific to parietal and frontal regions, and gamma-
band moderators within the temporal, parietal, anterior cingu-
late, and visual and somatosensory cortices (eTable 7 in the
Supplement; Figure 2).

Examining Moderation as a Function of Within-Group Treatment
To next understand whether these significant moderators were
due to prediction of outcome in the sertraline group, placebo
group, or both groups, we performed mixed models for each
group separately. Because this analysis was performed to in-
vestigate what was causing the connectivity × time × treat-
ment group interactions, we constrained our analyses only to
FDR-significant connections (FDR-corrected P ≤ .0125) iden-
tified as moderating in the full analysis. As such, we did not
correct again for multiple comparisons because it was per-
formed for visualization purposes only. We found that the mod-
erating connections within the REC condition from the alpha
and gamma carrier frequency analyses significantly pre-
dicted outcome primarily in the placebo group, with only a few
predicting outcome in the sertraline group (eTable 6 in the
Supplement). Within the REO condition, while the signifi-
cantly predictive features across alpha, beta, and gamma
carrier frequencies were predominately within the placebo
group, most of these features were also predictive within the
sertraline group (eTable 7 in the Supplement). Thus, REC con-
nectivity moderators predominantly reflected placebo-
driven effects, whereas those in the REO condition reflected
effects from both groups.

Visualization of Within-Group Moderation Effects
To visualize treatment-moderating connections within the REC
condition (with no further statistical analyses to avoid “double
dipping”), we divided the sample with depression using a me-
dian split for each of the ROI-to-ROI PEC values found to sig-
nificantly moderate treatment outcome (Figure 1B and C and
Figure 2). This visualization revealed that greater alpha-band
PEC within parietal, temporal, and visual regions predicted
better treatment outcome with placebo (ie, steeper symptom
change slopes) and worse treatment outcome with sertraline.
In addition, reduced gamma-band PEC within the frontal,
visual, somatomotor, parietal, and temporal regions also
predicted better treatment outcomes with placebo and worse
treatment outcomes with sertraline (Figure 1).26

Within the REO condition, better outcomes in the pla-
cebo group and worse treatment outcomes in the sertraline
group were predicted by greater alpha-band PEC within the vi-
sual and parietal regions; reduced gamma-band PEC within the
frontal, temporal, parietal, anterior cingulate, and visual and
somatosensory regions; and reduced beta-PEC within the fron-
tal and parietal regions (Figure 2).

Power Envelope Node Strength Moderators of Treatment Outcome
As a complement to the connection-wise analyses, we next con-
ducted the same linear mixed model analyses on node-level

connectivity strength measures, which provide a summary
metric of the overall connectivity of each ROI. Of the 31 ROIs
and 4 frequency bands entered in the linear mixed-effect model
analyses, 3 regions within the alpha-band REC condition
survived FDR correction in the moderation analysis
(brain × treatment group × site interaction; eTable 8 in the
Supplement; Figure 3). These regions were the right inferior
parietal lobe, the right angular gyrus, and the right supramar-
ginal gyrus. As in the analyses, visualizing the results using a
median split, we found that a higher alpha-band nodal strength
predicted better treatment outcome with placebo (Figure 3).
Alpha-band nodal strength did not significantly predict treat-
ment outcome with sertraline.

Association Between Clinical Severity Measures and PEC
We ran correlations between questionnaire data and FDR-
significant connectivity pairs from the analyses. Correlations
with the Snaith-Hamilton Pleasure Scale, which measures
anhedonia,39 survived correction. Baseline anhedonia rat-
ings across the entire sample were negatively associated with
alpha- and gamma-band connectivity metrics within the REC
condition (eTable 9 in the Supplement; Figure 4A and B). The
Snaith-Hamilton Pleasure Scale was also negatively associ-
ated with alpha node strength in the right inferior parietal
lobe, the angular gyrus, and the supramarginal gyrus
(Figure 4C; eTable 10 in the Supplement). In addition, greater
symptom severity on the Quick Inventory of Depressive
Symptomatology was positively associated with greater base-
line gamma PEC within the frontal, parietal, temporal, insular,
and cingulate cortical regions within the REC condition
(eTable 11 in the Supplement). No REO connectivity measures
survived correction.

Discussion
Here we establish pretreatment resting-state EEG connectiv-
ity features that moderated the treatment effect of the anti-
depressant sertraline vs placebo in a large randomized clini-
cal trial in outpatients with MDD. Moderation effects were
largely associated with outcomes in the placebo group and,
to a lesser extent, in the sertraline group, a subset of which
were associated with anhedonia and depressive symptom
severity.

Neural Moderators of Treatment Response
The PEC measures found to significantly moderate treat-
ment outcome were predominantly within the alpha-band,
gamma-band, and, to a lesser extent, beta-band carrier fre-
quencies. The synchronization of slow fluctuations in the
power envelope of the band-limited oscillatory signal has
been suggested to underlie large-scale functional network
dynamics in both fMRI and magnetoencephalography.40-42

Further supporting these findings, entraining the power
envelopes of regions within a given resting-state network
has been found to strengthen fMRI connectivity within the
targeted networks.43 Prior work has supported a negative
association between alpha or beta oscillations and neural
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Figure 2. Resting Eyes-Open Power Envelope Connectivity (PEC) Moderation of Outcome With Sertraline (SER) vs Placebo (PLA)
Treatment Within the Alpha, Beta, and Gamma Bands
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A, Alpha PEC between left and right primary visual cortex. B, Beta PEC between medial prefrontal cortex and left inferior parietal sulcus. C, Gamma PEC between left
inferior parietal lobe and right primary visual cortex. Left panel: z scores for significantly moderating regions of interest (ROIs) are represented in the ROI × ROI
matrix plots. Middle panel: summed cortical connectivity (z scores) at each significantly moderating ROI; ROIs with greater summed z scores are those with greater
total moderating connectivity. Right panel: visualization of moderation results reveals that significant prediction of treatment only in the PLA group was probably
the cause of the moderation results. Shown are model-predicted 17-item Hamilton Rating Scale for Depression (HAMD17) values for the PLA and SER groups using
an arbitrary median split on PEC for visualization purposes only. Low = below-median connectivity, high = above-median connectivity. Two ROIs comprising the
pairwise connectivity feature visualized are outlined in red on the cortical images. AMFG indicates anterior mid-frontal gyrus; ANG, angular gyrus; DACC, dorsal
anterior cingulate cortex; FEF, frontal eye fields; IFJ, inferior frontal junction; INS, insular cortex; IPL, inferior parietal lobe; IPS, inferior parietal sulcus; L, left;
MPFC, medial prefrontal cortex; MTG, mid-temporal gyrus; ORB, orbitofrontal cortex; PCC, posterior cingulate cortex; PMFG, posterior mid-frontal gyrus;
R, right; SEF, superior eye fields; SMC, sensorimotor cortex; SUP, supramarginal gyrus; and VI, bilateral primary visual cortex.
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activation, as well as a positive association between gamma
oscillations and neural activation, as measured by the fMRI
blood oxygen level–dependent signal44-46 and intracranial
recordings.47-49 See further discussion regarding band speci-
ficity in PEC in eAppendix 2 in the Supplement.

The alpha-band connectivity features significantly mod-
erating treatment response were predominantly between
the parietal, visual, and temporal regions. Parietal alpha-
band power has been heavily associated with reward
anticipation50-52 and has been shown to be reduced in
patients with depression at rest and during reward
anticipation.53-55 In addition, reduction in frontoparietal
alpha power has been associated with reduced reward
anticipation in depression.55 Gamma-band connectivity was
also found to significantly moderate treatment outcome,
specific to the frontal, parietal, and sensorimotor regions.
Some prior work has implicated gamma oscillations as
a state-related marker of depression.56,57 Reductions in
gamma-band power, complexity, and connectivity in the
frontal-parietal cortices have been found in depression,58

with gamma oscillation power increases with treatment cor-
relating with improved treatment outcome.59,60 However,
the relevance of band power to band-limited PEC is
unknown and was not examined in these studies. Moreover,
to our knowledge, no prior work examined the relevance of
alpha-band or gamma-band power to placebo clinical out-
come. As such, our findings provide important new insights
in an area that has received relatively little research. The
effect of these findings is further underscored by the size of
the EMBARC trial relative to prior studies, which either
lacked placebo groups or had samples 5 to 10 times smaller
than those in the EMBARC trial.

Neural Predictors of Antidepressant Treatment Response
Placebo treatment can reduce depressive symptoms,
so much so that it has become an increasing barrier to
medication effectiveness research during the past few
decades.1,4,61-69 This difficulty separating antidepressant
from placebo treatment responses has motivated treatment
prediction and moderation research, with the EMBARC trial
being the largest such study using neuroimaging to date.
Although some studies have found baseline neural features
predictive of treatment response, most did not find these
features to differentiate between antidepressant and placebo
response.18,70-72 Moreover, because most used an open-label
design without a placebo group, we still lack knowledge
regarding the neural basis of response to placebo vs anti-
depressant medication.

Although all the significant features predicting treatment
response were associated with placebo, a number of connec-
tivity measures predicted antidepressant outcome in the
opposite direction as placebo outcome. These measures were
predominantly alpha-band connectivity within the parietal
cortex (REC) and visual cortex (REO), beta-band connectivity
within the frontal and parietal regions (REO), and gamma-
band connectivity within and between the parietal, tempo-
ral, and visual and somatosensory cortices (REC and
REO). This subset of features in particular may help identify
individuals who will experience greater antidepressant and
worse placebo responses, whereas the other measures would
inform only placebo prediction. One known factor delineat-
ing placebo vs treatment responders is depressive symptom
severity.73 However, the connectivity features predictive of
sertraline treatment response were not associated with
the baseline metrics of Quick Inventory of Depressive Symp-

Figure 3. Alpha Power Envelope Connectivity (PEC) Node Strength Moderation of Outcome With Sertraline (SER) vs Placebo (PLA) Treatment
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image) moderation results reveals that significant prediction of treatment only
in the PLA group was probably the cause of the moderation results. Shown are
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for the PLA and SER groups using an arbitrary median split on PEC for
visualization purposes only. Low = below-median connectivity, high =
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frontal junction; INS, insular cortex; IPS, inferior parietal sulcus; L, left;
MPFC, medial prefrontal cortex; MTG, mid-temporal gyrus; ORB, orbitofrontal
cortex; PCC, posterior cingulate cortex; PMFG, posterior mid-frontal gyrus;
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tomatology depressive symptom severity, reducing the possi-
bility that these features simply reflect symptoms.

Neural Predictors of Placebo Treatment Response
Although a number of studies have examined the neuro-
biology of placebo response, only a handful have examined
the neurobiological substrates of placebo response in
depression.67,71,72 This work has also focused mostly on neu-
ral changes associated with placebo antidepressant re-

sponses, rather than pretreatment outcome prediction. The pri-
mary study within the literature investigating the baseline
functional connectivity predictive of placebo treatment re-
sponse differentially from antidepressant treatment re-
sponse identified increased rostral anterior cingulate cortex
connectivity within the salience network as predictive of
placebo treatment response.72

The clinical significance of the treatment-moderating
connectivity is further suggested by their association with

Figure 4. Association Between Electroencephalography Connectivity Moderators and Anhedonia
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the Supplement for statistics).
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anhedonia, whereby greater neural connectivity and nodal
strength was associated with reduced anhedonia. Anhedo-
nia, or the loss of pleasure in activities, is a prominent
symptom in depression.74 Previous research has shown an
association between anhedonia and disrupted neural
reward processing.75,76 We speculate therefore that parietal
PEC, in particular to the temporal and visual regions within
the alpha band, may reflect in part the action of reward pro-
cessing systems, which in turn predicts placebo response.

Limitations
This study has some limitations. The mechanism by which al-
pha-band and gamma-band features differentially influence
treatment response requires further investigation. Future work
will be needed to understand how pretreatment EEG connec-
tivity predicts longer-term outcomes beyond 8 weeks as well
as clinically important events such as relapse. The effect sizes
were small for most of the significant features found to mod-

erate treatment outcome and, therefore, call for replication.
Although both anhedonia and depressive severity were sig-
nificantly associated with resting-state EEG treatment
moderators, they explained only approximately 5% to 10% of
variance in connectivity.

Conclusions
Our findings provide insight into the neural connectivity
features that are specifically predict placebo response in
depression, differentially from sertraline treatment
response, potentially involving a role for anhedonia. From a
treatment perspective, capitalizing on the therapeutic
components leading to placebo response differentially
from antidepressant response could provide an alternative
direction toward clinical treatment of patients with
depression.68
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