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1  |   INTRODUCTION

Errors are common in everyday life. The ability to detect, re-
spond, and adjust to mistakes is an important human capacity 
that has been the subject of decades of cognitive neurosci-
ence research (see Gehring, Liu, Orr, & Carp, 2012, for a 
review). One common metric of this capacity is post‐error 
slowing (PES; see Figure 1), which refers to the tendency of 
respondents to slow their reaction times (RTs) on trials that 
follow errors, relative to trials that follow correct responses 
(Rabbitt, 1966). PES has been investigated in basic models 
of cognitive control (Botvinick, Braver, Barch, Carter, & 

Cohen, 2001; Cavanagh & Shackman, 2015) and in a number 
of clinical contexts, including attention‐deficit hyperactivity 
disorder (ADHD; Balogh & Czobor, 2016), substance abuse 
disorders (Sullivan, 2018), Parkinson's disease (Siegert et al., 
2014) and depression (Holmes & Pizzagalli, 2008).

There is debate regarding the functional significance 
of PES (Danielmeier & Ullsperger, 2011; Wessel, 2018). 
Some contend that PES reflects the output of a cognitive 
control process aimed at preventing future errors (Botvinick 
et al., 2001), while others suggest that it reflects a nonadap-
tive orienting response to uncommon or surprising events 
(Notebaert et al., 2009). Some of this debate reflects the 
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Abstract
Appropriately adjusting to errors is essential for adaptive behavior. Post‐error slow-
ing (PES) refers to the increased reaction times on trials following incorrect relative 
to correct responses. PES has been used as a metric of cognitive control in basic 
cognitive neuroscience research as well as clinical contexts. However, calculation of 
PES varies widely among studies and has not yet been standardized, despite recent 
calls to optimize its measurement. Here, using behavioral and electrophysiological 
data from a modified flanker task, we considered different methods of calculating 
PES, assessed their internal consistency, examined their convergent correlations with 
behavioral performance and error‐related event‐related brain potentials (ERPs), and 
evaluated their sensitivity to task demands (e.g., presence of trial‐to‐trial feedback). 
Results indicated that the so‐called robust measure of PES, calculated using only 
error‐surrounding trials, provided an estimate of PES that was three times larger in 
magnitude than the traditional calculation. This robust PES correlated with the am-
plitude of the error positivity (Pe), an index of attention allocation to errors, just as 
well as the traditional method. However, all PES estimates had very weak internal 
consistency. Implications for measurement are discussed.
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inconsistent relationship between PES and post‐error accu-
racy (PEA; Danielmeier & Ullsperger, 2011; Schroder & 
Moser, 2014). However, emerging evidence using drift‐dif-
fusion modeling—which allows specific theoretical accounts 
to be tested mechanistically with the various parameters that 
this model provides—suggests PES may in some cases re-
flect an increase in response caution after an error is made 
(Dutilh et al., 2012) or is part of an adaptive post‐error pro-
cess in which selective attention is increased and drift rate is 
reduced (i.e., both control and orienting aspects are present; 
Fischer, Nigbur, Klein, Danielmeier, & Ullsperger, 2018). 
Other evidence indicates that the precise mechanisms under-
lying PES are nuanced and vary from task to task and across 
samples (Purcell & Kiani, 2016). Here, we are not so much 
concerned with the functional significance of PES but rather 
how best to measure it. We believe that measuring PES con-
sistently represents a necessary step toward the elucidation 
of its functional significance and its potential application to 
clinical populations.

There is currently no consensus on how to best measure 
PES, an issue poignantly raised by Dutilh, van Ravenzwaaij, 
and colleagues (2012). They noted that PES is most typically 
measured by subtracting the average RT on correct trials fol-
lowing correct trials from the averaged RT on correct trials 
following errors (PES = MPost‐Error − MPost‐Correct). Dutilh and 
colleagues referred to this estimate as PESTraditional. However, 
based on drift‐diffusion modeling and empirical data, these 
authors showed that this calculation is susceptible to fluc-
tuations over the course of the assessment, including task 
engagement and fatigue. For some participants, as task en-
gagement declines, most errors occur during the second 
half of the task. Therefore, the PESTraditional estimate likely 

contains post‐error RTs from the second half of the task and 
post‐correct RTs from the first half. Depending on the con-
text, this may mask real PES or artificially inflate PES esti-
mates. The PESTraditional method is also problematic because 
correct trials and post‐correct trials greatly outnumber er-
rors and post‐error trials in most speeded‐response tasks. To 
counteract these issues, Dutilh and colleagues recommended 
measuring PES by limiting the calculation to trials that sur-
round errors (i.e., only consider post‐correct trials that also 
precede errors see white symbols in Fig. 1). They refer to this 
estimate as PESRobust. This estimate, as its name implies, is 
robust to fluctuations in task engagement, and the number of 
trials included in post‐error and post‐correct averages is equal 
(as they come from the same error sequence).

Since the original call to modify the calculation of PES, 
there have been many studies that have followed this rec-
ommendation (e.g., Agam et al., 2014; Navarro‐Cebrian, 
Knight, & Kayser, 2013). However, we are aware of only a 
few studies that have compared traditional and robust esti-
mates. These studies typically found a larger estimate for the 
robust method compared to the traditional method and a high 
correlation between the two metrics (Tabachnick, Simons, 
Valadez, Dozier, & Palmwood, 2018; van den Brink, Wynn, 
& Nieuwenhuis, 2014). The larger size for the robust method 
is due to the faster RTs on trials preceding errors (Brewer & 
Smith, 1989; Gehring & Fencsik, 2001) that are used in the 
robust estimate, resulting in larger differences in RT between 
post‐error and pre‐error trials. In the current study, we ex-
amined electrophysiological and behavioral data from one of 
the most commonly used tasks in the literature—the Eriksen 
flanker task (Eriksen & Eriksen, 1974)—to provide a more 
in‐depth exploration of these two estimates.

F I G U R E  1   Typical post‐error slowing effect.
Note. A hypothetical PES example is shown. The dashed horizontal gray line represents the average RT on post‐correct trials. The black line 
represents the RTs of trials that surround an error. Note the gradual decrease in response latency leading to the error trial and the immediate 
increase and subsequent decrease on post‐error trials. Traditional PES is calculated by subtracting the value of the gray line (average post‐correct 
RTs) from the post‐error trial value (empty triangle). The Robust estimates of PES subtract the value of the pre‐error trial (empty square) from the 
post‐error trial (empty triangle). In this example, the traditional PES estimate is 80 ms and the Robust estimate is 155 ms. The error‐trial estimate of 
PES subtracts the RT on the error trial from the post‐error trial RT; in this example this estimate is 205 ms
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In particular, we examined how PES estimates relate to 
two ERPs elicited after errors—the error‐related negativity 
(ERN) and error positivity (Pe). The ERN is a sharp negative 
ERP deflection elicited between 50 and 100  ms following 
error commission and reaches maximal amplitude at fronto-
central recording sites (Falkenstein, Hohnsbein, Hoormann, 
& Blanke, 1991; Gehring, Goss, Coles, Meyer, & Donchin, 
1993). The ERN is reliably source‐localized to the anterior 
cingulate cortex (ACC; Herrmann, Römmler, Ehlis, Heidrich, 
& Fallgatter, 2004; Van Veen & Carter, 2002). The functional 
significance of the ERN remains debated, although the two 
most prominent accounts suggest that it either reflects a re-
inforcement‐learning signal mediated by the mesencephalic 
dopamine system (Holroyd & Coles, 2002) or an automatic 
response conflict signal (Yeung, Botvinick, & Cohen, 2004). 
In either case, the ERN is thought to reflect the output of an 
adaptive error/conflict‐signaling process that indicates more 
control is needed on subsequent trials.

Following the ERN, the Pe is a slower, more broadly dis-
tributed ERP that reaches maximal amplitude between 200 
and 500 ms over centroparietal recording sites (Falkenstein, 
Hoormann, Christ, & Hohnsbein, 2000). Whereas the ERN 
may be more linked to unconscious error/conflict‐detection 
(although see Wessel, 2012), the Pe is consistently linked 
with the conscious awareness that a mistake has been made 
(Endrass, Franke, & Kathmann, 2005; Murphy, Robertson, 
Allen, Hester, & O’Connell, 2012; Shalgi, Barkan, & 
Deouell, 2009; Steinhauser & Yeung, 2010). Source local-
ization studies indicate that the Pe also originates in ACC 
(Herrmann, Römmler, Ehlis, Heidrich, & Fallgatter, 2004), 
although other areas including the anterior insula (Ullsperger, 
Harsay, Wessel, & Ridderinkhof, 2010) have been impli-
cated in its generation. Moreover, the Pe may be related to 
attentional orienting processes in service of mobilizing re-
sources in response to the error (Tanaka, 2009) and shares 
topographic and latency properties with the stimulus‐locked 
P300 (Leuthold & Sommer, 1999; Ridderinkhof, Ramautar, 
& Wijnen, 2009). The ERN and Pe are reliably dissociated 
from one another in terms of functional significance and 
sensitivity to task demands (Davies, Segalowitz, Dywan, 
& Pailing, 2001; Overbeek, Nieuwenhuis, & Ridderinkhof, 
2005; Tanaka, 2009).

The relationship between ERN/Pe and post‐error behav-
ioral adjustments is complicated and largely inconsistent. 
A recent meta‐analysis attempted to quantify relations be-
tween the ERN and PES (Cavanagh & Shackman, 2015). 
These authors found that correlations were larger for intra-
individual relationships (correlations in trial‐to‐trial varia-
tion in ERN and subsequent RT on the next trial) than for 
interindividual correlations (averaged ERNs and averaged 
PES estimates correlated between participants). Yet, closer 
inspection of these data reveals inconsistent measurement 
of PES. The five studies that examined intraindividual 

correlations did not technically examine PES (which would 
require a difference to be computed between post‐error and 
post‐correct trials), but rather considered only post‐error 
RT (Cavanagh, Cohen, & Allen, 2009; Debener et al., 2005; 
Gehring et al., 1993; Weinberg, Riesel, & Hajcak, 2012) 
or examined the time it took participants to rate the accu-
racy of their response (Wessel, Danielmeier, & Ullsperger, 
2011). These five studies examined ERN on trial N and 
RT on trial N + 1 and produced a significant meta‐analytic 
correlation of r  =  .52. In contrast, the 20 interindividual 
studies almost exclusively used the PESTraditional estimate 
(just one used PESrobust), which, as mentioned above, is 
subject to contamination. The analysis of these 20 stud-
ies revealed a small and nonsignificant meta‐analytic cor-
relation between ERN and PES of r = .19. Thus, because 
very few studies examined PES optimally, it is difficult to 
judge the relationship between error‐related brain activity 
and post‐error adjustment. A more recent study examined 
relations between frontal theta, ERN, and PES (Valadez & 
Simons, 2018) and found that post‐error RT was negatively 
correlated with greater frontal theta power but that PES 
was unrelated to ERN. We are unaware of any systematic 
reviews of the relationship between Pe and PES, although 
some past studies found that individuals with larger Pe 
amplitudes are characterized by larger PES (Chang, Chen, 
Li, & Li, 2014; Hajcak, McDonald, & Simons, 2003) and 
others show relationships between Pe and post‐error accu-
racy but not slowing (Schroder, Moran, Moser, & Altmann, 
2012).

The inconsistent between‐subjects correlations involv-
ing PES may, in part, be related to low internal reliability 
of this measure, as between‐subjects correlations are always 
constrained by the internal reliabilities of the measures used 
(Schmitt, 1996). Although no previous studies have evaluated 
the internal consistency of PES, recent work has highlighted 
poor measurement properties within the cognitive neuro-
science literature (Hajcak, Meyer, & Kotov, 2017; Hedge, 
Powell, & Sumner, 2018; Infantolino, Luking, Sauder, Curtin, 
& Hajcak, 2018). This is particularly true of difference mea-
sures—which are calculated by subtracting one measure from 
another (see Infantolino et al., 2018)—which is the case with 
PES. Difference scores have long been known to have unfa-
vorable internal consistency, especially if the two constituent 
scores are highly correlated with one another (Infantolino, 
Luking, Sauder, Curtin, & Hajcak, 2018; Lord, 1958). Thus, 
in the current study, we also evaluated the internal reliability 
of the different PES estimates. It is certainly possible that 
PES has low internal reliability; in fact, Hedge et al. (2018) 
point out that experimental tasks designed to elicit large 
within‐subject effects may produce the lowest between‐sub-
jects variance (and subsequently low reliability). 

Finally, PES and PEA appear to be sensitive to task char-
acteristics. Specifically, when the response‐stimulus interval 
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(RSI) is short (i.e., when participants do not have much time 
between the error trial and the following trial), PES tends to 
be larger and PEA tends to be lower than trial sequences with 
longer RSIs (Jentzsch & Dudschig, 2009). Extending these 
findings, Wessel (2018) outlined an adaptive orienting the-
ory of error processing. This theory distinguishes between 
orienting‐related PES and strategic PES. Specifically, orient-
ing‐related PES occurs when the cognitive system in charge 
of adjusting to errors does not have enough time to complete 
the adaptation process (short RSI); conversely, strategic PES 
occurs when the system has enough time to complete the pro-
cess and is associated with increased PEA (long RSI). The 
sensitivity of PES to task timing makes it difficult to compare 
across studies, as many error‐monitoring studies use trial‐to‐
trial feedback, which may increase RSI times.

1.1  |  The current study
Owing to the literature summarized above, the overarching 
goal of the current study was to examine different calcula-
tions of PES and compare convergent correlations with task 
behavior and error‐related ERPs (ERN, Pe). We examined 
traditional and robust estimates of PES as well as a less 
commonly used method of calculating PES, which is to sub-
tract the averaged post‐error RT by the RT of the error trial 
(Cavanagh et al., 2009; Smith & Allen, 2019); we called this 
PESError Trial. We also evaluated the utility of a single‐trial 
regression approach (Fischer et al., 2018) that estimates PES 
while simultaneously controlling for other known contribu-
tors to RT including previous trial congruency (e.g., Van der 
Borght, Braem, & Notebaert, 2014). Finally, we examined 
the internal reliability of each PES calculation, which we 
believe is the first analysis of its kind for PES. Data were 
derived from a modified flanker task that we developed for a 
larger project; as such, approximately half of the participants 
received trial‐to‐trial feedback and the other half did not. 
This afforded us the opportunity to also evaluate the above‐
mentioned effect of increased RSI on PES, PEA, and ERPs.

2  |   METHOD

2.1  |  Participants
A total of 77 psychologically healthy, right‐handed adults 
were recruited from the larger Boston community and partic-
ipated in the current study. All participants provided written 
informed consent prior to study procedures, and the Partners 
Healthcare Institutional Review Board approved the study. 
Participants were free of any psychiatric history, as deter-
mined by a semistructured clinical interview (SCID‐5; First, 
Williams, Karg, & Spitzer, 2015) administered by a clinical 
psychologist or clinical psychology doctoral students with 
extensive SCID‐5 training. Participants were compensated at 

a rate of $20/hr for their time. Participants were recruited as 
part of a larger cross‐species examination of electrophysiol-
ogy and behavior. As such, participants in this phase were 
recruited for purposes of task development. We originally 
proposed to collect 20 participants but continued to collect 
data until the onset of the next phase of the study, and a total 
of 77 participants were enrolled.

Prior to statistical analysis, data from 11 participants 
were excluded due to poor task performance (see below). 
Data from a further four participants were excluded for ex-
cessive EEG and electromyography (EMG) artifacts, and 
from one participant who was uncooperative and had ques-
tionable task engagement. Thus, the final sample for data 
analysis consisted of 61 participants (37 female, 24 male, M 
age  =  23  years [SD  =  5, range 18–42]), who identified as 
follows: White (N = 36), Asian (N = 20), Black or African 
American (N = 3), and more than one race (N = 2). Six par-
ticipants identified as Hispanic or Latino.

2.2  |  Flanker task
Participants completed a modified version of the Eriksen 
flanker task (Eriksen & Eriksen, 1974). Participants were in-
structed to indicate the color of the center image (target) of a 
three‐image display using one of two buttons on a response 
pad. Image‐button assignments were counterbalanced across 
participants. Violet flowers and green leaves constituted the 
images used in the task,1 and flanker images either matched 
the center image (congruent trials) or did not match it (incon-
gruent trials).

During each trial, the two flanking stimuli were presented 
100 ms prior to target onset, and all three images remained 
on the screen for a subsequent 50 ms (i.e., total trial time: 
150 ms). A blank screen followed for up to 1,850 ms or until 
a response was recorded. Another blank screen was presented 
for a random duration between 750 to 1,250 ms, which con-
stituted the intertrial interval (ITI). The experimental ses-
sion included 350 trials grouped into five blocks of 70 trials 
during which accuracy and speed were equally emphasized. 
To encourage quick responding, a feedback screen with the 
message “TOO SLOW!!!” was displayed if responses fell 
outside of the 1,850‐ms time window or if RTs were longer 
than 600 ms in the first block, or outside of the 95th (or 85th) 
percentile of RTs (see Footnote 1) in the previous block for 
Blocks 2 through 5. Prior to the experiment, participants 
completed a short practice block identical to the experiment 
to become familiar with the task.

1 The task was developed as part of a larger project examining electrophysi-
ological and behavioral assays of error monitoring in humans and rodents. 
The visual stimuli were chosen to maximize visual discrimination and task 
performance in the rodents.
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Because these data were collected during the task devel-
opment stage of a larger project, approximately half of the 
participants received trial‐to‐trial feedback (N = 31) whereas 
the remaining 30 participants did not.2 For the feedback ver-
sion of the task, an additional 1,000–1,250 ms (jittered) inter-
stimulus interval (blank screen) followed the response 
window period before the presentation of the feedback stim-
ulus (1,000 ms), which consisted of a dollar sign enclosed in 
a circle for correct responses and an empty circle for errone-
ous responses. Thus, for the participants who received feed-
back, an additional 2,000–2,250 ms was added at the end of 
each trial, lengthening the ITI and therefore the RSI. Presence 
or absence of feedback was used as a factor in the analyses 
presented below to assess for previously mentioned effects of 
RSI (Jentzch & Duschig, 2009).

All stimuli were presented on a 22.5‐inch (diagonal) 
VIEWPixx monitor (VPixx Technologies, Saint‐Bruno, QC, 
Canada) using PsychoPy software (Pierce, 2007) to control 
the presentation and timing of all stimuli, the determination 
of response accuracy, and the measurement of reaction times. 
Images were displayed on a black background and subtended 
4.16° of visual angle vertically and 17.53° horizontally.

2.3  |  Behavioral data analysis
The primary analysis concerned the PES calculations. Note 
that all calculations involved trials that occurred only after 
incongruent errors to avoid conflating conflict and post‐error 
effects.3 Trials following congruent errors were excluded due 
to low trial counts (few errors occur on congruent trials). The 
following calculations were used:

In the above equations, M is numeric mean, c is correct, e is 
error, and capitalized letters refer to the trial of interest. Five‐
trial sequences (ccecc) were used for the robust and error‐trial 
estimates to ensure that post‐error trials were also precorrect 
trials, to avoid the effects of double errors on RTs (Hajcak & 
Simons, 2008). Pairs of RTs surrounding the same error (pre‐ 
and post‐error trials) were used to calculate PESRobust. There 
was an average of 24.59 (SD = 11.52, range: 5–50) trials for 
the PESTraditional estimate, and an average of 14.21 (SD = 5.36, 
range: 4–26) for the PESRobust and PESError Trial estimates as 
these two were derived from the same trial sequences.

As noted above, 11 participants were removed from anal-
ysis due to poor task performance, which was defined as 
more than 35 trials with outlier reaction times (RTs below 
150  ms or ±3 intraindividual standard deviations from the 
congruent or incongruent mean), having fewer than 200 con-
gruent and 90 incongruent nonoutlier trials, achieving an ac-
curacy below 50% for both congruent and incongruent trials, 
and having fewer than six nonoutlier trials that followed in-
congruent errors. All behavioral data were processed using 
Python 3.7 software.

2.4  |  Internal reliability of PES
We next examined internal consistency of the different PES 
calculations using split‐half reliability, which is essentially 
the correlation between odd‐ and even‐numbered trials (see 
Hajcak, Meyer, & Kotov, 2017). Split‐half reliability is 
particularly useful when trial numbers differ widely across 
participants, as in cognitive tasks when participants commit 
different numbers of errors. Here, we used the Spearman–
Brown (SB) formula to correct the reliability, as only half of 
the number of items are being considered for the estimate: 
(SB = 2r/(1 + r)) For all PES estimates, we first computed 
split‐half reliability for post‐error and post‐correct RTs 
separately, then the correlation between post‐error and post‐ 
correct trials, and then the reliability of the difference (the 
PES estimate). For the PESRobust and PESError Trial methods, 
calculating split‐half reliability was straightforward because 
the number of post‐error and post‐correct (pre‐error and error) 
trials were completely balanced as these trials came from the 
same sequences (ccecc). However, for the PESTraditional esti-
mates, the number of post‐error and post‐correct trials dif-
fered widely, so several different trial‐selection techniques 
were employed to calculate a list of PES values (subtract-
ing post‐error RT from post‐correct RT), and then odd‐ and 
even‐numbered trials were selected from this list of values. 
For these different trial‐selection techniques, the list of post‐
error RTs remained the same, but the selection of post‐correct 
RTs differed. The first approach randomly selected post‐ 
correct RTs. A second approach selected post‐correct RTs 
that followed error‐trial RT‐matched correct trials. A com-
puter algorithm began with the first error trial and found the 

2 Other task parameters differed slightly between participants as well. 
Thirty‐four participants received the “Too Slow” feedback if their 
responses were outside of the 95th percentile of RTs in the previous block, 
and 27 participants received this feedback if their responses fell outside of 
the 85th percentile of RTs in the previous block. Although accuracy and 
reaction times were decreased in the 85th percentile condition, this 
manipulation did not differentially impact the post‐error adjustments under 
investigation (ps < .63) and was not considered further. Furthermore, four 
participants used a standard QWERTY computer keyboard to respond, 
while the remaining 57 used a Cedrus response pad (RB‐740, Cedrus 
Corporation, San Pedro, CA).
3 We considered examining congruency sequence effects to evaluate the 
impact that the so‐called Gratton effect had on post‐error slowing 
estimates, but unfortunately the trial counts for the difference sequences 
(congruent‐incongruent vs. incongruent‐incongruent) were too low for 
reliable comparisons. 

PESTraditional =MPost−Error RT (eC)−MPost−Correct RT (cC)

PESRobust =MPost−Error RT (cceCc)−MPre−Error, Post−CorrectRT (cCecc)

PESError Trial =MPost−Error RT (cceCc)−MError Trial RT (ccEcc)
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correct trial that was closest in RT, repeating the process 
for each subsequent error trial with the remaining correct 
trials (see Hajcak, Nieuwenhuis, Ridderinkhof, & Simons, 
2005). Then, the post‐correct trials were chosen from this 
list of matched correct trials. As described in previous work, 
this procedure estimates PES by controlling for slowing 
caused by regression to the mean after a particularly fast 
trial (i.e., error trials, Hajcak, McDonald, & Simons, 2003). 
Finally, we used an even more stringent matching procedure 
that only accepted post‐error and post‐correct RTs that were 
derived from very closely matched error and correct RTs 
(within 5 ms). This final method excluded error and post‐
error trials if there was not a corresponding correct trial that 
fell within 5 ms of its RT. By design, there were fewer tri-
als included in these averages (M trials = 11.56, SD = 5.24, 
range: 2–25). For each of these traditional estimates, we first 
verified whether PES was still observed before estimating 
the internal reliability.

Several authors warn against simple rules of thumb for in-
terpreting “acceptable” versus “unacceptable” values of inter-
nal reliability (Norcini, 1999; Schmitt, 1996), as these values 
differ widely across different domains of measurement (e.g., 
self‐report measures vs. cognitive measures). Nonetheless, in 
order to provide descriptions for our reliability estimates, we 
follow the recommendations laid out by Nunnally (1994) in 
terms of basic and applied sciences: coefficients of .70 are 
considered acceptable and coefficients of above .90 or .95 
are desirable for clinical purposes (see also Rodebaugh et al., 
2016).

2.5  |  Post‐error accuracy
Like the PES analysis, post‐error and post‐correct trials were 
limited to trials that followed incongruent errors and incon-
gruent corrects, respectively. PEA was computed by sum-
ming the number of post‐error correct trials and dividing this 
value by the sum of post‐error correct trials and post‐error 
error trials. Post‐correct accuracy (PCA) was calculated 
similarly (number of post‐correct correct trials/post‐correct 
correct + post‐correct error). Then, the post‐error accuracy 
difference (ΔPEA) was calculated as PEA minus PCA.

2.6  |  Psychophysiological recording and 
data reduction
Participants were seated approximately 70  cm in front of 
a computer monitor inside an acoustically and electrically 
shielded booth. Continuous EEG activity was recorded 
from a customized 96‐channel actiCAP system using an 
actiCHamp amplifier (Brain Products GmbH, Gilching, 
Germany). Impedances were kept below 25 kΩ. The ground 
(GND) channel was embedded in the cap and was located 

anterior and to the right of Channel 10, which roughly cor-
responds to electrode Fz. During data acquisition, Channel 1 
(Cz) served as the online reference channel. All signals were 
digitized at 500  Hz using BrainVision Recorder software 
(Brain Products).

Offline analyses were performed using BrainVision 
Analyzer 2.0 (Brain Products). Gross muscle artifacts and 
EEG data during the breaks in‐between blocks were first 
manually removed by visual inspection. The data were band‐
pass filtered with cutoffs of 0.1 and 30 Hz, 24 dB/oct roll‐off. 
Blinks, horizontal eye movements, and electrocardiogram 
were removed using independent component analysis (ICA), 
and corrupted channels were interpolated using spline inter-
polation. Scalp electrode recordings were rereferenced to the 
average activity of all electrodes. Response‐locked data were 
segmented into individual epochs beginning 1,500 ms prior 
to response onset and continuing 1,500 ms after the response. 
Epochs were rejected as artifactual if any of the following cri-
teria were met: (a) a voltage step exceeding 50 µV in 200‐ms 
time intervals, (b) a voltage difference of more than 150 µV 
within a trial, or (c) a maximum voltage difference of less 
than 0.5 µV within a trial. Similar to the behavioral analy-
sis trial rejection, ERP trials were rejected if responses fell 
outside of an intraindividually determined 95% confidence 
interval of incongruent response times. However, trial num-
ber differences between ERP and behavioral trials remained 
because ERP trials were not required to have happened in 
specific sequences (e.g., “ec” or “ccecc”) like those imposed 
in the behavioral data. The average activity between the −800 
and −700 ms time window preceding the response was used 
for the baseline correction.

The ERN and its correct‐trial counterpart, the correct 
response negativity (CRN), were defined as the average ac-
tivity in the 0–100  ms post‐response window at Channel 
9 (roughly FCz), where these components were maximal. 
The Pe and its correct‐trial counterpart were defined as 
the average activity in the 200–400 ms window following 
a response at Channel 40 (roughly Pz), where these com-
ponents reached their maximal amplitude. An average of 
28 (SD  =  14, range: 7–59) artifact‐free ERP trials were 
retained in the error‐trial analysis, and an average of 87 
(SD = 16, range: 47–112) trials were retained for the cor-
rect‐trial analysis, consistent with recommendations (Olvet 
& Hajcak, 2009b). To evaluate internal consistency of the 
ERPs, we calculated split‐half reliability by correlating 
odd‐numbered trials with even‐numbered trials and then 
adjusting with the Spearman–Brown formula (Hajcak, 
Meyer, & Kotov, 2017). The resulting coefficients for the 
ERN, CRN at Channel 9 were .80 and .92, respectively, 
and for the Pe and correct‐trial Pe at Channel 40 were .79 
and .90, respectively—these coefficient magnitudes mirror 
those from prior work (Hajcak et al., 2017).
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2.7  |  Overview of analyses
First, we computed and compared estimates of PES with 
paired samples t tests. Second, we computed reliability esti-
mates of the different PES calculations. Third, we examined 
how PES relates to other behavioral indices of cognitive con-
trol (flanker congruency effects, post‐error accuracy) with bi-
variate Pearson correlations. Fourth, we examined bivariate 
correlations between PES estimates and error‐related ERPs 
(ERN, Pe). Difference amplitudes were computed by sub-
tracting correct‐trial ERPs (CRN, Pe‐correct) from error‐trial 
ERPs (ERN/Pe) and were used in these analyses. Repeated 
measures analyses of variance (ANOVAs) used Type III 
sum of squares for interactions with the Greenhouse‐Geisser 
correction applied to p values associated with multiple df re-
peated measures comparisons.

3  |   RESULTS

3.1  |  Flanker task behavioral results
As expected, the typical flanker interference effects emerged 
in our modified task version. Specifically, reaction times 
were significantly longer on incongruent trials (M  =  399, 
SD  =  31) than congruent trials (M  =  334, SD  =  30, 
t(60) = 28.14, p < .0001, Cohen's d = 3.60). Additionally, ac-
curacy rates (%) were significantly lower on incongruent tri-
als (M = 75, SD = 12) than congruent trials (M = 95, SD = 4, 
t(60) = 14.57, p < .001, Cohen's d = 1.87). Highlighting the 
strength of this effect, all participants (61/61) showed longer 
RTs and lower accuracy rates on incongruent versus congru-
ent trials (binomial tests, p(61/61) < .0001).

To evaluate the impact that trial‐to‐trial feedback had on 
congruency effects, a 2 × 2 repeated measures ANOVA with 
the within‐subject factor congruency (congruent vs. incon-
gruent) and between‐subjects factor feedback (absent vs. 
present) was separately conducted on the RT and accuracy 
data. For RT, neither the main effect of feedback, F(1, 
59) = 0.77, p = .38, �2

p
 = .013, nor the interaction between 

congruency and feedback, F(1, 59) = 1.02, p = .32, �2
p
 = .017, 

reached statistical significance. Likewise, for accuracy rates, 
neither the main effect of feedback, F(1, 59) = 2.07, p = .16, 
�

2
p
 = .034, nor the interaction between congruency and feed-

back, F(1, 59) = 0.68, p = .42, �2
p
 = .011, were significant. 

Thus, feedback had no impact on flanker interference effects 
on reaction times or accuracy rates.

3.2  |  Post‐error slowing
A comparison of post‐error and post‐correct RTs for each 
PES estimate, along with the effect size of each estimate, 
is displayed in Figure 2 and in Table 1. PES was observed 
when using the traditional method: averaged post‐error RT 

(M = 358, SD = 42) was longer than post‐correct RT (M = 348, 
SD = 30; t(60) = 2.92, p = .005, Cohen's d = 0.37). That is, 
PESTraditional provided a small‐to‐medium effect size (Cohen, 
1988). Notably, the robust calculation also revealed signifi-
cant PES, with an effect size more than three times larger than 
the estimate from the traditional method: post‐error trials in 
the cceCc sequence had significantly longer RTs (M = 360, 
SD = 43) than post‐correct, pre‐error trials (cCecc; M = 325, 
SD = 30, t(60) = 8.94, p < .0001, Cohen's d = 1.15). The ro-
bust estimate thus produced a large‐to‐very large effect size 
(Cohen, 1988). The PESRobust estimate (M = 35, SD = 30) was 
significantly larger than the PESTraditional estimate (M = 10, 
SD = 3, t(60) = 8.02, p < .0001, Cohen's d = 1.03). Finally, 
the PESError Trial estimate was also significant, as error trials in 
the ccEcc sequence (M = 314, SD = 44) were faster than the 
post‐error trials (which was the same post‐error value used 
in the robust calculation, M = 360, SD = 43, t(60) = 9.58, 
p < .001, Cohen's d = 1.23). The PESError Trial provided a very 
large effect size (Cohen, 1988) and was larger than both the 
traditional, t(60)  =  7.96, p  <  .001, Cohen's d  =  1.00, and 
robust, t(60) = 3.01, p = .004, Cohen's d = 0.38, estimates.

Next, we evaluated the different post‐correct trial selec-
tion schemes for the traditional estimate. When post‐correct 
trials were randomly selected, a significant PES effect was 
observed, t(60) = 3.10 p = .003, Cohen's d = 0.40. In terms 

F I G U R E  2   PES calculations and associated effect sizes. 
Note. For Panel A. error bars are ±1 standard error of the mean. For 
Panel B, 65.57% (= 40/61), 90.16% (= 55/61), and 95.08% (= 58/61) 
of participants showed a positive PES values (i.e., relative slowing 
after error vs. correct trials) when using the PESTraditional, PESRobust, and 
PESError Trial computation, respectively
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of RT matching, the original matching algorithm was par-
tially successful in matching error trials with correspondingly 
fast correct RTs. The difference in RTs was still significant, 
t(60) = 9.06, p < .001, Cohen's d = 1.16, but the effect size 
was much smaller than the original difference between error 
and correct RTs, t(60) = 19.85, p < .001, Cohen's d = 2.54.
When post‐correct trials were selected on the basis of 
this RT matching, there was also a significant PES effect, 
t(60) = 4.59, p < .001, Cohen's d = 0.58. The more restrictive 
matching procedure was successful in matching correct and 
error RTs, t(60) = 1.80, p = .077, Cohen's d = 0.23. When 
this most conservative RT‐matching approach was used, post‐
error (M = 365, SD = 48) and post‐correct RTs (M = 340, 
SD = 35) still differed significantly, t(60) = 4.30, p < .001, 
Cohen's d  =  0.55, indicating a PES effect. These findings 
replicate previous work in that, even after RT matching, PES 
is still observed (Hajcak et al., 2003), suggesting that PES 
does not solely reflect regression to the mean.

Finally, we considered a single‐trial regression approach 
to estimating PES (Fischer et al., 2018). This analysis was 
conducted using the lmer function in R and considered the 
full data set of all nonfirst and nonoutlier trials from all 61 
participants (total trials = 20,532). In the model, RT was the 
dependent variable, and the following factors and all interac-
tions were included: previous accuracy, previous congruency, 
current accuracy, and current congruency, as well as a ran-
dom intercept for subject. This model allows the simultane-
ous prediction of PES (indicated by main effects and 
interactions involving the term previous accuracy, which we 
focus on here) while controlling for other well‐known factors 
that influence RT (including the previous trial's congruency 
and postconflict reduction of interference (see Van der 
Borght, Braem, & Notebaert, 2014). The model produced a 
significant main effect of previous accuracy, F(1, 
20246.4) = 17.21, p < .0001, a significant interaction term 
between current and previous accuracy, F(1, 19821.4) = 7.63, 

p = .006, a significant interaction between previous accuracy 
and previous congruency, F(1, 20443.5)  =  9.24, p  =  .002, 
and a significant four‐way interaction between current con-
gruency, current accuracy, previous congruency, and previ-
ous accuracy, F(1, 20454)  =  3.93, p  =  .047. Because the 
interactions involving previous congruency are less relevant 
here, we followed up on the Current × Previous Accuracy 
interaction (averaging over previous and current congruency) 
with the lsmeans function in R, using Tukey's post hoc tests.4 
Notably, the post hoc tests comparing post‐error correct and 
post‐correct correct trials were all significant (all ts > 7.90, 
ps < .0001). The only post hoc test that was not significant 
was the one comparing post‐error error and post‐correct error 
trials, t(19879) = 0.77, p = .87; PES was not observed when 
the next trials were errors, replicating previous results 
(Hajcak & Simons, 2008). These results indicate that PES 
was observed at a single‐trial level, while also controlling for 
potentially confounding factors.

We next examined how many participants showed PES, 
indicated by positive values for the post‐error minus post‐ 
correct comparison, for each metric separately. A total of 
42/61 participants had positive PES values when calculated 
using the traditional method (binomial test, p(42/61) = .0013), 
whereas 55/61 participants had positive PES values with the 
robust estimate (binomial test, p(55/61) <  .0001) and 58/61 
had positive PES values with the error‐trial estimate (binomial 
test, p(58/61)  <  .0001). A McNemar test (McNemar, 1947) 
was used to evaluate differences in the proportion of individ-
uals categorized as having PES (positive PES values) versus 
not having PES (negative PES values or PES value of 0 ms) 
between the estimates of PES. A significant effect emerged 
for the comparison between traditional and robust estimates 
(McNemar's χ2 = 11.08, df = 1, p = .0009). Of note, 13 partic-
ipants categorized as having post‐error speeding (faster RTs on 

4 Full model results are available in the Supplemental Material.

T A B L E  1   Split‐half reliability coefficients for the different PES estimates

PES calculation M (SD) Cohen's d Post‐error SB post‐correct SB
Pearson r between post‐
error and post‐correct SB of PES

PESTraditional 9.88 (26.44) 0.37        

Random post‐cor-
rect trials

10.05 (26.36) 0.40 .84 .83 .78**  .37

RT‐matched post‐
correct trials

17.19 (29.30) 0.59 (.84) .72 .72**  .28

Restrictive 
RT‐matched

25.51 (46.34) 0.55 .81 .67 .42 .58

PESRobust 35.11 (30.68) 1.15 .78 .65 .71**  .29

PESError Trial 45.80 (37.32) 1.23 .87 .65 .64**  .63

Note: Parentheses indicate the same value as the row above because this value was extracted from the same list of post‐error RTs. Abbreviations: PES, post‐error slow-
ing; SB, Spearman–Brown split‐half reliability coefficient.
**p < .01. 
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post‐error trials than on post‐correct trials, indicated by nega-
tive PES values) using the traditional method were categorized 
as having had PES (positive PES values) when using the robust 
method. Compared to the traditional method, the error‐trial es-
timate also categorized more participants as having had pos-
itive PES values (McNemar's χ2 = 12.5, df = 1, p = .0002). 
However, the robust and error‐trial estimates did not differ in 
terms of proportion categorized as having or not having posi-
tive PES values (McNemar's χ2 = 0.80, df = 1, p = .37).

To investigate the impact that feedback had on PES, a re-
peated measures ANOVA with the within‐subject factor trial 
type (post‐error vs. post‐correct) and between‐subjects factor 
feedback (absent vs. present) was run on RT data for each 
PES estimate separately. None of these ANOVAs revealed 
significant interactions between trial type and feedback: 
Traditional: F(1, 59) = 0.30, p =  .59, �2

p
 =  .0.005; Robust: 

F(1, 59) = 0.002, p = .97, �2
p
 < .001; Error‐Trial PES: F(1, 

59) = 0.44, p = .51, �2
p
 = .007. Thus, feedback and lengthened 

ITI had no impact on PES.

3.3  |  Reliability of PES
Table 1 displays split‐half reliability coefficients of the differ-
ent PES estimates. As can be seen, the post‐error and post‐cor-
rect reliabilities were quite high (all split‐half coefficients  > 
.64); this is consistent with previous research on the reliability 
of reaction times. Moreover, post‐error and post‐correct RTs 
were highly correlated (rs > .64). However, the PES reliability 
estimates were all unacceptably low (range: .29 to .63). The 
highest coefficients were derived from the PESerror Trial esti-
mate. The robust estimate of PES showed one of the lowest 
reliability estimates. This is likely due to at least two reasons. 
First, by the nature of the trial extraction procedure (identified 
as ccecc sequences), fewer trials were available for the split‐
half reliability estimates. Reliability is scaled with the number 
of items. Second, because the post‐error and post‐correct trials 
were derived from the same trial sequence, their correlations 
were quite high. Large correlations between the constituent 
items in a difference score tend to reduce the reliability of the 
difference measure (Infantolino et al., 2018).

3.4  |  Post‐error accuracy
Data from one participant were excluded from the PEA analy-
sis due to outlier status (Z score < −3.00). A paired samples t 
test revealed that, overall, participants were less accurate after 
errors (M = 90.67%, SD = 6.81) than after corrects (M = 92.80%, 
SD = 4.55, t(59) = 3.13, p =  .003, Cohen's d = 0.41). Most 
participants showed the inverse post‐error accuracy improve-
ment effect, as just 25 participants showed increased post‐error 
accuracy versus PCA (binomial test, p(25/60) = .045). A Trial 
Type  ×  Feedback ANOVA was conducted to evaluate the 

impact of feedback on post‐error accuracy. This analysis re-
vealed a trend‐level interaction, F(1, 58)  =  3.42, p  =  .07, 
�

2
p
 = .06. To evaluate Wessel's (2018) model, follow‐up t tests 

were performed in spite of the trending interaction. These tests 
revealed that post‐error accuracy was significantly poorer than 
PCA in the no‐feedback condition, t(28) = 3.40, p = .002, but 
was not significantly different from PCA in the feedback condi-
tion, t(30) = 1.06, p = .30.

3.5  |  ERPs
Figure 3 displays response‐locked ERPs. A sharp negative 
deflection was prominent on error trials in the 0–100 ms 
postresponse time window. A Trial Type × Feedback 
ANOVA was conducted on the ERN and Pe separately. For 
the ERN, a significant main effect of trial type, F(1, 
59) = 132.36, p < .001, �2

p
 = .69, confirmed that error trials 

elicited a larger negativity than correct trials. Neither the 
main effect feedback, F(1, 59) = 0.05, p = .82, �2

p
 = .001, 

nor the interaction between trial type and feedback, F(1, 
59)  =  2.34, p  =  .13, �2

p
  =  .04, reached statistical 

significance.
For the Pe, there was a significant main effect of trial type, 

F(1, 59) = 88.81, p < .001, �2
p
 = .60, indicating that the posi-

tivity in the 200–400 ms post‐response window at Channel 
40 (Pz) was larger for errors than for corrects. Like the ERN, 
the impact of feedback on the Pe was negligible: neither the 
main effect of feedback, F(1, 59) = 1.72, p = .20, �2

p
 = .03, 

nor the interaction between trial type and feedback, F(1, 
59) = 0.44, p = .51, �2

p
 = .007, was significant.

3.6  |  Correlations between behavior 
and ERPs
Table 2 shows bivariate correlations between PES estimates, 
post‐error accuracy difference (ΔPEA), flanker interference 
effects, and the ERP variables (ERN and Pe). The tradi-
tional and robust estimates were correlated with one another 
(r = .64, p < .001), replicating past research (van den Brink et 
al., 2014). None of the PES estimates was significantly corre-
lated with ΔPEA. Both the traditional and robust estimates of 
PES were negatively correlated with the flanker interference 
effect on accuracy. Because more negative values on this 
flanker interference effect typically indicate better cognitive 
control—as participants are disrupted less by the incongru-
ent nature of the stimuli—this finding suggests that partici-
pants who slowed down more after errors exhibited better 
cognitive control on incongruent stimuli. However, when 
incongruent accuracy rates were controlled for in a partial 
correlation, these correlations were reduced to nonsignifi-
cance (PESTraditional partial r = .21, p = .10, PESRobust partial 
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r = .00007, p = 1.00). As can be seen in Table 2, PESError Trial 
was not correlated with any of the behavioral indices.

None of the PES estimates was correlated with the ERN 
difference amplitude. However, both traditional (r =  .26) 
and robust (r = .26) estimates of PES were positively cor-
related with the Pe difference amplitude. These correla-
tion magnitudes did not differ significantly, according 
to the formula for comparing dependent correlations of 
Meng, Rosenthal, and Rubin (1992): Z = 0.008, p = 1.00, 
two‐tailed. This suggests that both traditional and robust 
estimates correlated with electrophysiological index of 

attention allocation to errors equally. The PESError Trial 
estimate did not correlate with the Pe difference amplitude 
(r = .04).

A final analysis considered relations between PES esti-
mates and number of trials included in the averages. There 
was a significant negative correlation between number of 
trials for the traditional estimate and PESTraditional (r = −.35, 
p  =  .001), suggesting smaller PES effects with increasing 
number of trials available, in line with past studies (Notebaert 
et al., 2009). However, there was no significant relationship 
between PESRobust and the number of five‐trial sequences used 

F I G U R E  3   Response‐locked ERPs.  
Note. Left: Grand‐averaged waveforms are presented at channel 9 (top) and channel 40 (bottom). Time 0 represents response onset. Note that 
negative is plotted down. Right: Scalp topographies of the difference waves (error minus correct) in the ERN time window (top) and the Pe time 
window (bottom)
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to calculate this average (r = −.20, p = .12). The PESError Trial 
estimate was also not significantly related to the number of 
five‐trial sequences (r = .13, p = .33).

4  |   DISCUSSION

PES has been increasingly used in basic cognitive neurosci-
ence and clinical psychology, yet its precise calculation has 
not been standardized or optimized. The current study com-
pared different estimates of PES in a modified flanker task, 
arguably the most common task used to elicit error‐related 
adjustments. Results indicate that the robust calculation of 
PES described by Dutilh et al. (2012) provided an estimate 
of PES that was three times larger than the estimate derived 
from the traditional method. Moreover, the robust PES cor-
related with an electrophysiological index of attention allo-
cation (Pe) just as well as the traditional method. The last 
estimate of PES examined (PESError Trial)—which compared 
RTs on error trials with RTs on post‐error trials—provided 
a large estimate of PES but did not correlate with external 
indicators of error monitoring or cognitive control. However, 
PES demonstrated very low reliability estimates, regardless 
of how it was calculated. We consider these results in the 
context of the error‐monitoring literature and discuss impli-
cations for consistent measurement.

4.1  |  Comparing PES metrics
The primary objective of this study was to compare differ-
ent methods of calculating PES. The few studies that have 
computed both traditional and robust estimates of PES re-
ported that the robust estimate tends to be larger (Murphy, 
Van Moort, & Nieuwenhuis, 2016; van den Brink et al., 
2014; Williams, 2016). This pattern was replicated in the 
current study: PESRobust provided an effect size three times 
larger than the PESTraditional estimate (Cohen's d: 0.34 vs. 
1.15; Figure 2). The two estimates were correlated with one 
another, further replicating previous research (Tabachnick 
et al., 2018; van den Brink et al., 2014). As noted in the 
Introduction, unlike PESTraditional, the PESRobust estimate is 
not sensitive to global fluctuations in task engagement and 
fatigue because the trials used in its computation involve 
the same trial sequence surrounding errors. Thus, partici-
pants may be slowing down more after errors than previ-
ously thought. Furthermore, significantly more participants 
showed positive PES values (indicating true PES) when 
using the robust method compared to the traditional method 
(55/61 = 90.16% vs. 40/61 = 65.57%). This analysis, which 
to the best of our knowledge has not been reported before, 
indicates that the traditional estimate may underestimate 
how many participants slow down after their errors. This 
may have important consequences for studies of clinical T
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populations in which reduced PESTraditional is a primary out-
come (e.g., Holmes & Pizzagalli, 2008; Yordanova et al., 
2011).

Only a few studies have used the error‐trial method, in 
which error‐trial RTs are subtracted from post‐error RTs 
(e.g., Smith & Allen, 2019). In our study, this method pro-
vided a larger PES estimate than both traditional and robust 
methods. This is because error trials are almost always faster 
than surrounding trials in simple two‐choice tasks (Brewer & 
Smith, 1989), and thus when these values are subtracted from 
post‐error RTs, the resulting estimate will be larger. We be-
lieve this calculation may overestimate the true magnitude of 
PES and has two significant drawbacks. First, from a concep-
tual standpoint, it does not compare correct RTs with correct 
RTs, as the other estimates do. This is potentially problematic 
because it compares the output of a cognitive process that 
led to a correct decision with a cognitive process that caused 
an error. Thus, the “slowing” reflected in this estimate is not 
a true estimate of slowing down the same cognitive process 
that leads to a correct decision. Second, from a measurement 
standpoint, the error‐trial estimate of PES may be subopti-
mal because the distributions of error‐ and correct‐trial RTs 
are known to differ (Rabbitt & Vyas, 1970). Thus, we would 
recommend researchers not use this method to quantify PES. 
The robust estimate seems to provide a balanced approxima-
tion of PES both conceptually and methodologically.

One potential issue with the robust estimate of PES is that 
pre‐error trials are associated with unique neural activity 
compared to pre‐correct trials—a phenomenon some have 
suggested is a waning of attention and performance monitor-
ing activity prior to errors (Allain, Carbonnell, Falkenstein, 
Burle, & Vidal, 2004; Hajcak, Nieuwenhuis, Ridderinkhof, 
& Simons, 2005; Ridderinkhof, Nieuwenhuis, & Bashore, 
2003; Schroder, Glazer, Bennett, Moran, & Moser, 2017). 
In this way, the robust estimate compares trials that are as-
sociated with differential neural activity. As noted in the 
Introduction, pre‐error trials are also associated with faster 
RTs than most post‐correct trials (Brewer & Smith, 1989); 
this estimate thus captures the end of a series of increasingly 
fast response times. It is possible that pre‐error speeding 
and PES result from different mechanisms. However, we 
feel that this is precisely what a measure of PES should cap-
ture—the waning of attention before, and the subsequent re-
activity following, an error. Thus, the robust estimate much 
more definitely captures the essence of a uniquely error‐
related phenomenon. Appropriately choosing a baseline, 
however, as we have demonstrated, has an impact on the 
overall magnitude of the PES estimate, and we encourage 
further study into choosing the most appropriate baseline 
comparator (i.e., the post‐correct RT).

Finally, future studies will need to further parse compet-
ing influences of previous‐trial accuracy and congruency ef-
fects on response times. Although the single‐trial regression 

approach (e.g., Fischer et al., 2018) implemented here revealed 
a significant PES effect above and beyond the effects of previ-
ous‐trial congruency, there were too few trials in the robust trial 
sequence (ccecc) to reliably compare various congruency se-
quences. Future studies using tasks with many more trials will 
be necessary to more critically evaluate how the robust esti-
mate is sensitive or insensitive to congruency sequence effects.

4.2  |  Internal consistency of PES
A novel analysis we examined in this study was the inter-
nal reliability of PES. Although previous studies had exam-
ined test‐retest reliability of PES (Danielmeier & Ullsperger, 
2011; Segalowitz et al., 2010), no previous study—to our 
knowledge—has examined the internal reliability of PES. 
We find that, despite PES being observed in every compari-
son between post‐error and post‐correct RTs, by most stand-
ards, the split‐half reliability estimates of PES ranged from 
poor to unacceptable. Analysis of only participants who had 
sufficiently high numbers of trials did not impact the reliabil-
ity estimates. These findings are in line with recent studies 
calling attention to poor psychometric properties of com-
monly used cognitive neuroscience measures, particularly 
those based on difference scores (Hajcak et al., 2017; Hedge, 
Powell, & Sumner, ; Infantolino et al., 2018; Meyer, Lerner, 
De Los Reyes, Laird, & Hajcak, 2017).

There is little doubt that PES is replicable from a within‐
subject perspective. Indeed, across all calculations we used, 
a significant PES effect was observed. However, the poor 
reliability precisely follows as Hedge et al. (2018) claimed: 
“experimental designs aim to minimize between‐subject vari-
ance, and thus successful tasks in that context should be ex-
pected to have low reliability” (p. 1181). Low reliability of 
PES may explain the inconsistent correlations reported in the 
literature between PES and individual differences of psycho-
pathology and error‐related brain activity. This would have 
serious implications for the use of PES in clinical applica-
tions. Indeed, recent calls have urged researchers to routinely 
report internal consistency of neural measures (Hajcak et al., 
2017). We feel that extending this recommendation to be-
havioral adjustment measures is also warranted, particularly 
when between‐subjects effects are under examination. We did 
find that reliability estimates were higher for the post‐error 
RTs, and perhaps individual differences research could use 
this as a metric of post‐error adjustment. However, this is not 
technically slowing, per se, and should be distinguished from 
PES (and theoretical accounts of slowing adjustments). Our 
results also invite critical discussion between two divergent 
lines of research—the basic, experimental work (within‐sub-
ject) and the applied sciences aimed at better understanding 
psychopathology (between‐subjects).

One potential reason that reliability estimates of PES 
were so low is that PES may reflect multiple competing 
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mechanisms (Dutilh et al., 2012; Fischer et al., 2018; Purcell 
& Kiani, 2016). As noted in the Introduction, even research-
ers using the drift diffusion model have come to varying con-
clusions regarding the underlying mechanisms giving rise 
to PES, depending on the particular sample studied as well 
as the task. Reliability may thus suffer because the internal 
consistency of a measure is constrained when the measure is 
multifaceted (Schmitt, 1996). Overall, the results presented 
here urge future studies to critically evaluate psychometric 
properties of both behavioral and neural measures, especially 
if they are to be used in individual differences research.

4.3  |  Relations to other indices of behavior
None of the PES estimates correlated with post‐error ac-
curacy, which is in line with previous results suggesting 
that these two indices of error monitoring are dissociable 
(Danielmeier & Ullsperger, 2011). In fact, it is likely that 
most studies do not find a positive association between PES 
and PEA (e.g., Tabachnick et al., 2018; see Forster & Cho, 
2014, for an exception). Similarly to PES, PEA is also not 
consistently measured; some studies evaluate it as accuracy 
after errors, whereas others (including the current study) use 
the difference between post‐error and PCA. We believe that, 
in instances where PES is correlated with PEA, a difference 
PEA score should be used, as PES is also a difference meas-
ure. Again, as accumulating evidence indicates that PES may 
arise for various mechanistic reasons, there are some situa-
tions in which a correlation between PES and PEA would not 
be predicted. It is necessary, then, to take into consideration 
the precise task parameters, fluctuations across the task, and 
participant sample when considering correlations between 
PES and PEA. The relationship between PES and flanker in-
terference effects on accuracy was limited to the traditional 
and robust estimates of PES. However, both of their correla-
tions were reduced to nonsignificance after controlling for 
overall accuracy rates on incongruent trials.

Finally, the number of trials that was used in the average 
of PES was significantly correlated with PESTraditional but not 
with PESRobust or PESError Trial. The direction of this correla-
tion indicates that, as more post‐error error trials are included 
in the average, the effect of PES becomes smaller. In fact, 
the effect size of the correlation between PESTraditional and the 
number of trials (r = −.35, R2 = .12) was three times larger 
than that between PESRobust and the number of trials (r = .20, 
R2 =  .04). Although replications are warranted, these find-
ings indicate that PESTraditional may be more sensitive to the 
number of trials included in the average. This is potentially 
important, as both functional and nonfunctional (orienting) 
accounts indicate that one major contributor to the magnitude 
of PES is the number of errors committed in the task. Again, 
however, both of these theories have been developed based 
on traditional estimates of PES. It is necessary to continue 

evaluating relations between number of post‐error trials and 
PES estimates using both traditional and robust calculations.

4.4  |  Associations with error‐related 
brain activity
None of the PES estimates correlated with the amplitude of 
the ΔERN. These results are largely in line with the between‐
subjects meta‐analysis by Cavanagh and Shackman (2015), 
which found a small and nonsignificant meta‐analytic cor-
relation between ERN and PES. However, in our study, both 
robust and traditional estimates did correlate with amplitude 
of the Pe. The Pe is generally considered to be an index of 
conscious awareness of having made a mistake or attention 
allocation to the error (Nieuwenhuis, Ridderinkhof, Blom, 
Band, & Kok, 2001; Overbeek et al., 2005). Notably, there is 
research suggesting that the Pe may also index an orienting 
response to uncommon events (Ullsperger et al., 2010), as 
it shares topographic, temporal, and functional similarities 
to the P3b (Leuthold & Sommer, 1999; Ridderinkhof et al., 
2009). Past research found that the Pe correlated with post‐
error accuracy (Schroder, Moran, Infantolino, & Moser, 
2013), but this was not found here; rather, Pe correlated 
with only PES. Again, the varying correlations reported in 
the literature may arise for multiple reasons, including low 
internal reliability of PES and the various parameters, popu-
lations, and task contexts that may give rise to PES.

4.5  |  The impact of trial‐to‐trial feedback
Finally, we considered the impact of trial‐to‐trial feed-
back on post‐error adjustments and error‐related ERPs. 
Approximately half of the participants received trial‐to‐
trial feedback, and the presence of feedback significantly 
lengthened the ITI and also the RSI. Prior literature sug-
gests that RSI has a major impact on whether or not PES 
emerges (Danielmeier & Ullsperger, 2011; Jentzsch & 
Dudschig, 2009; Wessell, 2018). Specifically, PES tends to 
be largest when RSIs are very short (<500 ms) and tapers 
off with increasingly large RSI. In the current study, none 
of the PES estimates was impacted by the effect of feed-
back and the subsequently increased (+2 s) RSI. However, 
post‐error accuracy was marginally improved with the 
presence of feedback. Specifically, in the no‐feedback con-
dition, participants were significantly less accurate after 
errors compared to after corrects—which is the opposite 
of the post‐error improvement in accuracy described by 
Laming (1979) and Danielmeier and Ullsperger (2011)—
but there was no significant difference between post‐error 
and PCA rates in the feedback condition. It is possible that 
the presence of feedback—and the subsequently length-
ened ITI—may have negated the negative impact of errors 
on subsequent performance (in terms of accuracy).



14 of 17  |      SCHRODER et al.

Collectively, these post‐error adjustment data are inter-
esting to consider with respect to Wessel's (2018) adaptive 
orienting theory of error processing. This theory specif-
ically predicts that, at long ITIs, PES only occurs due to 
controlled processing (strategic PES). This would sug-
gest that post‐error accuracy is enhanced in long ITI trial 
sequences. In the current study, participants performed 
equally well after errors compared to correct trials in the 
feedback condition but performed significantly worse with 
short ITIs (in the no‐feedback condition). This conforms 
to Wessel's prediction of ITIs impacting post‐error per-
formance. As Wessel (2018) noted, the extant literature is 
highly inconsistent with regard to finding increased versus 
decreased accuracy rates after errors versus after corrects. 
Future studies will need to evaluate just how often and 
under which conditions participants are more accurate after 
errors than after corrects.

The trial‐to‐trial feedback had no impact on amplitudes of 
the ERN and the Pe. This finding replicates a previous study 
that found identical ERNs between feedback and no‐feedback 
versions of an arrow flanker task (Olvet & Hajcak, 2009a). 
That study's feedback version of the task did not have longer 
ITIs in the feedback version, which is one difference from the 
current study, in which the feedback trials were substantially 
(+2 s) longer. These data suggest that trial‐to‐trial feedback 
may not have a large impact on these ERPs.

4.6  |  Limitations
There are limitations to the current study that should be ad-
dressed in future research. First, the data were collected from 
healthy, well‐adjusted adults, and we cannot speak to how 
clinical or more heterogeneous samples would respond or 
provide differing estimates of PES. However, the goal of the 
current study was to evaluate PES in a healthy sample in order 
to provide some precedent for further evaluation in clinical 
samples. Second, the examination of the impact of ITI on 
error monitoring was a convenience analysis as the data were 
collected while the task was under development. Third, the 
variation of the flanker task used here was unusual in that it 
used images, and not arrows or letters, which is more com-
mon. However, the task elicited the most common flanker‐in-
terference effects as well as ERP and behavioral signatures of 
error monitoring. Moreover, previous studies have used faces 
as flanker stimuli and have also elicited similar electrophysi-
ological and behavioral indices of performance monitoring 
(Moser, Huppert, Duval, & Simons, 2008; Navarro‐Cebrian 
et al., 2013). Thus, our findings are likely generalizable to 
other flanker tasks. Nonetheless, examining the estimation, 
reliability, and brain‐behavior correlations of different PES 
calculations in other paradigms (other versions of the flanker 
task, Stroop task, Simon, go/no‐go) is certainly warranted.

4.7  |  Conclusions
The precise measurement of PES has significant implications 
for both cognitive neuroscience research and applications to 
clinical populations. Functional and nonfunctional theories of 
PES have been developed almost exclusively based on stud-
ies using the PESTraditional estimate, which, as we find here, 
may underestimate the true magnitude of PES. An important 
finding here is that, regardless of the precise calculation of 
PES, this metric produced unacceptably low reliability val-
ues, at least based on conventional guidelines (Nunnally, 
1994). This adds to the emerging literature on the low reli-
ability of cognitive neuroscience measures (Hedge, Powell, 
& Sumner, ; Infantolino et al., 2018; Rodebaugh et al., 2016) 
and calls for a careful examination of basic psychometric 
properties in any individual differences research. Reliably 
assessing the magnitude of PES is an important endeavor for 
future studies in the basic and applied sciences. The three 
calculations of PES in the current work yielded significantly 
different magnitudes of the slowing effect and differentially 
correlated with cognitive control‐related electrophysiology. 
We suggest that future studies of error‐monitoring continue 
to evaluate both robust and traditional estimates as well as 
to report their reliabilities. Once we understand how best to 
measure PES, we can then make finer theories that explain 
its functional significance and understand its potential vari-
ability in clinical populations.
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