Archival Report

Machine Learning Identifies Large-Scale Reward-Related Activity Modulated by Dopaminergic Enhancement in Major Depression

Yuelu Liu, Roee Admon, Monika S. Mellem, Emily L. Belleau, Roselinde H. Kaiser, Rachel Clegg, Miranda Beltzer, Franziska Goer, Gordana Vitaliano, Parvez Ahammad, and Diego A. Pizzagalli

ABSTRACT

BACKGROUND: Theoretical models have emphasized systems-level abnormalities in major depressive disorder (MDD). For unbiased yet rigorous evaluations of pathophysiological mechanisms underlying MDD, it is critically important to develop data-driven approaches that harness whole-brain data to classify MDD and evaluate possible normalizing effects of targeted interventions. Here, using an experimental therapeutics approach coupled with machine learning, we investigated the effect of a pharmacological challenge aiming to enhance dopaminergic signaling on whole-brain response to reward-related stimuli in MDD.

METHODS: Using a double-blind, placebo-controlled design, we analyzed functional magnetic resonance imaging data from 31 unmedicated MDD participants receiving a single dose of 50 mg amisulpride (MDDAmisulpride), 26 MDD participants receiving placebo (MDDPlacebo), and 28 healthy control subjects receiving placebo (HCPlacebo) recruited through two independent studies. An importance-guided machine learning technique for model selection was used on whole-brain functional magnetic resonance imaging data probing reward anticipation and consumption to identify features linked to MDD (MDDPlacebo vs. HCPlacebo) and dopaminergic enhancement (MDDAmisulpride vs. MDDPlacebo).

RESULTS: Highly predictive classification models emerged that distinguished MDDPlacebo from HCPlacebo (area under the curve = 0.87) and MDDPlacebo from MDDAmisulpride (area under the curve = 0.89). Although reward-related striatal activation and connectivity were among the most predictive features, the best truncated models based on whole-brain features were significantly better relative to models trained using striatal features only.

CONCLUSIONS: Results indicate that in MDD, enhanced dopaminergic signaling restores abnormal activation and connectivity in a widespread network of regions. These findings provide new insights into the pathophysiology of MDD and pharmacological mechanism of antidepressants at the system level in addressing reward processing deficits among depressed individuals.

Keywords: Biomarker, Biotypes, Depression, Dopamine, fMRI, Machine learning

Major depressive disorder (MDD) is a debilitating disorder, often characterized by anhedonia (1), which is poorly addressed by current treatments (1,2). Converging evidence across species suggests that mesocorticolimbic dopaminergic pathways involving the striatum are essential for reward processing (3–5). Dysfunction in this circuit has been associated with deficits in reward processing across psychiatric diseases (6). In MDD, neuroimaging studies have documented decreased striatal activation and reduced functional connectivity between the striatum and other nodes of the brain reward system in response to reward-related stimuli (7–9). Notably, some of these abnormalities were found to be restored in the short term by pharmacologically induced dopaminergic enhancement (10).

Despite advancements in our understanding of the pathophysiology of MDD, an unresolved issue is how enhanced dopaminergic signaling might modulate large-scale whole-brain activation and functional coordination in MDD. Besides the striatum, other brain regions, including the orbitofrontal cortex, amygdala, and anterior cingulate cortex (ACC), have been implicated in reward processing (11–14). Given that antidepressant treatments aiming to increase dopaminergic signaling might have faster therapeutic onsets (15,16), it is important to investigate the effects of dopaminergic enhancement to better understand the potential neural mechanism through which these interventions may address reward processing deficits in MDD. Thus, we identified several needs to address in this study, including developing and evaluating 1) a robust, data-driven, multivariate approach to analyze whole-brain data to probe the purported distributed nature of the reward system, 2) an approach to assess
MDD-related abnormalities and putative normalization of those abnormalities, and 3) comparisons between a multivariate approach and a hypothesis-driven approach to evaluate whether a broad set of regions beyond the striatum does indeed better highlight reward-related abnormalities.

Toward these goals, we used a machine learning–based approach to analyze whole-brain functional magnetic resonance imaging (fMRI) data collected from a double-blind, placebo-controlled study, in which unmedicated individuals with MDD and healthy control subjects (HCs) performed a monetary incentive delay (MID) task after being randomized to either a single low dose of amisulpride (50 mg) or placebo. Amisulpride, a selective dopamine D2/D3 receptor antagonist, was selected because of its high affinity to block presynaptic autoreceptors at lower doses, thereby increasing dopamine release (17). In a first step, to identify the effects of enhanced dopaminergic transmission on reward-related brain activity, whole-brain fMRI data were entered into an importance-guided model selection procedure (based on the logistic regression with elastic net regularization) (Figure 1) to identify brain regions in which reward-related metrics were most predictive of differences between the MDD individuals receiving amisulpride versus placebo. Next, to investigate the potential normalizing effect of enhanced dopaminergic transmission on MDD-related abnormalities, brain regions from the previous step were compared with those most predictive of differences between MDD and HC group receiving placebo. The regions with MDD-related abnormalities that also demonstrated an MDD amisulpride effect constitute a potential multivariate signature model; thus, 92 participants were considered. Among these, 86 had useable fMRI data (participants included in final analysis included MDDAmisulpride: n = 31; MDDPlacebo: n = 26; HCAmisulpride: n = 28). A subset of participants (46 MDD, 23 randomized to amisulpride, 23 to placebo; 20 HC controls randomized to placebo) were included in a recent study that used a region-of-interest (ROI) approach to probe the effects of MDD and amisulpride on striatal activation and functional connectivity (10). Groups were matched for age, gender, ethnicity, and years of education (Table 1). General inclusion criteria were right-handedness, age between 18 and 45 years, no MRI contraindications, no lifetime substance dependence, no past-year substance abuse, and no serious medical conditions. For the MDD groups, a diagnosis of MDD according to the

METHODS AND MATERIALS

Participants

Participants were recruited by the Center for Depression, Anxiety and Stress Research at McLean Hospital using online advertisements, mailing, and flyers within the Boston metropolitan areas for two independent studies using identical procedures. For the current analyses, we focused on analyses aiming at classifying case versus controls (MDDPlacebo vs. HCPlacebo model) and classifying the potential normalizing effects of dopaminergic enhancement (MDDPlacebo vs. MDDAmisulpride model); the best model parameters. The resulting model was deemed as the optimal feature set. A grid search including all features is trained using logistic regression with elastic net regularization to determine relative importance of individual features. Next, a series of truncated models were trained based on a progressively increasing set of top features ranked by the full model. The set of features in the best truncated model on the evaluation set were deemed as the optimal feature set. An illustration of the nested cross-validation procedure used to train, validate, and test the models. A grid search procedure with threefold cross-validation was implemented on the developmental set to determine the best model parameters. The resulting model was further tested on the evaluation set, which contained an independent set of participants not used in training and validation. The entire procedure was repeated on 100 different random partitioning of the data to allow for stable model performance. Finally, the authors used an independent set of participants not used in training and validation. The entire procedure was repeated on 100 different random partitioning of the data to allow for stable model performance.
Machine Learning in Depression

Table 1. Clinical and Demographic Characteristics of the Participants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>MDDAmisulpride (n = 31)</th>
<th>MDDPlacebo (n = 26)</th>
<th>HCPPlacebo (n = 28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, Years</td>
<td>Mean 27.2 SD 7.7</td>
<td>Mean 25.6 SD 5.0</td>
<td>Mean 25.1 SD 6.1</td>
</tr>
<tr>
<td>Education, Years</td>
<td>15.4 2.2</td>
<td>16.8 3.0</td>
<td>15.2 2.9</td>
</tr>
<tr>
<td>Beck Depression Inventory-II</td>
<td>26.3 7.9</td>
<td>26.7 7.9</td>
<td>1.8 2.7</td>
</tr>
<tr>
<td>Hamilton Depression Rating Scale</td>
<td>15.6 3.7</td>
<td>16.7 5.3</td>
<td>1.0 1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mood and Anxiety Symptom Questionnaire</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total score</td>
<td>168.5 22.9</td>
<td>174.1 21.7</td>
<td>91.5 13.3</td>
</tr>
<tr>
<td>General distress anxiety subscore</td>
<td>23.6 5.1</td>
<td>25.4 6.6</td>
<td>12.3 1.2</td>
</tr>
<tr>
<td>General distress depression subscore</td>
<td>37.9 9.4</td>
<td>39.0 9.3</td>
<td>13.9 2.0</td>
</tr>
<tr>
<td>Anxious arousal subscore</td>
<td>24.0 6.0</td>
<td>25.6 6.4</td>
<td>18.4 2.0</td>
</tr>
<tr>
<td>Anhedonic depression subscore</td>
<td>82.9 11.2</td>
<td>84.1 9.1</td>
<td>47.0 11.3</td>
</tr>
<tr>
<td>Snith-Hamilton Pleasure Scale</td>
<td>31.7 4.7</td>
<td>31.4 7.0</td>
<td>22.8 6.7</td>
</tr>
<tr>
<td>Duration of Current Major Depressive Episode, Months</td>
<td>17.3 20.0</td>
<td>17.6 31.9</td>
<td>N/A N/A</td>
</tr>
<tr>
<td>Number of Past Depressive Episodes</td>
<td>3.2 2.6</td>
<td>3.3 3.2</td>
<td>N/A N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Female</th>
<th>n %</th>
<th>n %</th>
<th>n %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
<td>28 90.3</td>
<td>19 73.1</td>
<td>22 81.5</td>
</tr>
<tr>
<td>Caucasian</td>
<td>20 64.5</td>
<td>13 50.0</td>
<td>13 48.1</td>
</tr>
<tr>
<td>Current Comorbid Anxiety Disorders</td>
<td>10 32.3</td>
<td>11 42.3</td>
<td>N/A N/A</td>
</tr>
<tr>
<td>Past Comorbid Anxiety Disorders</td>
<td>13 41.9</td>
<td>12 46.2</td>
<td>N/A N/A</td>
</tr>
</tbody>
</table>

Groups were matched for age, gender, race, and years of education (one-way analysis of variance; χ² test). All participants were right-handed. Between the major depressive disorder (MDD) groups administered amisulpride (MDDAmisulpride) and placebo (MDDPlacebo), participants were matched for current and past comorbid anxiety disorders, as well as clinical scale measures (χ² test; two-sample t test).

HC, healthy control subjects; N/A, not applicable.

Structured Clinical Interview for DSM-IV-TR Axis I Disorders (2) was required, and exclusion criteria included psychotropic medication in the past 2 weeks (6 weeks for fluoxetine, 6 months for dopaminergic drugs or antipsychotics) and any other Axis I disorders (however, social anxiety disorder, simple phobia, or generalized anxiety disorder were allowed if secondary to MDD). For HCs, exclusion criteria were any medication in the last 3 weeks, current or past psychiatric illnesses (Structured Clinical Interview for DSM-IV-TR Axis I Disorders), and first-degree familial psychiatric illness. Participants received $15/hour in addition to earnings in the fMRI task. The two protocols were approved by Partners Human Research Committee, and all participants provided written informed consent.

Procedure

The two studies followed identical procedures, pharmacological challenge, and MRI acquisition. In the first session, a Ph.D. or master’s-level clinician administered the Structured Clinical Interview for DSM-IV-TR Axis I Disorders to determine eligibility, and participants filled out self-report scales (Table 1) (Supplement). In the second session, participants performed the MID task during fMRI scanning after receiving a single dose of amisulpride or placebo. The MID task was started 1 hour after pill administration based on pharmacokinetic data indicating that plasma concentration of amisulpride has a peak approximately 1 to 1.5 hours after administration (17).

fMRI Task

The MID has been described in detail (10,23). Briefly, the task includes anticipation and receipt of monetary rewards (and penalties), which robustly recruit mesocorticolimbic regions (12,13) and have been used to uncover reward-related abnormalities in both magnitude of activation and functional connectivity in MDD (7,9,10,22,24).

Data Acquisition and Preprocessing

For both studies, MRI data were acquired at the McLean Imaging Center using a Siemens Tim Trio 3T MR scanner equipped with a 32-channel head coil (Siemens Medical Solutions USA, Inc., Malvern, PA). Data collection for the two studies overlapped in time. See Supplemental Methods for acquisition parameters and preprocessing.

Feature Extraction

The features used in our classifiers consisted of coefficients from the single-subject-level general linear models averaged according to the Automated Anatomical Labeling template (25). To obtain these features, for each participant, we first fitted a general linear model to the fMRI data during the MID task [see (10) for more details]. Next, for each regressor in the general linear models, the estimated coefficients were averaged according to the Automated Anatomical Labeling template, producing one averaged coefficient for each ROI. ROIs for the left and right nucleus accumbens (NAcc) were further extracted according to a manually segmented MNI-152 brain (26) and added to the existing Automated Anatomical Labeling ROIs, resulting in 118 ROIs. The following BOLD contrasts were included as features in our classification models to represent reward anticipation and consumption, respectively: 1) reward cue minus neutral cue and 2) reward outcome minus...
no-change outcome following reward cue. In addition, two striatal connectivity features emerging from our previous work (10) were included in our classification models, representing the psychophysiological interaction under the reward outcome condition between 1) caudate and dorsal ACC and 2) NAcc and midcingulate cortex (MCC). In total, 238 features (118 ROIs x 2 contrasts + 2 psychophysiological interactions) were included in the classification models. Modeling was also done without the psychophysiological interaction regressors to establish if they brought any additional predictive information (see Supplement). All features were standardized to zero mean and unit variance before being entered into the models.

Classification and Importance-Guided Sequential Model Selection

Two main classifiers were built to classify 1) MDDPlacebo versus HCPlacebo and 2) MDDPlacebo versus MDDAmisulpride. These were designed to capture features linked to 1) MDD and 2) the effect of short-term dopaminergic enhancement on whole-brain BOLD activation in individuals with MDD. To further test the hypothesis that dopaminergic enhancement transiently normalized reward-related abnormalities in MDD, a third classifier was built to classify MDDAmisulpride versus HCPlacebo. Across analyses, we used logistic regression with elastic net regularization (27) for classification. The elastic net regularization is well suited for problems where the number of features is much greater than the number of observations (27). The models were trained and tested via the following nested cross-validation procedure. First, we performed model training on a development set containing 80% of the participants via a threefold grid search cross-validation procedure. Then, the model with the best regularization parameters was further tested on the evaluation set containing an independent set of 20% participants, which the model had not seen during the training and validation phases. The above procedure was repeated 100 times to ensure that stable performance was obtained on a large number of development-evaluation splits. The area under the receiver operating characteristics curve (AUC) was selected as the metric to quantify model performance, and reported AUCs are only from testing on the independent evaluation set.

To identify the set of most predictive features for each classifier (i.e., MDDPlacebo vs. HCPlacebo and MDDPlacebo vs. MDDAmisulpride), we adopted the following importance-guided sequential model selection procedure (Figure 1A). Specifically, we first rank-ordered the features using the mean model weights across 100 implementations as a measure of predictability. Then, we built a series of truncated models such that each model only took the top k most predictive features as inputs to perform the classification tasks, with k varying from the top 1 most predictive feature to the number of participants involved in a given classifier. Imposing the number of participants as the upper limit was to ensure that models’ performance was not mainly driven by the regularization term. All truncated models underwent the nested cross-validation procedure described above, and the test performance from each truncated model on the independent evaluation set was obtained. The set of features used by the truncated model achieving the highest AUC on the evaluation set was deemed as the optimal feature set.

After identifying the best truncated models for the classifiers, we compared the feature sets—both the selected regions and the regression weight signs (positive or negative), as they indicated the direction of the BOLD difference (greater for one class over another). Based on how we set up the classifiers, those regions shared by the MDDPlacebo versus HCPlacebo and MDDPlacebo versus MDDAmisulpride classifiers with convergent regression signs constitute a potential multivariate signature that we can use to assess amisulpride-induced BOLD normalization in MDD subjects. We calculated signed BOLD sum scores by summing up the BOLD values of the convergent features multiplied by the regression weight sign to assess normalization. The convergent features should largely be absent in the set of highly differentiating features of the MDDAmisulpride versus HCPlacebo classifier if they have been normalized with amisulpride.

Statistical Analysis

The significance of the models’ performances against chance level was tested using a random permutation test scheme in which the truncated model based on the optimal feature set were retrained on label shuffled training data (28). The entire test procedure was iterated 1000 times to empirically construct the null distribution of test AUCs. The p values were obtained by comparing the AUC from the best truncated model based on unshuffled data against the empirical null distribution. The performances between models were statistically compared via Mann-Whitney U tests. Effect sizes between two distributions were calculated using Cohen’s d.

RESULTS

Classification Performances

The best truncated models selected by the importance-guided model selection procedure (Figure 1) based on most predictive features from whole-brain BOLD activations and striatal connectivity achieved high predictive performances (Table 2) (see Supplemental Figure S1 for model performance as a function of top features). For both MDDPlacebo versus HCPlacebo and MDDPlacebo versus MDDAmisulpride, the AUCs of the best truncated models were significantly above chance level (MDDPlacebo vs. HCPlacebo: mean AUC = 0.87, permutation testing p = .004; MDDPlacebo vs. MDDAmisulpride: mean AUC = 0.89, p = .002) (Figure 2A, B) (Supplemental Figure S2). Predictive features displayed some collinearity, but collinearity did not account for the diminishing AUC returns of the lower-ranked predictive features (see Supplemental Results and Supplemental Figures S3 and S4). Compared with models trained using striatal features only (Supplemental Methods), the performances of the best truncated models based on whole-brain features were significantly better for both contrasts (both p < .001, Mann-Whitney U test). The histograms of sum scores created by summing up the top feature values while taking into account the sign of the corresponding model weights demonstrated high separability between MDDPlacebo and HCPlacebo as well as between MDDPlacebo and MDDAmisulpride (Figure 2C, D). Overall, these results indicate that our models were able to extract highly predictive information embedded in the whole-brain BOLD signal.
Brain Regions Specific to Reward Anticipation

Positive Model Weights. The best truncated model for MDDPlacebo versus MDDAmisulpride identified the lateral orbitofrontal cortex (lOFC), visual cortex, ACC, dorsomedial prefrontal cortex, MCC, and precuneus as most predictive features with positive weights during reward anticipation (Figure 3A and Supplemental Table S1). This indicates that within the MDD group, BOLD activation in these regions related to the contrast of reward cue minus neutral cue was reduced following administration of amisulpride compared with placebo. Critically, the IOFC, visual cortex, and MCC were also selected by the best MDDPlacebo versus HCPlacebo model as top features having positive weights (Figure 3B and Supplemental Table S2), and at the same time these regions, except a right occipital region, were not among the most predictive features in the MDDAmisulpride versus HCPlacebo model (Supplemental Figure S5). Collectively, these findings indicate that within the MDD group, amisulpride largely normalized the heightened BOLD activation in these regions toward reward cues. Other regions with positive weights in the MDDPlacebo versus HCPlacebo classification included the thalamus, supplementary motor area, and ventromedial prefrontal cortex. Again, these regions were not among the top features in the MDDAmisulpride versus HCPlacebo model (Supplemental Figure S5), suggesting that amisulpride mitigated the hyperactivation in these regions within the MDD group.

Negative Model Weights. Regions selected by the best MDDPlacebo versus MDDAmisulpride model with negative model weights included the putamen, pallidum, amygdala, posterior parietal cortex (PPC), and temporal cortex (Figure 3A and Supplemental Table S1). The negative weights observed in the putamen and pallidum were consistent with the hypothesis that amisulpride might have increased dopaminergic signaling in the basal ganglia in MDD (10,14). This effect is rather pronounced as the MDDAmisulpride versus HCPlacebo model showed that the contrast of reward cue minus neutral cue evoked higher activation in the putamen in the MDDAmisulpride group even compared with the HC Placebo group (Supplemental Figure S5). Within the MDDPlacebo group, reduced activation

Table 2. Classification Performance for the Best Truncated Models

<table>
<thead>
<tr>
<th></th>
<th>MDDPlacebo vs.</th>
<th>MDDAmisulpride vs. HCPlacebo</th>
<th>MDDPlacebo vs.</th>
<th>MDDAmisulpride vs. HCPlacebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SD</td>
<td>Mean SD</td>
<td>Mean SD</td>
<td>Mean SD</td>
</tr>
<tr>
<td>AUC</td>
<td>0.87 0.12</td>
<td>0.89 0.09</td>
<td>0.59 0.14</td>
<td>0.61 0.17</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.77 0.12</td>
<td>0.80 0.10</td>
<td>0.59 0.13</td>
<td>0.59 0.13</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.84 0.18</td>
<td>0.89 0.11</td>
<td>0.58 0.25</td>
<td>0.65 0.19</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.72 0.22</td>
<td>0.67 0.24</td>
<td>0.59 0.22</td>
<td>0.50 0.28</td>
</tr>
<tr>
<td>Number of Features</td>
<td>48</td>
<td>44</td>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>

AUC, area under the curve; HC, healthy control subjects; MDD, major depressive disorder.

Figure 2. Comparing classification performance between the data-driven models based on features selected from the whole-brain and the hypothesis-driven models based only on striatal features for (A) MDDPlacebo vs. HCPlacebo and (B) MDDPlacebo vs. MDDAmisulpride classificiations. Asterisks denote significantly different median area under the receiver operating characteristic (ROC) curve measures between the data-driven and hypothesis-driven models as assessed by the Mann-Whitney U test. The black markers denote outliers falling outside the ±1.5 interquartile range. The histogram of the signed sum score from the model-identified most predictive brain regions show high separability between (C) MDDPlacebo vs. HCPlacebo and (D) MDDPlacebo vs. MDDAmisulpride. HC, healthy control subjects; MDD, major depressive disorder.
in the operculum, hippocampus, parahippocampal gyrus (PHG), and dorsomedial prefrontal cortex was observed relative to HCs during reward consumption in the MDDPlacebo versus MDDAmisulpride model revealed that the IOF, posterior parietal cortex (PPC), superior frontal gyrus, and the pre- and postcentral gyrus were selected as most predictive features with positive weights (Figure 4A and Supplemental Table S3). This indicates reduced activation in these regions during reward consumption in MDDAmisulpride compared with MDDPlacebo. Of note, the IOF and PPC emerged as among the most predictive features with positive weights in the MDDPlacebo versus HCPlacebo model (Figure 4C and Supplemental Table S4). Additionally, while the IFOC hyperactivation was still observed in the MDDAmisulpride versus HCPlacebo model, the PPC was not identified as a predictive feature (Supplemental Figure S5). Overall, these results suggest that under placebo, the MDD group was characterized by increased BOLD activity in these regions during reward consumption relative to HCs and that the hyperactivation was reduced by amisulpride. Other brain regions identified as most predictive features with positive weights in the MDDPlacebo versus HCPlacebo model included the inferior frontal gyrus, PPC, precuneus, and MCC. The lack of predictability from these regions between MDDAmisulpride and HCPlacebo (Supplemental Figure S5) again suggests a mitigating effect of amisulpride on the hyperactivation in these regions.

Negative Model Weights. The most predictive regions from the contrast of reward minus no-change outcomes with negative weights in the MDDPlacebo versus MDDAmisulpride model included the putamen, NAcc, PHG, and temporal pole (Figure 4A and Supplemental Table S3), as well as the connectivity between the NAcc and MCC (Figure 4B). This suggests that within the MDD group, amisulpride increased BOLD activation and corticostriatal connectivity to reward feedback in these regions. Highlighting again convergence, the NAcc, PHG, temporal pole, and the NAcc-MCC connectivity were also selected as most predictive features having negative weights in the MDDPlacebo versus HCPlacebo classification (Figure 4C, D and Supplemental Table S4), and none of these regions was selected as among the top predictive features in the MDDAmisulpride versus HCPlacebo model (Supplemental Figure S5). Thus, in MDD, amisulpride normalized both hypoactivation and hypoconnectivity in response to rewards in these regions. Other most predictive features with negative weights in the MDDPlacebo versus HCPlacebo model included the visual cortex, inferior temporal cortex, operculum, ACC, and the connectivity between the caudate and dorsal ACC. These features, except the caudate-dorsal ACC connectivity, were not identified as among the top features in the MDDAmisulpride versus HCPlacebo model (Supplemental Figure S5), indicating increased activation to rewards in these regions following.
amisulpride administration in the MDD group. The fact that amisulpride did not normalize the hypoconnectivity between caudate and dorsal ACC in the MDD group is consistent with previously published ROI-based results obtained on a subset of the participants (10).

A Multivariate Signature of Normalization
The signed BOLD sum scores calculated from the convergent features across the MDDPlacebo vs. HCPlacebo and MDDPlacebo vs. MDDAmisulpride classifiers showed that the multivariate neural signature is significantly greater in the MDDPlacebo group than in either MDDAmisulpride or HCPlacebo groups (Figure 5) (all \(p < .001 \), Mann-Whitney U test), while the latter two groups were statistically equivalent based on equivalence testing \((p = .01)\) (see the Supplement for more information). Taken together, these results suggest that amisulpride normalized MDD-related abnormalities.

DISCUSSION
This study used a machine learning–based approach to identify reliable brain-wide features that delineated MDD-related abnormalities as well as features linked to their normalization after an acute dopaminergic pharmacological challenge. In addition to increased striatal activation in the MDDAmisulpride relative to MDDPlacebo group (which is consistent with ROI-based conventional analyses of a smaller subset of the participants included here (10)), the classification model also identified an extensive set of reward-related brain regions differentiating these groups, which provided additional predictive power over striatal regions alone. Converging of features between the MDDPlacebo versus MDDAmisulpride model and the MDDPlacebo versus HCPlacebo model suggested that amisulpride had a bidirectionally normalizing effect on reward-related activation and functional connectivity of brain regions.
spanning the IOFC, NAcc, PHG, MCC, PPC, and areas of the visual cortex among depressed individuals. Taken together, these results highlight the unique contribution of machine learning–based approaches to examine brain-wide circuit engagement and potential normalization after a single dose. Such mechanistic evidence can help evaluate novel compounds before pursuing longer efficacy-oriented clinical trials with a compound. Overall, this study provided novel evidence for the mechanism through which (transient) dopaminergic enhancement might restore system-level activity during reward processing among individuals with MDD.

Amisulpride appeared to have bidirectional normalizing effects on brain activation and functional coordination among depressed individuals. Within the striatum, consistent with previous ROI-based analyses based on a subset of the participants used here (10), results from our classification models showed that while striatal–basal ganglia activation and cortico-striatal connectivity were initially decreased among depressed individuals, they were enhanced following acute administration of amisulpride [see (29) for conceptually similar imaging findings using a single dose of the novel D2 antagonist lurasidone]. This supports the validity of the importance-guided model selection procedure and fits the view that lower doses of amisulpride enhance dopaminergic signaling in the striatum (17).

Among regions outside the striatum, one notable finding was that increased IOFC activation during reward anticipation in MDD was reduced after administration of amisulpride. Neurophysiological evidence has shown that subpopulations of neurons in the IOFC respond to nonreward or unpleasant events and maintain elevated firing rate after such events (30). This led to the theory implicating overly reactive and prolonged activation of the IOFC nonreward circuit as a potential mechanism underlying depression (31). Previous studies have documented increased IOFC activation in MDD (32), and our result fits this theoretical view. In the MDDAmisulpride group, reduced IOFC activation suggests that amisulpride may normalize reward processing by decreasing IOFC hyperactivity, consistent with previous reports that improvements in depressive symptoms were accompanied by reduced IOFC activation (33) and that electrical stimulation of the IOFC acutely improved depressive symptoms (34).

In addition to effects in fronto-striatal circuitry, amisulpride restored hypoactivation in the PHG and temporal pole in MDD. The hippocampus and parahippocampal complex connect with the medial OFC and are hypothesized to facilitate the formation of episodic memory regarding reward (35). Decreased hippocampal activation has emerged in MDD, and prolonged or repeated depressive episodes have been linked to reduced hippocampal volume (36,37). These abnormalities have been linked to dysfunctions in both memory encoding and retrieval characteristic of MDD, even after treatment (38,39). The fact that amisulpride restored parahippocampal and temporal pole activation suggests that interventions aiming to increase dopaminergic signaling might improve encoding and retrieval of positive memories in MDD. However, it should be noted that hippocampal activation did not differentiate between the MDDAmisulpride and MDDPlacebo groups, suggesting that the effects on memory might be limited following a single acute pharmacological challenge.

Hyperactivation in the MCC toward the reward cue was also reduced among depressed individuals after amisulpride. Moreover, amisulpride also reduced reward cue-evoked activations in adjacent ACC and dorsomedial prefrontal cortex. The supracallosal part of the cingulate cortex receives neuronal projections from the IOFC and is thought to also encode nonreward and punishing events such as physical and social pain (40,41). A recent study has identified a nociceptive pathway between the MCC and posterior insula responsible for generating a hypersensitive state for pain, providing a mechanism for the increased pain sensitivity by psychosocial factors (42). The reduced hyperactivation in these regions following amisulpride administration may indicate decreased sensitivity to negative affective states among individuals with MDD and therefore priming or biasing them toward reward.

In MDD, amygdalar activation evoked by reward cues was enhanced following administration of amisulpride. Reduced amygdalar response to positive and rewarding stimuli, coupled with heightened amygdalar activation toward
negative stimulus, are well-documented and implicates improved sensitivity toward reward following reward processing among depressed individuals. Future studies could seek to examine the effect of enhanced dopamine on whole-brain fMRI activity in depression under additional conditions; additionally, based on hypotheses of shared mesocorticolimbic dopaminergic abnormalities, this molecule could be tested in other disorders such as addiction or schizophrenia [e.g., (47,48)].

ACKNOWLEDGMENTS AND DISCLOSURES

This project was supported by the National Institute of Mental Health (Grants Nos. R01 MH086376, R37 MH068376, and R01MH096809 to DAP). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

DAP designed both studies and obtained funding for both; RC, MB, FG, and GV collected data; YL, MM, RA, ELB, RHK performed the analyses; YL, DAP, RA, MM, and PA wrote the manuscript. All authors approved the manuscript.

Data are available at the NIMH Data Archive (https://nda.nih.gov/). Analysis scripts are available upon request.

YL, MM, and PA are current or previous full-time employees at BlackThorn Therapeutics Inc. Over the past 3 years, DAP has received consulting fees from Akili Interactive Labs, BlackThorn Therapeutics, Boehringer Ingelheim, Posit Science, and Takeda Pharmaceuticals and an honorarium from Alkermes for activities unrelated to the current review. All other authors report no biomedical financial interests or potential conflicts of interest.

REFERENCES

Machine Learning in Depression