Resting EEG Measures of Brain Arousal in a Multisite Study of Major Depression

Christine Ulke1,2*, Craig E. Tenke3,4*, Jürgen Kayser3,4, Christian Sander1,2, Daniel Böttger1,2, Lidia Y. X. Wong4, Jorge E. Alvarenga4, Maurizio Fava5, Patrick J. McGrath3,4, Patricia J. Deldin6, Melvin G. Mcinnis7, Madhukar H. Trivedi8, Myrna M. Weissman3,4, Diego A. Pizzagalli9, Ulrich Hegerl1,2, and Gerard E. Bruder3,4

Abstract
Several studies have found upregulated brain arousal during 15-minute EEG recordings at rest in depressed patients. However, studies based on shorter EEG recording intervals are lacking. Here we aimed to compare measures of brain arousal obtained from 2-minute EEGs at rest under eyes-closed condition in depressed patients and healthy controls in a multisite project—Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC). We expected that depressed patients would show stable and elevated brain arousal relative to controls. Eighty-seven depressed patients and 36 healthy controls from four research sites in the United States were included in the analyses. The Vigilance Algorithm Leipzig (VIGALL) was used for the fully automatic classification of EEG-vigilance stages (indicating arousal states) of 1-second EEG segments; VIGALL-derived measures of brain arousal were calculated. We found that depressed patients scored higher on arousal stability (Z = −2.163, P = .015) and A stages (dominant alpha activity; P = .027) but lower on B1 stages (low-voltage non-alpha activity, P = .008) compared with healthy controls. No significant group differences were observed in Stage B2/3. In summary, we were able to demonstrate stable and elevated brain arousal during brief 2-minute recordings at rest in depressed patients. Results set the stage for examining the value of these measures for predicting clinical response to antidepressants in the entire EMBARC sample and evaluating whether an upregulated brain arousal is particularly characteristic for responders to antidepressants.

Keywords
EMBARC, electroencephalogram, VIGALL 2.1, major depressive disorder, brain arousal regulation, EEG-vigilance

Received May 12, 2018; revised July 17, 2018; accepted July 18, 2018.

Introduction
Resting EEG-Measures as Predictive and Diagnostic Biomarkers
Major depressive disorder (MDD) is a highly prevalent and chronic disorder, and a leading cause of disability worldwide.1 Considering its immense contribution to the overall global burden of disease, the delayed onset of the effects of antidepressants (AD) and an AD nonresponse rate of up to 50%,2 a robust and simple method for predicting AD treatment response would be very valuable. Electroencephalogram (EEG)-derived neurophysiological measures are promising biomarkers for predicting AD treatment response and for discriminating between MDD patients and healthy subjects (see Olbrich and Arns,3 Bruder et al.,4 and Alhaj et al.5 for review). They are highly heritable,6 widely available and they provide direct information on brain activity with a temporal resolution in the millisecond range.7

1Department of Psychiatry and Psychotherapy, University of Leipzig, Leipzig, Germany
2Research Centre of the German Depression Foundation, Leipzig, Germany
3Department of Psychiatry, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
4New York State Psychiatric Institute, New York, NY, USA
5Depression Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
6Departments of Psychology and Psychiatry, The University of Michigan, Ann Arbor, MI, USA
7Department of Psychiatry, The University of Michigan, Ann Arbor, MI, USA
8Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
9Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, USA
*These authors have contributed equally to this work and are co–first authors.
Corresponding Author:
Christine Ulke, Department of Psychiatry and Psychotherapy, University of Leipzig, Semmelweissstrasse 10, 04103 Leipzig, Germany.
Email: christine.ulke@medizin.uni-leipzig.de
Full-color figures are available online at journals.sagepub.com/home/eeg
Among the most investigated findings in studies examining resting EEG Measures as AD response predictors are changes in the alpha band: several studies found greater resting state EEG alpha power in depressed patients who respond to antidepressants relative to nonresponders, mainly at posterior scalp locations. The posterior location was confirmed in a study analyzing spectra from reference-free current source density waveforms, which represent more closely the underlying neuronal generators. For decades, elevated alpha activity during rest has consistently been found in MDD patients in comparison with controls (see Olbrich and Arns for review). Importantly, prominent resting EEG characteristics, such as posterior EEG alpha oscillations, are highly stable over long time intervals (>12 years) in adults, thereby meeting the requirement of a trait biomarker.

More recently, Hegerl and colleagues developed the Vigilance Algorithm Leipzig (VIGALL; http://www.uni-leipzig.de/vigall/), which classifies consecutive 1-second segments of eyes-closed resting EEG into different EEG-vigilance stages, indicating states of brain arousal. On a behavioral level, several states of arousal can be discerned during the waking state, ranging from high wakefulness to sleep onset. VIGALL allows the objective assessment of the dynamics of brain arousal within multichannel EEG recordings using low-resolution electromagnetic tomography (LORETA) for its automatic stage classification. It was broadly validated with simultaneous EEG-FDG-PET (EEG–fluorodeoxyglucose–positron emission tomography), as well as EEG–functional magnetic resonance imaging studies, and by relating EEG-vigilance stages to parameters of the autonomous nervous system.

A recent genome-wide association analysis (GWA) with arousal regulation (as assessed with VIGALL) revealed the involvement of a transmembrane protein, which has also been linked to depression in other GWAs. Evidence of elevated and more stable brain arousal regulation in depressed individuals compared with healthy controls, based on 15-minute eyes-closed EEGs, was found and replicated in two samples.

A relatively new paradigm in biomarker research is a multi-marker strategy to improve the discriminative power and to achieve sufficient prediction accuracy in order to personalize treatment. For example, in the context of the multisite placebo-controlled randomized clinical trial—Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC)—the value of multiple biomarkers for differential prediction of response to AD are systematically examined to develop biosignatures, which consist of a combination of markers with combined predictive value. Prior to examining brain arousal regulation as a marker for response prediction in the EMBARC study, the current feasibility study was conducted.

Rationale and Aim of the Feasibility Study

Within the EMBARC project, a new standardized processing procedure had been developed to ensure data compatibility between EEG acquisition sites. This procedure implemented a standardized EEG procedure manual, data interpolation of different EEG recording setups to a common montage and sample rate, and a single standardized processing pipeline at all test sites (see figure 1 in Tenke et al). Test-retest reliability of EEG-derived measures following the standardized procedures was demonstrated to be good to excellent. The assessment of brain arousal in the resting EEG data of the EMBARC study (four 2-minute periods, half with eyes open, half with eyes closed) presented several challenges for VIGALL assessment. For example, the duration of each eyes-closed period was only two minutes, as opposed to the 15- to 20-minute recording period usually used for EEG-vigilance analyses. In addition, the EMBARC standardized processing procedure differed from the VIGALL standardized processing procedure (eg, concerning artifact correction). To evaluate whether automatic staging of EEG-vigilance in this dataset is feasible this initial study was conducted in a subsample of the EMBARC study before addressing the main study question of AD-response prediction in a separate report.

To this end, we examined whether the upregulated brain arousal previously demonstrated in depressed patients as compared with healthy adults using 15-minute resting EEG data could be replicated in 2-minute EEG recordings at rest under eyes-closed condition. We expected that depressed patients would show a more stable regulation and higher level of brain arousal than healthy controls.

Materials and Methods

Study Participants

The sample characteristics of all randomized depressed participants (N = 309) is described elsewhere. In this feasibility study, a subsample of 96 patients with MDD (among the first 100 batch with usable EEG data) constituted the patient sample from 4 testing sites: Columbia University Medical Center in New York (CU; n = 22), Massachusetts General Hospital in Boston (MG; n = 11), University of Texas Southwestern Medical Center in Dallas (TX; n = 41); and University of Michigan in Ann Arbor (UM; n = 22). Main inclusion criteria were age between 18 and 65 years (male/female), chronic episode duration (>2 years) or recurrent (>2 recurrences) nonpsychotic MDD (according to DSM-IV) with an early onset (before age 30 years), fluency in English, and provision of written informed consent. Main exclusion criteria included diagnosis of bipolar disorder or schizophrenia (current or lifetime), other axis I or II diagnoses (except for nicotine/caffeine dependence), meeting DSM-IV criteria for substance abuse in the past six months (except for nicotine). Of the 96 participants in the subsample used for the current analysis, data from eight depressive participants were eliminated due to bad EEG quality (>70% of artifactual epochs in the first eyes-closed period), thus leaving data of 87 patients for the EEG-vigilance analyses.

The control sample for this feasibility study consisted of a total of 38 healthy adults (24 female, mean age of 37.6 years, age range 18 to 65 years, including study participants.
from CU (n = 10), MG (n = 9), TX (n = 10), and UM (n = 9). Recruitment and screening methods are described elsewhere. Main inclusion criteria included age between 18 and 65 years, Quick Inventory of Depressive Symptomatology Self-Report (QIDS-SR) score < 8, fluency in English, and provision of written informed consent. Main exclusion criteria included diagnosis of major depression, bipolar disorder or schizophrenia (current or lifetime), current axis I or II diagnoses (except for nicotine/caffeine dependence), meeting DSM-IV criteria for substance abuse in the past six months (except for nicotine). Between testing sites, there was no significant difference in mean age or gender ratio; a more detailed description of inclusion and exclusion criteria is provided by Tenke et al.32 Data from two control subjects were eliminated due to bad EEG quality (≥ 70% of artifactual epochs in the first eyes-closed period), thus leaving data of 36 controls for the EEG-vigilance analyses.

Questionnaires

The 17-item Hamilton Rating Scale for Depression (HAMD-17) was administered to assess the severity of depressive symptoms. The sum score ranges between 0 and 52 whereby scores of 0 to 7 are considered as being normal, 8 to 16 indicate mild depression, 17 to 23 moderate depression and scores >24 suggest severe depression. The Edinburgh Handedness Inventory (EHI)56 laterality quotient (LQ: −100 to +100 maximum left to maximum right-handed) was used to assess handedness.

Resting EEG Acquisition Procedure

All four test-sites followed the EEG Procedure Manual to ensure standardized test administration. Experimenters at each lab were certified by the Columbia lab for EEG cap placement and task instruction via video conference. EEG acquisition at the four testing sites was conducted using different equipment, extensively outlined in Tenke et al. Continuous EEG data were recorded while participants sat quietly for four 2-minute periods in fixed order: eyes-open (block 1), eyes-closed (block 2), eyes-closed (block 3), eyes-open (block 4). During the recording, participants were instructed to remain still, inhibit blinks or eye movements and, during the eyes-open condition, fixate a central cross on a monitor. For the purpose of this study, only block 2 was examined (ie, the first eyes-closed condition).

Preprocessing Pipeline for Resting EEG

The preprocessing strategies to obtain comparable data of the four testing sites have been described by Tenke et al. Figure 1 presents the flowchart of the (a) standardized preprocessing pipeline for resting EEG of the EMBARC study and (b) the procedure preceding automatic EEG-vigilance stage classification.
First, after data format conversion and import into Brain Vision Analyzer, a marker (“USE”) was placed in every alternate 2-second epoch of block 2. Thereafter, 1000 ms after “USE” were segmented to obtain sequential nonoverlapping 1-second segments. Because of the preprocessed and segmented state of the resting EEG data, we refrained from preprocessing steps usually applied to raw data before applying VIGALL to comply with the standardized EMBARC protocol.

We refrained from using independent component analysis37-39 because of its potentially reduced efficacy for selection of independent components due to the cleaned and blink-removed data. We also refrained from marking of grapho-elements (eg, K-complexes), because epochs exceeding a 100 µV threshold on any channel (including the electrooculography channels) had been automatically rejected to remove any epochs containing eye blinks. Notwithstanding, all single trials were screened for sleep spindles by an experienced rater, but none were identified.

Adaptation to VIGALL Algorithm

In a first step, plausibility checks of the automatic EEG-vigilance stage classification were conducted, resulting in methodological adjustments to VIGALL and the release of VIGALL 2.1. The necessity arose from the fact that initial EEG-vigilance staging with an earlier version of the algorithm (VIGALL 2.0) yielded an incorrect classification of segments containing traces of eye movement artifacts as EEG-vigilance Stage B2/3, which is characterized by dominant delta or theta power in the EEG (see Table 1). Since noncephalic artifacts often occur in the 2- to 4-Hz frequency range,40 and given the absence of sleep-spindles in this dataset, we circumvented this problem in a new version of VIGALL, which allows the manual adjustment of the delta/theta range,18 by omitting the delta range. The decision criteria of the algorithm are presented in Figure 2. The software was written by one of the authors, is licensed under GPL3 and available at https://github.com/danielboettger/VIGALL/.

EEG-Vigilance Staging and Arousal Parameterization

Using VIGALL 2.1, the consecutive 1-second segments were classified into 5 different EEG-vigilance stages: A1, A2, A3, B1 and B2/3 (C was not observed; see Table 1), based on frequency bands and source localization with LORETA.

To note, as no continuous EOG data were available, we could not discriminate stage B1 from stage 0, since this is done by detecting slow horizontal eye movements (SEM). Thus, stages B1 and 0 were combined as B1 as it is suggested when SEs cannot be assessed.18 The VIGALL 2.1 classification results were written to a text file and imported into a Microsoft Excel template. Next, brain arousal parameters were calculated with Visual Basic for Applications (VBA) macros in Microsoft Excel and using SPSS-syntax in SPSS. Each 1-second staged EEG-segment was assigned a score ranging from 6 (A1) to 2 (B2/3; see Table 1).

Arousal Regulation. To quantify the extent of arousal decline (i.e., arousal regulation), we calculated an arousal stability index based on 1-minute intervals (interval 1, segments 1-60; interval 2, segments 2-61; etc). Scoring criteria are presented in Table 2; high score corresponds to a stable arousal regulation.

Arousal Level. The absolute amount and the percentage (amount × 100/total number of non-artifactual segments) of EEG-vigilance staged segments (A, B1, and B2/3) were calculated for block 2 (ie, the first eyes-closed condition). To calculate mean EEG-vigilance across block 2, we computed and averaged the mean of all scored 1-second segments without considering artifactual segments.

Statistical Analyses

Statistical analyses were performed in SPSS Statistics 24.0 (IBM Corp; Armonk, NY, USA). To assess whether groups differed concerning gender, race, handedness, age, education, and severity of depressive symptomatology we conducted independent chi-square test (gender, handedness, race), and analyses of variance (continuous demographic variables). To assess group differences concerning arousal regulation (ie, arousal stability index), arousal level (ie, the relative amount of EEG-vigilance stages A, B1, and B2/3, mean EEG-vigilance) we conducted Mann-Whitney U tests due to non-normality of the data. For post-hoc analysis of mean EEG-vigilance, we limited the number of artifactual segments in each of the eight 15-second intervals. Thereby, subjects with 80% artifactual segments or more in any

<table>
<thead>
<tr>
<th>VIGALL Stages</th>
<th>Stage Scoring</th>
<th>EEG Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>6</td>
<td>Predominant occipital alpha activity</td>
</tr>
<tr>
<td>A2</td>
<td>5</td>
<td>Shifts of alpha to central and frontal cortical areas</td>
</tr>
<tr>
<td>A3</td>
<td>4</td>
<td>Continued frontonalization of alpha</td>
</tr>
<tr>
<td>B1</td>
<td>3</td>
<td>Low amplitude, desynchronized non-alpha EEG with or without slow eye movements</td>
</tr>
<tr>
<td>B2/3</td>
<td>2</td>
<td>Dominant delta- and theta-power</td>
</tr>
<tr>
<td>C*</td>
<td>1</td>
<td>Occurrence of grapho-elements indicating sleep onset</td>
</tr>
</tbody>
</table>

Abbreviations: VIGALL, Vigilance Algorithm Leipzig; EEG, electroencephalogram.

aNot observed.

Table 1. Assessment of EEG-Vigilance Stages by Applying VIGALL in the Current Study.
Ulke et al

15-second interval were excluded, leaving 66 depressed patients and 28 healthy controls. The one-tailed significance level was set to \(P \leq 0.05 \).

Results

Characteristics of Sample

Table 3 presents the demographic characteristics and the HAMD-17 scores at baseline of the 36 healthy controls and the 87 participants with MDD. Of the 36 healthy controls (age, mean ± SE: 37.0 ± 2.4 years), the majority (58.3%) were female and Caucasian (69.4%); mean HAMD-17 scores of <1 (range 0-3) were in the normal range. Of the 87 depressed patients (age, mean ± SE: 39.0 ± 2.4 years), the majority (64.4%) were female and Caucasian (65.5%); mean HAMD-17 scores of 18.7 (range 11-32) indicated a mild to severe depressive symptomatology in depressed participants. Groups did not differ in gender, race, handedness, age, EHI score, and education (\(F_{1, 122} < 1.0 \), nonsignificant). Groups differed in depression severity (\(F_{1, 119} = 533.94, P < .001 \)).

Table 2. Scoring Criteria of the Arousal Stability Index.

<table>
<thead>
<tr>
<th>Scoring Criteria</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>⩾2/3 of all segments classified as A1 (minute 1 or 2)</td>
<td>6</td>
</tr>
<tr>
<td>⩾2/3 of all segments classified as A1-3 (minute 1 or 2)</td>
<td>5</td>
</tr>
<tr>
<td>⩾1/3 of segments in minute 2 classified as B1</td>
<td>4</td>
</tr>
<tr>
<td>⩾1/3 of segments in minute 1 classified as B1</td>
<td>3</td>
</tr>
<tr>
<td>⩾1/3 of segments in minute 2 classified as B2/3</td>
<td>2</td>
</tr>
<tr>
<td>⩾1/3 of segments in minute 1 classified as B2/3</td>
<td>1</td>
</tr>
</tbody>
</table>

Between-Group Comparisons of EEG Measures of Brain Arousal

Examples of the individual time course of EEG-vigilance stages across block 2 are presented in Figure 3. The time course of the mean EEG-vigilance over the 2-minute EEG (eight 15-second intervals) and the frequency distribution of the arousal stability scores in depressed patients and controls are presented in Figure 4. Between-group comparisons of arousal stability scores, mean EEG-vigilance and relative amount of EEG-vigilance stages A, B1, and B2/3 are presented in Table 4.

In general, arousal stability, mean vigilance, and Stage A vigilance scores were greater in MDD patients than healthy controls. However, vigilance scores in Stage B1 were greater in healthy controls than in MDD patients, and no significant group differences were observed in Stage B2/3 (see Table 4).

Concerning the arousal stability index, the between-group analyses revealed significant results with moderate effect size (Cohen’s \(d = 0.461; P = .015 \)). Depressed patients remained longer in A stages, as compared with healthy controls.

Concerning the relative amount of EEG-vigilance stages, MDD patients had significantly larger amount of Stage A (\(P = .027 \)) with a moderate effect size (Cohen’s \(d = 0.485 \)) and significantly smaller amount of Stage B1 (\(P = .008 \)), with moderate effect size (Cohen’s \(d = 0.551 \)).

Concerning the mean EEG-vigilance of the entire block 2, no significant differences could be obtained (Cohen’s \(d = 0.333, P = .085 \)), albeit a trend was observed. Post-hoc analysis of mean vigilance did, however, reveal a significant effect (\(Z = −1.889, P = .029 \)), when a successive artifact criterion was applied (see Materials and Methods section). To note, comparing both groups concerning the number of...
artifactual segments per 15-second interval no significant differences were found between groups (before and after limiting the number of artifactual segments) in the entire 2-minute recording period or in any of the eight 15-second intervals.

Discussion

The present study used VIGALL 2.1 to compare EEG measures of brain arousal obtained from 2-minute eyes-closed recordings in depressed patients and healthy controls in the multisite EMBARC study. As expected, MDD patients showed a more stable arousal regulation, as evidenced by a higher arousal stability score, as well as relatively more A stages (alpha activity) and less B1 stages (low voltage, non-alpha activity) than healthy controls. However, there were no group differences during B2/3 stages (indicating drowsiness) and the 2-minute mean EEG-vigilance score was marginally significant.

Table 3. Characteristics of 36 Healthy Controls and 87 Depressed Patients.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Healthy Controls (n = 36)</th>
<th>Depressed Patients (n = 87)</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>21</td>
<td>58.3</td>
<td>56</td>
</tr>
<tr>
<td>Male</td>
<td>15</td>
<td>41.6</td>
<td>31</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>25</td>
<td>69.4</td>
<td>57</td>
</tr>
<tr>
<td>Black or African American</td>
<td>7</td>
<td>19.4</td>
<td>22</td>
</tr>
<tr>
<td>Asian</td>
<td>2</td>
<td>5.6</td>
<td>3</td>
</tr>
<tr>
<td>American Indian/Alaska native</td>
<td>0</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>More than one race</td>
<td>2</td>
<td>5.6</td>
<td>4</td>
</tr>
<tr>
<td>Handedness (EHI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left-handed</td>
<td>5</td>
<td>13.9</td>
<td>6</td>
</tr>
<tr>
<td>Right-handed</td>
<td>31</td>
<td>86.1</td>
<td>81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>SE</th>
<th>Range</th>
<th>Mean</th>
<th>SE</th>
<th>Range</th>
<th>F</th>
<th>df</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>37.0</td>
<td>2.4</td>
<td>18-65</td>
<td>39.0</td>
<td>1.5</td>
<td>18-65</td>
<td>0.52</td>
<td>122</td>
<td>.474</td>
</tr>
<tr>
<td>Education (years)</td>
<td>15.2</td>
<td>0.4</td>
<td>10-20</td>
<td>15.1</td>
<td>0.3</td>
<td>9-21</td>
<td>0.04</td>
<td>122</td>
<td>.839</td>
</tr>
<tr>
<td>EHI score</td>
<td>67.5</td>
<td>4.7</td>
<td>-100-100</td>
<td>74.7</td>
<td>4.7</td>
<td>-100-100</td>
<td>0.60</td>
<td>122</td>
<td>.441</td>
</tr>
<tr>
<td>HAMD-17</td>
<td>0.7</td>
<td>0.2</td>
<td>0-3</td>
<td>18.7</td>
<td>0.5</td>
<td>11-32</td>
<td>533.94</td>
<td>119</td>
<td><.001</td>
</tr>
</tbody>
</table>

Abbreviations: EHI, Edinburgh Handedness Inventory; HAMD-17, 17-item Hamilton Rating Scale for Depression.

Our results are in line with previous studies reporting evidence of a hyperstable arousal regulation in unmedicated depressed patients during a 15-minute resting EEG, wherein depressed patients had a longer latency to stages A2, A3, and B2/3 and less switches between main stages A, B, and C, as well as significantly less frequent switches between EEG-vigilance substages, relative to healthy controls. These effects were already present in the first 2 minutes, albeit more pronounced toward the end of the 15-minute recording. Conversely, although Schmidt et al found a significant group x time interaction between unmedicated depressed patients and healthy controls using the means of EEG-vigilance of five 3-minute intervals as a within-subjects factor time on task, significant group differences of mean EEG-vigilance did not occur before the third 3-minute interval (minutes 7 to 9). This may indicate that a longer EEG recording (ie, 15-vs 2-minute recording period) may ensure more robust findings and may be more suitable for clinical practice than short 2-minute recordings.

EEG-Measures of Brain Arousal: Level

Mean EEG-Vigilance. The mean vigilance over the 2-minute recording period was greater in depressed patients than in healthy controls, but this finding was less robust than between-group differences of arousal stability score. Still, when restricting the number of artifacts in consecutive eight 15-second intervals, group differences of mean EEG-vigilance reached the level of significance in support of this observation. One reason for the higher vulnerability of mean EEG-vigilance to the unequal distribution of artifact segments in the 2-minute recording period could be due to missing segments at the end or the beginning of the recording, which may create a bias in producing results that are falsely low or high. For example, given that eyelid closure results in alpha synchronization in most people, dominant artifact contamination in the second minute of recording could result in a falsely high EEG-vigilance score, given that artifacts were not taken into account for
Figure 3. Time course of scored EEG-vigilance over 120 consecutive 1-second segments in (a) a patient with major depressive disorder and (b) a healthy control subject. To obtain EEG-vigilance scores, consecutive 1-second EEG segments were classified using the Vigilance Algorithm Leipzig into five different EEG-vigilance stages: A1, A2, A3, B1, B2/3 (based on frequency bands and source localization with LORETA). Each staged segment was assigned a number ranging from 6 (highest Stage A1) to 2 (lowest Stage B2/3).

Figure 4. Time course of (a) mean EEG-vigilance of eight 15-second intervals and (b) frequency distribution of the arousal stability scores in depressed patients (n = 87) and healthy controls (n = 36). Error bars indicate ± 1SE.
We were able to replicate the finding of a more stable regulation and elevated level of brain arousal in MDD patients during short 2-minute EEG recordings at rest using an EEG-based algorithm for automatic EEG-vigilance stage classification. For the first time, we applied a fully automatic version of VIGALL in a multisite study which uses standardized procedures across testing sites that differ from VIGALL's standard operating procedure, suggesting a broader applicability of this algorithm. Accordingly, an evaluation of these EEG measures of brain arousal as a putative predictor of AD response is warranted as the logical next step in keeping with the aims of the EMBARC study.

Limitations

Limitations of the current study include a lack of control for sleep quality or duration during the night preceding the EEG recording, although participants had been instructed to get adequate sleep before testing. Despite these limitations, the present findings are in remarkable agreement with those of prior reports.28,45

Conclusion

The authors declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: In the last three years, the authors report the following financial disclosures, for activities unrelated to the current research: Dr. Hegerl: Dr. Hegerl was an advisory board member for Lilly, Lundbeck, Servier, SNP, and AstraZeneca. Of note, group differences of Stages A and B1 were significant, and decreased desynchronized non-alpha EEG in MDD patients. We attribute this to its overall rare occurrence (<3.5%) within the short recording time. Our findings are consistent with previous studies that demonstrated increased alpha power in MDD patients in comparison with healthy controls (reviewed in Olbrich and Arns).

The authors declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: In the last three years, the authors report the following financial disclosures, for activities unrelated to the current research: Dr. Hegerl: Dr. Hegerl was an advisory board member for Lilly, Lundbeck, Servier, SNP, and AstraZeneca. Of note, group differences of Stages A and B1 were significant, and decreased desynchronized non-alpha EEG in MDD patients. We attribute this to its overall rare occurrence (<3.5%) within the short recording time. Our findings are consistent with previous studies that demonstrated increased alpha power in MDD patients in comparison with healthy controls (reviewed in Olbrich and Arns).

Limitations

Limitations of the current study include a lack of control for sleep quality or duration during the night preceding the EEG recording, although participants had been instructed to get adequate sleep before testing. Despite these limitations, the present findings are in remarkable agreement with those of prior reports.

Conclusion

The authors declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: In the last three years, the authors report the following financial disclosures, for activities unrelated to the current research: Dr. Hegerl: Dr. Hegerl was an advisory board member for Lilly, Lundbeck, Servier, SNP, and AstraZeneca. Of note, group differences of Stages A and B1 were significant, and decreased desynchronized non-alpha EEG in MDD patients. We attribute this to its overall rare occurrence (<3.5%) within the short recording time. Our findings are consistent with previous studies that demonstrated increased alpha power in MDD patients in comparison with healthy controls (reviewed in Olbrich and Arns).
Takeda and Otsuka; a consultant for Bayer and Nycomed; and a speaker for Bristol-Myers Squibb, Medice Arzneimittel, Novartis, and Roche. Dr. Fava: Dr. Fava reports the following lifetime disclosures: http://mgmhma.org/faculty/faculty-detail/maurizio_fava. Dr. McIntosh: Dr. McIntosh received funding from the NIMH and consulting fees from Janssen and Otsuka Pharmaceuticals. Dr. Trivedi: Dr. Trivedi reports the following lifetime disclosures: research support from the Agency for Healthcare Research and Quality, Cyberonics Inc., National Alliance for Research in Schizophrenia and Depression, National Institute of Mental Health, National Institute on Drug Abuse, National Institute of Diabetes and Digestive and Kidney Diseases, Johnson & Johnson, and consulting and speaking fees from Abbott Laboratories Inc., Akzo (Organon Pharmaceuticals Inc.), Allergan Sales LLC, Alkermes, AstraZeneca, Axon Advisors, Brintellix, Bristol-Myers Squibb Company, Cephalon Inc., Cerecor, Eli Lilly & Company, Evotec, Fabre Kramer Pharmaceuticals Inc., Forest Pharmaceuticals, GlaxoSmithKline, Health Research Associates, Johnson & Johnson, Lundbeck, MedAvante Medscape, Medtronic, Merck, Mitsubishi Tanabe Pharma Development America Inc., MSI Methylation Sciences Inc., Nestle Health Science-Pamlab Inc., Naurex, Neuronetics, One Carbon Therapeutics Ltd., Otsuka Pharmaceuticals, Pamlab, Parke-Davis Pharmaceuticals Inc., Pfizer Inc., PgxHealth, Phoenix Marketing Solutions, Rexahn Pharmaceuticals, Ridge Diagnostics, Roche Products Ltd., Sepracor, SHIRE Development, Sierra, SK Life and Science, Sunovion, Takeda, Tal Medical/Puretech Venture, Targacept, Transcept, VantagePoint, Vivus, and Wyeth-Ayerst Laboratories. Dr. Weissman: funding from NIMH, the National Alliance for Research on Schizophrenia and Depression (NARSAD), the Sackler Foundation, and the Templeton Foundation; royalties from the Oxford University Press, Perseus Press, the American Psychiatric Association Press, and MultiHealth Systems. Dr. Pizzagalli: funding from NIMH and the Dana Foundation; consulting fees from Akili Interactive Labs, BlackThorn Therapeutics, Boehrenger Ingelheim, Pfizer, and Posit Science. Dr. Kayser: funding from NIMH and the John F. Templeton foundation. All other authors report no financial conflicts.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The EMBARC study was supported by the National Institute of Mental Health of the National Institutes of Health under award numbers U01MH092221 (MHT) and U01MH092250 (PGMcG, RVP, MMW). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This work was supported by the EMBARC National Coordinating Center at UT Southwestern Medical Center, Madhukar H. Trivedi, M.D., Coordinating PI, and the Data Center at Columbia and Stony Brook Universities.

ORCID iD

Christine Ulke https://orcid.org/0000-0002-8277-1671

References