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Abstract

Background. Preclinical and human studies suggest an association between chronic inflam-
mation and the development of depressive behaviors. This is proposed to occur through
downstream effects of inflammatory cytokines on neuroplasticity, neurogenesis and neuro-
transmitter function, although the neural correlates remain poorly understood in humans.
Methods. In Study 1, structural magnetic resonance imaging and serum inflammatory cyto-
kine data were analyzed from 53 psychiatrically healthy female participants. Correlational ana-
lyses were conducted between interleukin-6 (IL-6) and volume in a priori regions implicated
in the pathophysiology of major depressive disorder (MDD). In Study 2, medical data [includ-
ing serum inflammatory acute phase reactants (C-reactive protein)] were analyzed for 12 589
participants. Participants were classified as having (n = 2541) v. not having (n = 10 048) probable
lifetime MDD using phenotypes derived using machine-learning approaches. Non-parametric
analyses compared inflammation between groups, whereas regression analyses probed whether
inflammation predicted probable MDD classification while accounting for other variables.
Results. In Study 1, significant negative correlations emerged between IL-6 and hippocampal,
caudate, putamen and amygdalar volume. In Study 2, the MDD group showed a higher prob-
ability of elevated inflammation than the non-MDD group. Moreover, elevated inflammation
was a significant predictor of probable MDD classification.
Conclusions. Findings indicate that inflammation is cross-sectionally related to reduced vol-
ume in brain regions implicated in MDD phenotypes among a sample of psychiatrically
healthy women, and is associated with the presence of probable MDD in a large clinical data-
set. Future investigations may identify specific inflammatory markers predicting first MDD
onset.

Introduction

Major depressive disorder (MDD) is heterogeneous. Accordingly, focusing on intermediate
phenotypes (endophenotypes) can be useful to identify more homogenous subgroups of
patients sharing common pathophysiology and allow better integration with animal work.
Among the most established depressive endophenotypes are anhedonia, stress sensitivity
and executive function deficits (Hasler et al., 2004; Goldstein and Klein, 2014; Pizzagalli,
2014). Notably, the increasing availability of large medical databases that can be mined
opens new avenues for investigating depressive phenotypes with respect to key pathophysio-
logical variables (Howard et al., 2018).

Growing evidence suggests that chronic, low grade inflammation may induce changes that
increase risk for MDD (Miller et al., 2013). In particular, animal studies indicate that
pro-inflammatory cytokines [e.g. interleukin-6 (IL-6)] and acute phase reactants [e.g.
C-reactive protein (CRP)] have downstream effects, resulting in ‘sickness behaviors’ such as
social withdrawal, reduced food consumption and deficits in hippocampal-dependent memory
(Dantzer et al., 2008; Iwata et al., 2016; Menard et al., 2017; Wang et al., 2018). Furthermore,
elevated concentrations of pro-inflammatory cytokines have been reported in MDD (Dowlati
et al., 2010), predicted disease severity (Valkanova et al., 2013) and de novoMDD onset (Pasco
et al., 2010) in longitudinal studies, and modulated responses to treatment (Lindqvist et al.,
2017). Conversely, and highlighting bidirectional influences, depression has been shown to
predict subsequent increases in inflammation (Stewart et al., 2009), which could partly explain
the recurrent nature of MDD.

Numerous studies have shown that peripheral inflammation negatively impacts neuronal
structure and function, causing neurodegeneration and impeding neuroplasticity (Calabrese
et al., 2014) through complex interactions with stress, endocrine and neurotransmitter func-
tion (Anisman and Merali, 2003). Studies employing the rodent chronic social defeat stress
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paradigm have identified increases in central and peripheral bio-
markers of inflammation (Gao et al., 2019; Niraula et al., 2019),
whereas ex vivo imaging studies have found increases in volume
in nucleus accumbens (NAc) and cingulate cortex, and decreases
in ventral tegmental area and amygdala associated with stress
response (Anacker et al., 2016). While the mechanisms that medi-
ate volume changes accompanying exposure to stressors remain
largely unknown, negative relationships between inflammatory
markers and brain volume have emerged in humans, particularly
in the hippocampus (Marsland et al., 2008; Frodl et al., 2012; van
Velzen et al., 2017) – one of the main sites for neurogenesis. This
is interesting given the effects of stress and MDD on hippocam-
pus volume (Belleau et al., 2019) and meta-regression findings
highlighting a correlation between number of MDD episodes
and decreasing hippocampal volume (Videbech and Ravnkilde,
2004; see also Treadway et al., 2015). Bringing this together, stud-
ies are beginning to show associations between endogenous
inflammation and brain volume in the hippocampus, caudate,
amygdala and anterior cingulate cortex (ACC) – regions critically
implicated in the pathophysiology of MDD (Savitz et al., 2013;
van Velzen et al., 2017).

In humans, substantial evidence for a causal link between the
administration of exogenous inflammatory stimuli and the emer-
gence of depressive symptoms can be gleaned from (1) studies
involving administration of inflammatory challenges, such as
Interferon (IFN)-α treatment for hepatitis C (Bonaccorso et al.,
2002) or malignant melanoma (Musselman et al., 2001) and vac-
cinations (Kuhlman et al., 2018), and (2) experimental adminis-
tration of endotoxin in healthy individuals (Eisenberger et al.,
2010). Relevant to the current study, a role of striatal dopamine
emerged in an IFN-α multi-modal imaging study highlighting
decreased dopamine turnover in striatal regions in response to
reward, which correlated with depressive symptoms (Capuron
et al., 2012).

In addition to structural alterations, inflammation was also
shown to impact neural function in MDD. In particular, Dooley
et al. (2018) highlighted four endophenotypes of MDD that
were affected by experimentally induced inflammation (1) exag-
gerated reactivity to negative information, (2) increased physio-
logical stress reactivity, (3) increased amygdala responses to
social threat, and (4) abnormal reward processing, in particular
reduced ventral striatal activation during both anticipation
(Eisenberger et al., 2010) and consumption (Capuron et al.,
2012; Treadway et al., 2017) of rewards. In a recent functional
magnetic resonance imaging (fMRI) study from the sample pre-
sented here, we found that stress-induced IL-6 elevations pre-
dicted disrupted reward prediction errors in the ventral striatum
(Treadway et al., 2017). This endophenotypic approach to exam-
ining inflammation emphasizes the importance of understanding
its effects on neural structures supporting motivation, affect and
cognition, which can be studied in healthy populations to uncover
potential mechanisms explaining how inflammation might confer
risk for MDD.

The goal of the current study was two-fold. In Study 1, we
evaluated whether individual differences in low-grade inflamma-
tion [as assessed by baseline IL-6 (as well as CRP)] were asso-
ciated with volumetric differences in brain regions consistently
linked to (1) the effects of inflammation on brain function or
structure and (2) phenotypes related to the pathophysiology of
MDD, particularly stress regulation and reward/motivation. In
Study 2, we leveraged advances in digital medical records and
machine learning to derive the presence of MDD in a large

clinical dataset, and thereby, test for putative differences in
inflammation between patients with v. without probable lifetime
MDD and whether inflammation was a predictor of probable
MDD classification while accounting for other variables. Based
on the literature reviewed above, we hypothesized that increased
inflammation in healthy females would be associated with
decreased brain volume in the hippocampus, amygdala, ACC,
and striatum. Furthermore, we predicted that elevated levels of
inflammation from longitudinal medical records would be linked
to probable lifetime MDD classification. This work starts with
mechanistic data on the effect of inflammation in brain regions
previously implicated in depressive phenotypes and reinforces
this with medical record data supporting the effect of chronic
inflammation on probable lifetime MDD incidence.

Method

Study 1: structural MRI study

Participants
A total of 88 right-handed psychiatrically healthy female partici-
pants took part in a larger study that included separate sessions
involving a behavioral acute stress manipulation (Admon et al.,
2017) and an fMRI study (Treadway et al., 2017). Only females
were recruited to avoid potential sex differences in stress response
(Kudielka and Kirschbaum, 2005), an important aspect of the
overall study (Admon et al., 2017). Participants were excluded
for any current or past psychiatric disorder or for five or more
lifetime exposures to any recreational drugs (see online
Supplementary Methods), as well as any use of any drug or herbal
supplement with well-characterized psychotropic effects in the
past 3 weeks.

Procedure
Participants were tested in two separate sessions between 11:00
A.M. and 4:00 P.M. to reduce potential circadian effects on
endogenous cortisol (Blascovich et al., 2011). At the first session,
participants completed an acute laboratory stressor (the
Maastricht Acute Stress Test, MAST; Smeets et al., 2012; data
reported in Admon et al., 2017). After this first session, partici-
pants were asked to return within ∼1 month (mean days = 25,
S.D. = 21) to complete session 2, which included an fMRI scan
(reported in Treadway et al., 2017), as well as a high-resolution
anatomical scan.

Plasma collection and IL-6 analysis
To evaluate IL-6 levels in session 1, plasma samples were drawn
intravenously three separate timepoints in relation to the acute
stressor: at −10 min (before stressor), +45 min following stressor
and +90 min following stressor (for full details, about the plasma
sampling procedure, see Treadway et al., 2017). Only the
pre-stress samples were analyzed in order to probe relationships
between baseline low-grade inflammation and brain volume
(and maximize sample size since all participants with plasma
samples provided the first sample).

All assays were performed at the Clinical and Epidemiologic
Laboratory (CERLab) within the Department of Laboratory
Medicine at Boston Children’s Hospital. IL-6 was assessed using
an ultra-sensitive enzyme-linked immunosorbent assay (ELISA;
R&D Systems, Minneapolis, MN) employing the quantitative
sandwich enzyme immunoassay technique. The assays were run
in duplicate, and it was essential that all assays had an inter-assay
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covariance of less than 10%. No IL-6 measurements were
excluded due to samples falling outside this predetermined
range. The assay had a sensitivity of 0.094 pg/ml, and the average
inter-assay coefficient of variation was 7.8%. Based on prior find-
ings (e.g. Treadway et al., 2017; Dooley et al., 2018), IL-6 was our
primary inflammatory variable; however, CRP was also assayed to
directly link to Study 2.

MRI acquisition and preprocessing
MRI data were acquired at the McLean Imaging Center using a 3T
Siemens Tim Trio scanner with a 32-channel head coil. The MRI
protocol included high-resolution T1-weighted MPRAGE images
(TR = 2200 ms; TE = 1.54 ms; FOV = 230 mm; matrix = 192 ×
192; resolution = 1.22 mm3; 144 slices). MRI analysis was carried
out using the Computational Anatomy Toolbox (CAT12) (http://
www.neuro.unijena.de/cat/) voxel-based morphometry (VBM)
module, developed for SPM12 (Wellcome Department of
Cognitive Neurology). VBM data were pre-processed as follows:
(1) spatial registration to a standard brain template, (2) tissue seg-
mentation into gray and white matter and CSF, (3) bias correction
of intensity nonuniformities, and (4) smoothing (8 mm3). For
structural MRI, gray matter volumes were extracted from a priori
defined regions of interest (ROIs) previously linked to MDD
pathophysiology and inflammatory responses: amygdala, hippo-
campus, and ACC. In addition, exploratory analyses were con-
ducted on volumes of striatal nuclei: caudate nucleus, putamen
and NAc. All ROI masks were defined anatomically using the
neuromorphometrics atlas (Bakker et al., 2015) as implemented
in CAT.

Statistical analysis
For all ROIs, bilateral volume was considered since we had no lat-
erality hypotheses. Baseline IL-6 scores were positively skewed,
and thus, a log (ln) transformation was used. Potential relations
between ROI gray matter volumes and ln-transformed IL-6 levels
were examined using Pearson’s correlation in R (R Development
Core Team, 2013), separately per region. Spearman’s correlation
was also examined to assess monotonic relationship between
the variables (on untransformed data). Correction for multiple
comparisons (six ROIs) was applied using the Bonferroni method
(p = 0.05/6 = 0.0083).

Study 2: biobank study

Participants
Samples and health information were obtained from the Partners
HealthCare Biobank, a biorepository of consented patients’ samples
at Partners HealthCare (parent organization of Massachusetts
General Hospital and Brigham and Women’s Hospital, Boston,
USA). The Partners Biobank provides banked samples and
laboratory test results collected from patients in Massachusetts
who consented to broad-based research. In addition, these test
results are linked to clinical data from the Electronic Medical
Record (EMR) and survey data on lifestyle, environment, and
family history. At time of writing (December 2018), 93 908
patients had provided consent to join the Partners Biobank.
De-identified patient data were downloaded using the Biobank
Portal, a secure web-based tool that links consented subjects
from the Partners Biobank with their healthcare data from the
EMR and with research data. Data were extracted from the
Partners Biobank on 6 December 2018. Patients were included
in the analysis if they had at least one CRP serum test result

(see online Supplementary Table S2). Participants were consid-
ered to be inflamed if their serum CRP level was above 3 mg/l,
in accordance with the accepted norm (Pearson et al., 2003;
Bell et al., 2017), and as used in other studies of MDD (Uher
et al., 2014; Köhler-Forsberg et al., 2017).

The phenotype of interest in Study 2 categorizes biobank par-
ticipants into two groups: (1) those with probable lifetime MDD
and (2) those without probable lifetime MDD. Curated disease
population validated phenotypes defined by bioinformatics algo-
rithms were used to define existence of lifetime MDD at 0.90 posi-
tive predictive value. The calculation of these phenotypes is
described in Gainer et al. (2016). Briefly, these phenotypes use
an analysis file of concepts including potential positive and nega-
tive predictors of the disease. These predictors consist of a com-
bination of both coded terms (e.g. prescription of an
antidepressant drug) and terms extracted from the narrative
data using natural language processing and validation with
chart reviews (e.g. the phrase ‘major depression’). An adaptive
LASSO penalized logistic regression method identified weighted
predictive variables for the algorithm (see online Supplementary
Table S3). Most importance was placed on how the variables
together in the algorithm could predict the phenotypes, rather
than the accuracy of any one variable. Finally, a logistic regression
model assigned each biobank participant a probability of having a
phenotype based on their values for each term. In development,
these predictive values were evaluated in a subsample of a gold-
standard patient training set using full chart review by a clinical
expert (see online Supplementary Table S4). In addition, com-
puted phenotypes were similarly used to define probable lifetime
existence of chronic inflammatory conditions so that patients with
these conditions could be excluded from the analysis. Information
on body mass index (BMI) and smoking history, which have been
each linked to increased inflammation (Bazzano et al., 2003;
Nicklas et al., 2004), were also downloaded for inclusion as
covariates in regression analyses.

Statistical analysis
The biobank data were analyzed first using non-parametric statis-
tics [Mann–Whitney U test in R (R Development Core Team,
2013)] when the dependent variables (CRP lab count, mean
CRP levels) were skewed. Data were also analyzed using logistic
regression in R (R Development Core Team, 2013) when the
dependent variable was binary (lifetime MDD). Tests were
aimed to examine the relationship between probable lifetime
MDD and elevated CRP.

Results

Study 1: structural variability and mean IL-6 levels

A total of 53 participants had both IL-6 and structural MRI data.
As summarized in Table 1, Pearson’s correlations between
ln-transformed baseline IL-6 levels and gray matter volume
revealed significant negative correlations in the bilateral hippo-
campus (Pearson’s r =−0.38, p = 0.005), caudate (r = −0.34,
p = 0.01) and putamen (r =−0.41, p = 0.002). These findings
remained significant when using non-parametric Spearman’s
rank correlations. Thus, increased IL-6 was robustly associated
with reduced gray matter in these regions. For the amygdala,
the correlation was trending (r = −0.25, p = 0.07), whereas no
findings emerged for the NAc and the ACC (all ps > 0.1). The
hippocampus and putamen findings survived Bonferroni
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correction. To more directly link to Study 2 analyses were also run
with CRP and results were broadly similar to the findings with
IL-6 (Fig. 1) (see online Supplementary Table S6).

Study 2: biobank CRP and curated disease populations

A total of 12 589 (13.1%) of biobank participants had at least one
CRP lab result. A total of 2541 (20.2%) met the criteria for prob-
able current or past MDD (lifetime MDD). In this sample with at
least one CRP lab result, at least one chronic inflammatory con-
dition was probable in 8441 (67.1%) participants, consisting of
77.9% who met the criteria for lifetime MDD and in 60.1% of
those who did not meet the criteria for probable lifetime MDD
(χ2(1) = 277.88, p < 0.0001) (Fig. 2). See online Supplementary
Table S5 for frequencies of the nine identified inflammatory
conditions.

A χ2 test was performed to examine the relationship between
probable lifetime MDD and probable lifetime occurrence of the
chronic inflammatory medical conditions, yielding a significant
effect, χ2(8) = 114.51, p < 0.001 (n = 8441). An examination of
the residuals and the top three contributions to the overall χ2

score suggested that patients with lifetime MDD were more likely
to have lifetime asthma (28.3% of total χ2 score) and T2 diabetes
(17.3% of total χ2 score) and less likely to have Crohn’s disease
(12.5% of total χ2 score), compared to patients without lifetime
MDD.

To test the relationship between moderate inflammation and
MDD, we first completed analyses for the full sample [n = 12
589, with 20.2% (n = 2541) with lifetime MDD] and then repeated
the analysis excluding participants with any of the above chronic
inflammatory medical conditions, bringing our sample to n =
4148 [13.5% (n = 560) with lifetime MDD]. Next, to examine
the differences in lifetime inflammation in the MDD v. no
MDD group across all available lab results for a given patient,
we considered both mean CRP levels and also the count of all
CRP labs that met the cut-off for inflammation (>3 mg/l) for
each patient. The data showed a strong positive skew (Fig. 3a, b)
and therefore non-parametric statistics were used to compare the
groups (lifetime MDD v. no MDD).

For the full dataset a Mann–Whitney–Wilcoxon test indicated
that the distributions of the count of elevated CRP labs (>3 mg/l)
was different for participants with probable lifetime MDD (n =
2541) v. without (n = 10 048) lifetime MDD, W = 11 345 000,
p < 0.001 (Fig. 3c, d). There were no significant differences in
the distributions of mean CRP level across the two groups
(p = 0.26). For the reduced dataset (i.e. excluding patients with

probable lifetime chronic inflammatory medical conditions), a
Mann–Whitney–Wilcoxon test indicated that the distributions
of the count of elevated CRP labs (>3 mg/l) was also different
for participants with (n = 560) v. without (n = 3588) lifetime
MDD, W = 899 650, p < 0.001. Again, there were no significant
differences in the distributions of mean CRP level across the
two groups (p = 0.20).

Regression analyses
Smoking history was available for 9129 (72.5%) of participants in
the full sample. Lifetime smoking was defined as the inverse of the
classification ‘Tobacco use – never’ and includes those partici-
pants with tobacco use classified as ‘yes’, ‘passive’, ‘quit’. BMI
information was available for the full sample and two categories
were classified: those with a BMI ever reaching overweight
(>25) or those with a BMI ever reaching underweight (<18.5).
Minimum sample size for logistic regression with five predictors
and 20.2% proportion of MDD participants was calculated as
247. The full sample was partitioned into training (60%, n =
5478) and testing (40%, n = 3651) datasets to allow for subsequent
model validation. Logistic regression on the training dataset with
a likelihood ratio test revealed that a model including the count of
CRP labs >3 mg/l predicted probable MDD classification signifi-
cantly better than a baseline model including only sex, lifetime
smoking and low/high BMI (χ2(6) = 12.86, p < 0.001). In this
model, for each additional instance of inflammation (CRP lab
of >3 mg/l) the predicted odds of being classified with MDD
change by a factor of 1.02 (Fig. 4). The addition of mean CRP
level as a predictor also significantly improved the model
(χ2(7) = 4.33, p = 0.04). Examining the absolute value of the
t-statistic for each predictor in the full model (sex + lifetime smok-
ing + low/high BMI + count of elevated CRP labs + mean CRP
level), sex was the most important predictor of probable MDD
classification (t = 8.55), followed by high BMI (t = 8.21), tobacco
use (t = 6.19), low BMI (t = 5.17), count of elevated CRP labs
(t = 3.71) and finally mean CRP level (t = 2.04). A Wald χ2 deter-
mined that inflammation was a significant individual predictor of
probable MDD classification (F(1,5471) = 13.81, p < 0.001) and
mean CRP level was also a significant individual predictor of
probable MDD classification (F(1,5471) = 4.14, p = 0.04). Model
estimates from the training set were then used to predict values
on the testing set. A comparison of the predicted target variable
v. the observed values for each observation showed a classification
rate of 78.5%.

The logistic regression was then repeated for the reduced data-
set (n = 4148). This was again reduced by smoking history being

Table 1. Correlation of VBM calculated gray matter volume with log transformed baseline IL-6

Region of interest
Pearson’s
correlation p Value

Spearman’s
correlation p Value

Hippocampus −0.38 0.005a −0.32 0.02

Amygdala −0.26 0.06 −0.18 0.20

Anterior cingulate cortex −0.22 0.12 −0.22 0.12

Caudate nucleus −0.34 0.01 −0.27 0.05

Nucleus accumbens −0.08 0.55 −0.07 0.61

Putamen −0.41 0.002a −0.39 0.004a

Note: All ROIs bilateral.
aMeets Bonferroni correction for multiple comparisons (threshold for α < 0.05 and six tests = 0.008). N = 53.
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available for 2809 (67.7%) of participants in the reduced sample.
BMI information was available for the full sample. Minimum
sample size for logistic regression with the same number of
predictors but only 13.5% proportion of MDD participants was
calculated as 370. The sample was also partitioned into training
(60%, n = 1687) and testing (40%, n = 1122) datasets. Logistic
regression on the training dataset with a likelihood ratio test
revealed that a model including the count of CRP labs >3 mg/l
showed a trend to predict probable MDD classification better
than a baseline model including only sex, lifetime smoking and
low/high BMI (χ2(6) = 3.55, p = 0.06). In this model, for each add-
itional instance of inflammation (CRP lab of >3 mg/l) the pre-
dicted odds of being classified with MDD change by a factor of
1.03 (Fig. 4). The addition of mean CRP level as a predictor did
not significantly improve the model in this reduced sample
(χ2(7) = 1.49, p = 0.22). Examining the absolute value of the
t-statistic for each predictor in the full model (sex + lifetime
smoking + low/high BMI + count of elevated CRP labs), sex was
the most important predictor of probable MDD classification
(t = 4.53), followed by high BMI (t = 3.76), tobacco use
(t = 3.69), low BMI (3.54) and finally count of elevated CRP

labs (t = 2.01). AWald χ2 determined that, in this reduced sample,
inflammation was still a significant individual predictor of prob-
able MDD classification (F(1,1681) = 4.03, p = 0.04). Sex did not sig-
nificantly moderate the effect of inflammation on probable MDD
classification (all ps > 0.38). Model estimates from the training set
were then used to predict values on the testing set. A comparison
of the predicted target variable v. the observed values for each
observation showed a classification rate of 84.5% in this reduced
sample. Thus, although power and significance were diminished
in this reduced sample, inflammation was still a noteworthy pre-
dictor of probable MDD classification.

Discussion

An integration of approaches – including structural imaging and
mining of medical records – was used to examine potential
mechanisms linked to the role of inflammation in the onset and
maintenance of MDD and possible inflammatory laboratory indi-
cators of increased risk for MDD. Here, we observed that
increased inflammation was associated with reduced gray matter
volume in regions previously linked to endophenotypes

Fig. 1. Correlation of VBM calculated gray matter volume with ln-transformed baseline IL-6. Correlations shown for (a) hippocampus (left ROI shown for illustration,
bilateral used for analysis), (b) amygdala, (c) caudate nucleus, (d ) putamen. All ROIs are bilateral.
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underlying the pathophysiology of MDD (Treadway and
Pizzagalli, 2014), in particular stress regulation (e.g. hippocam-
pus), anhedonia (striatum) and threat reactivity (amygdala).
Furthermore, we leveraged a large clinical database to show the
predictive relationship between increased lifetime occurrences of

elevated inflammation and lifetime incidence of probable MDD,
which was established using complex phenotypes emerging
from longitudinal medical records using machine-learning
approaches. Genome-wide association study data have been
used to explore genetic relations between phenotypes for

Fig. 2. Flowchart of participants for biobank analysis.

Fig. 3. Distribution of CRP measures: (a) mean CRP level; (b) proportion of probable lifetime MDD in the full dataset (n = 12 589; dotted lines) and in the dataset
excluding chronic inflammatory medical conditions (n = 4148; sold lines).
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psychiatric and inflammatory conditions, with an emergent
genome-wide correlation between hypothyroidism and MDD
(Tylee et al., 2018). However, no study has, to our knowledge, uti-
lized a large database of clinical records and machine-learning
computed phenotypes to probe this relationship in an unselected
community sample. In Study 1, significant negative correlations
emerged between inflammation (measured from serum IL-6)
and brain volume in regions linked to MDD endophenotypes
and disease course. The hippocampus, in particular, is implicated
in the downstream effects of chronic inflammation (Calabrese
et al., 2014), as one of the few regions implicated in neurogenesis
(Balu and Lucki, 2009; Kempermann et al., 2018), which may be
impeded directly by inflammatory cytokines (Koo and Duman,
2008). These findings may provide new insights into how inflam-
mation may trigger depressive symptoms through detrimental
effects on neurogenesis or neuroplasticity in regions implicated
in stress regulation (e.g. hippocampus), anhedonia (e.g. caudate)
and threat reactivity (e.g. amygdala), either directly or through
promotion of glucocorticoid secretion after stress (Goshen et al.,
2008). This adds to growing literature implicating chronic inflam-
mation in the onset of neural abnormalities implicated in stress
response and MDD, strengthening previous preclinical findings
(Dantzer et al., 2008).

For Study 2, a large clinical dataset was available, with curated
disease populations using a validated machine-learning generated
phenotype for probable MDD (Partners Biobank, Massachusetts)
and linked lifetime medical records. This enabled analysis of life-
time data on laboratory measurements of inflammatory markers
to be associated with classification in terms of this MDD pheno-
type. We found that the number of instances of elevated inflam-
mation followed a different distribution between the group
classified with v. without probable lifetime MDD so that the
MDD group showed a higher probability of elevated inflamma-
tion than the non-MDD group. In addition, regression analyses
revealed that the number of instances of elevated inflammation
and mean levels of an inflammatory marker were highly signifi-
cant predictors of MDD, even when controlling for typical predic-
tors such as sex, smoking and BMI. Although prior research
implicates chronic inflammation in the onset of MDD, we also
examined inflammation in the absence of any chronic inflamma-
tory condition. As expected, the relationship was not as strong in
this reduced sample (though, still significant for count of elevated

CRP but not mean CRP). However, even when excluding those
with chronic inflammatory medical conditions, number of
instances of elevated inflammation still significantly predicted
probable MDD classification. This provides evidence for low-level
moderate inflammation as a potential risk factor for MDD, and is
consistent with prior findings indicating that the hazard ratio for
de novo cases of MDD increased by 44% for each standard devi-
ation increase in CRP (Pasco et al., 2010). Note, however, that the
cross-sectional nature of our data prevents any conclusions with
respect to causality. It is possible that the machine-learning algo-
rithms may have classified those showing risk factors for inflam-
matory disease but without a full diagnosis. However, it is a
strength of the study that even after removal of these participants,
the relationship between inflammation and probable MDD
persisted.

Limitations of the study include the cross-sectional design of
the MRI study, which does not allow us to test the directionality
of the relationship between inflammation and gray matter
volume. Despite preclinical evidence of detrimental effects of
inflammation on neurogenesis (Koo and Duman, 2008;
Zunszain et al., 2012; Dinel et al., 2014; Borsini et al., 2017), we
acknowledge that the causal relationship between reduced gray
matter volume and increased inflammation may work in the
opposite direction (i.e. reduced volume could be causal for
inflammation). Similarly, the nature of the biobank means that
lifetime timeframes will not be equivalent across participants.
Additionally, the CRP lab test group contains individual lab
tests that originated at different institutions, which likely intro-
duced variability and sub-optimal cross-site standardization.
However, in such a large dataset, such effects likely wash out.
Despite previous links between (1) inflammation and (2) struc-
tural MRI findings in the ACC (van Velzen et al., 2017) and
fMRI findings in the NAc (Treadway et al., 2017), there were
no effects of mean inflammation on ACC or NAc volume. This
may be because the prior fMRI findings were associated with
stress-induced changes in IL-6 rather than baseline or chronic
levels. In addition, the effects of inflammation on reward-related
activation and neurodegeneration/neurogenesis may not follow a
common pathway (e.g. through effects on dopamine compared
to effects on oxidative stress). To tease apart the directionality
of effects, future work should examine the effects of inflammation
on gray matter volume before and after a prolonged inflammatory

Fig. 4. Probability of MDD classification as a function of count of elevated CRP labs. (a) Full dataset (training, n = 1687). (b) Dataset excluding chronic inflammatory
medical conditions (training, n = 5478).
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challenge (e.g. IFN-α treatment). We also acknowledge that our
baseline measurements of IL-6 and CRP in Study 1 do not directly
show chronic inflammation; moreover, since these measurements
were taken in a single session, we cannot comment whether they
reflect an acute or chronic inflammatory state. Finally, only
females were recruited for Study 1, limiting generalizability.
Despite these limitations, convergence between findings from
both studies strengthens the association between inflammation
and MDD risk. This information could be used to create models
predicting the onset of MDD from medical data. More fundamen-
tally, the current integration of findings contributes to a better
mechanistic understanding of the hypothesized bidirectional rela-
tionship between inflammation and MDD, and ultimately provide
clues for new targets for treatment and prevention.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291719002940.
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