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Abstract

Background. Depression has been associated with abnormalities in neural underpinnings of
Reward Learning (RL). However, inconsistencies have emerged, possibly owing to medication
effects. Additionally, it remains unclear how neural RL signals relate to real-life behaviour.
The current study, therefore, examined neural RL signals in young, mildly to moderately
depressed – but non-help-seeking and unmedicated – individuals and how these signals are
associated with depressive symptoms and real-life motivated behaviour.
Methods. Individuals with symptoms along the depression continuum (n = 87) were recruited
from the community. They performed an RL task during functional Magnetic Resonance
Imaging and were assessed with the Experience Sampling Method (ESM), completing short
questionnaires on emotions and behaviours up to 10 times/day for 15 days. Q-learning
model-derived Reward Prediction Errors (RPEs) were examined in striatal areas, and subse-
quently associated with depressive symptoms and an ESM measure capturing (non-linearly)
how anticipation of reward experience corresponds to actual reward experience later on.
Results. Significant RPE signals were found in the striatum, insula, amygdala, hippocampus,
frontal and occipital cortices. Region-of-interest analyses revealed a significant association
between RPE signals and (a) self-reported depressive symptoms in the right nucleus accum-
bens (b =−0.017, p = 0.006) and putamen (b =−0.013, p = .012); and (b) the quadratic ESM
variable in the left (b = 0.010, p = .010) and right (b = 0.026, p = 0.011) nucleus accumbens and
right putamen (b = 0.047, p < 0.001).
Conclusions. Striatal RPE signals are disrupted along the depression continuum. Moreover,
they are associated with reward-related behaviour in real-life, suggesting that real-life coupling
of reward anticipation and engagement in rewarding activities might be a relevant target of
psychological therapies for depression.

Introduction

Reduced approach behaviour has long been implicated in mood-related psychopathology
(Lewinsohn and Graf, 1973). A likely neurobiological substrate of such behaviour is dopamin-
ergic (DA) projections in frontostriatal circuits (Schultz et al., 2000; Hamid et al., 2016). A
relevant DA signal is the reward prediction error (RPE) – an increase in neuronal firing
after unexpected rewards (Bayer and Glimcher, 2005) – which is thought to regulate learning
about which cues predict future rewards, leading to cue-motivated approach behaviour.

To measure this signal in humans, laboratory-based reward learning (RL) paradigms can be
administered in which certain cues are probabilistically associated with rewards. The RPE signal
can then be modelled using a computational approach (Sutton and Barto, 1998) to examine,
with functional Magnetic Resonance Imaging (fMRI), wherein the brain activation correlates
with this signal [model-based fMRI (O’Doherty et al., 2007)]. Across many studies in healthy
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controls, RPE signals have been found in the ventral and dorsal
striatum (Chase et al., 2015). Interestingly, studies by Kumar
et al. (2008) and Gradin et al. (2011) report this signal to be
blunted in medicated individuals diagnosed with major depressive
disorder (MDD). However, Rothkirch et al. (2017) did not repli-
cate this finding in unmedicated MDD patients. Hence, it remains
unknown whether blunted striatal RPE signals underlie MDD, or
whether previous findings were confounded by medication use.

A complementary approach to investigating reward-related
behaviour comes from the Experience-Sampling Method (ESM)
(Csikszentmihalyi and Larson, 1987). This method samples affect
and behaviours frequently and in the context of one’s daily life,
thereby revealing how moment-to-moment experiences and
behavioural patterns can interact differently at different stages of
psychopathology (Myin-Germeys et al., 2009; Wichers, 2014).
Interestingly, despite the finding that individuals with depressive
symptoms reported a similar increase in Positive Affect (PA) fol-
lowing a pleasant event (Bylsma et al., 2011; Thompson et al.,
2012, van Roekel et al., 2016), they reported relatively fewer pleas-
ant events (van Roekel et al., 2016), indicating reduced reward
approach behaviour despite intact hedonic reactivity. This latter
finding was extended by Bakker et al. (2017), who found depres-
sive symptoms to be associated with a reduced active behavioural
response following reports of anticipating a pleasurable situation,
despite similar PA responses to active behaviour.

Importantly, even though both neuroimaging and ESM litera-
ture refer to reward-related behaviour and its relevance in MDD
research, the relationship between the two different approaches
has rarely been investigated. Combining ESM and neuroimaging
techniques can illuminate how neural abnormalities might be
manifested in real-world behaviours as well as enrich the con-
struct validity of ESM measures (Wilson et al., 2013). Heller
et al. (2015) showed that the duration of ventral striatal reactivity
to winning money in a fMRI scanner was associated with the
duration of PA increase in response to winning money in a task
performed in the field, showing that neural processes – unfolding
over seconds – and the experience of emotions – lasting minutes –
might be traced back to common pathways. In the context of RL
and real-world behaviour; a prior Positron Emission Tomography
(PET) study in healthy controls found RL-induced striatal DA
release to be associated with daily-life reward-oriented behaviour
(Kasanova et al., 2017). However, the PET paradigm used in
Kasanova et al. (2017) could not separate DA responses to unex-
pected rewards (e.g. RPE) and reward-predicting stimuli. Hence,
the current study will be the first to investigate how model-based
striatal RPE responses relate to behaviour in a real-world context.

In doing so, we focused on an ESM measure hypothesized to
capture a daily-life process related to RPE. Specifically, since the
RPE involves a clear anticipatory component, it was examined
how a momentary report of looking forward to a situation in
the future (i.e. the anticipation of something pleasant) was related
to the subsequent report of enjoyment of being engaged in an
activity (∼90 min later). A higher association between these time-
lagged measures could be an indication that one is better able to
predict a pleasurable activity sometime later, or that one is better
able to change behaviour towards pleasant activities following the
anticipation of reward. Both processes are possible results from
intact stimulus-response learning processes, which is assumed
to be driven by adequate RPE signals.

In sum, reduced Positive Valence System function, and specif-
ically impaired model-based fMRI RPE signals, could be import-
ant in MDD. In this context, the current study aims to add insight

into two unanswered questions; first, it is unclear how RPE-
related neural activity might be disrupted along the continuum
of depressive symptoms in the absence of antidepressant treat-
ments. Second, little is known about how RPE brain signals trans-
late into daily-life reward dynamics. Hence, the current study
examined – in a sample of non-help-seeking and unmedicated
individuals along the depression continuum (up to moderate
severity) – the association between RPE brain activity and depres-
sive symptoms as well as a relevant ESM measure.

Methods

Participants

A total of 132 young adults (age 16–25) were included between
September 2013 and January 2017 as part of the SMARTSCAN
study – a randomized controlled trial examining the effect of psy-
chotherapeutic training on daily life functioning and neurobio-
logical correlates, conducted at Maastricht University Medical
Centre (Dutch Trial Register nr.: NTR3808). Since the current
paper focuses on a small part of the SMARTSCAN baseline,
only procedures relevant to the current analyses will be discussed.

Participants reporting symptoms along the depression
continuum were recruited from the general population via adver-
tisements in public places and social media. Individuals with sub-
threshold symptoms of depression [Mild/Moderate Depression
(m/m-D) group: n = 81] were oversampled by specifically includ-
ing those with a Montgomery–Åsberg Depression Rating Scale
[MADRS (Montgomery and Åsberg, 1979)] total score of 10 or
higher, unless they received current psychiatric/psychological
treatment or had a significant need for care as assessed by a
psychiatrist. Participants with a MADRS score below 10 [No/
Low Depression (n/l-D) group: n = 51] were included, unless
they reported current and/or lifetime psychological/psychiatric
treatment or a psychiatric diagnosis [as assessed with the Mini
International Neuropsychiatric Interview – MINI, (Overbeek
et al., 1999)]†1. Overall, participants were excluded based on
MRI contraindications (e.g. metal implants, pregnancy, claustro-
phobia, neurological disorders) or being left-handed.

The Medical Ethics Committee of Maastricht University
Medical Centre approved all study procedures (protocol number:
NL41929.068.12 / METC 12-2-072), and all participants provided
written informed consent (additionally signed by their proxy if
age<18).

Procedure

Study procedures are summarized in Fig. 1a. Depressive symp-
tomatology was assessed with an interviewer-rated [MADRS
(Montgomery and Åsberg, 1979)] and a self-report [Inventory
of Depressive Symptomatology (IDS-SR); Rush et al., 2009)]
scale, since it has been established that each can measure unique
aspects of depression (Uher et al., 2007; Uher et al., 2012).
MADRS score was measured both at the inclusion (first) and
scan (second) sessions, and IDS-SR was collected only at the scan-
ning session.

Reinforcement learning task

The task was adapted from Gold et al. (2012, see Fig. 1b). On each
trial, participants had to select one stimulus in one of three pairs

†The notes appear after the main text.
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of stimuli (gain, loss or neutral; 80 trials per condition).
Participants were instructed to find out, within each pair, which
stimulus was ‘better’ most of the time based on the feedback
received after each selection (Gain:+€0.20 v. no gain; Loss: no
loss v. −€0.20; Neutral: no monetary outcome but written feed-
back, ‘Correct’ v. ‘Incorrect’). Selection of the better picture (opti-
mal choice) resulted in a better outcome in 70% of trials; the other
stimulus of the same pair associated with the optimal outcome in
30% of trials. Stimuli were presented side by side; the position of
the stimuli was counterbalanced across trials. Conditions were
pseudo-randomly ordered within 4 blocks of 60 trials (i.e. 20 trials
per condition per block, total duration: ∼24 min). The current
paper focuses only on gain trials, but the other two conditions
were modelled in the imaging analyses (see below).

MRI data acquisition and processing

Data acquisition
MRI scans were acquired using a 3T Siemens Magnetom Prisma
scanner at the Scannexus facilities, Maastricht, the Netherlands.
See the Supplemental Materials for details.

Processing
For each individual, functional data were slice-time corrected, rea-
ligned to the mean image, co-registered to the anatomical image
and normalized to 2 × 2 × 2 MNI space and smoothed with a
4 mmGaussian kernel using the Statistical Mapping software package
(SPM12). See Supplemental Materials for a more detailed description.

ESM procedure and measures

Procedure
Participants carried a dedicated device (the PsyMate©), which
was programmed to emit a signal (‘beep’) at semi-random

moments, within 90 min blocks, between 07:30 and 22:30 (i.e.
10 beeps a day). At each beep, participants completed a brief
beep-questionnaire on the PsyMate© including reports on cur-
rent (positive and negative) mood, (social and physical) context,
daily events and activities, on a seven-point Likert-scale.
Participants were able to fill in the questionnaire up to 10 min
after the initial beep but were asked to fill in the questionnaires
as soon as possible in order to reduce recall bias. All but one
participant carried the device for 15 days (receiving 150
beeps); one participant who was initially included in another
arm of SMARTSCAN but fulfilled criteria for the current
sample, did so for 7 days (receiving 70 beeps). Following earlier
work (Delespaul, 1995), participants who filled in less than 30%
of received beeps were excluded from analyses (excluded: 1 n/
l-D, 1 m/m-D). In addition, subjects who filled in beep-
questionnaires on less than 6 days were also excluded (excluded:
1 m/m-D).

Measures
Two ESM items (see below) were combined in a statistical
model2 in order to form one ESM reward measure, by pre-
dicting the level of activity pleasantness at time t with the
level of reward anticipation at time t-1, thereby indicating
whether higher levels of reward anticipation were followed
by higher levels of activity pleasantness, both actualized as
follows:

Reward anticipation was assessed in two steps: (1) ‘Think
about what you consider to be the most important situation in
the next hour…’ and (2) ‘How much are you looking forward
to this situation?’.

Activity pleasantness was assessed in two steps: (1) ‘Think
about what you were doing right before the beep-signal…’ and
(2) ‘I enjoy doing this’.

Fig. 1. Study and task procedures. (a) Study pro-
cedure. (b) Task procedure, adapted from Gold
et al. (2012). MADRS, Montgomery–Åsberg Depres-
sion Rating Scale (Montgomery and Åsberg,
1979); MINI, Mini International Neuropsychiatric
Interview (Overbeek et al., 1999); IDS-SR, Inventory
of Depressive Symptomatology (Self-Report) (Rush
et al., 2009); RL, Reinforcement Learning; fMRI,
functional Magnetic Resonance Imaging; ESM,
Experience Sampling Method, m/m-D, participants
with moderate symptoms of depression; n/l-D, par-
ticipants with low symptoms of depression. 1One
participant only carried the device for 7 days
since initially included in another arm of the
SMARTSCAN study.
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Analyses

RL task – behaviour
A standard Q-learning algorithm was used to calculate the
expected value of, and prediction error after, each choice
(Sutton and Barto, 1998). Additionally, it was tested how well
the RL model fitted the observed data relative to chance (see
Supplement for more detailed information).

Associations with depressive symptoms were examined by
regressing total MADRS and IDS-SR scores with a model-fit
measure (pseudoR2) and learning parameters.

RL task – imaging
First-level general linear models included 19 regressors which
were convolved with a hemodynamic response function: cue
and feedback onsets of gain, loss and neutral trials (6 regressors);
parametric modulation of cue and feedback onset times (only gain
and loss condition) by model-derived expected value and predic-
tion error respectively (4 regressors); cue and feedback onsets of
non-response trials (2 regressors); six motion realignment para-
meters and a constant term (7 regressors). A linear contrast of
the regression coefficient of RPE was computed at the individual
level and resulting contrast images were taken to conduct within-
subject t test. Whole brain analyses across all subjects were run
with a cluster-extent based threshold of p < 0.05 FWE with p <
0.001 as the initial cluster-forming threshold.

ROI analyses. Anatomically constrained bilateral putamen and
nucleus accumbens (NAcc) were extracted from a recent meta-
analysis of RPE studies in healthy controls (Chase et al., 2015;
Fig. 2b). These anatomical masks were created from the FSL
Harvard-Oxford subcortical atlas using 40% probability thresh-
old. RPE parameter estimates from these four ROIs were derived
using the REX toolbox (https://www.nitrc.org/projects/rex/).

Association of Reward learning (RPE) signals with depressive
symptoms and a measure of real-life motivated behaviour (mea-
sured using ESM).

Depressive symptoms. As our aim was to investigate RPE-
related neural activity along the continuum of depressive symp-
toms, we adopted a dimensional approach. RPE signals from
each ROI were, therefore, linearly regressed with total MADRS
score and total IDS-SR score using the REGRESS command in
STATA 13.1 (StataCorp, 2013).

ESM. It was examined whether RPE moderated the association
between reward anticipation at time t-1 and activity pleasantness
at time t. ESM data have a hierarchical structure (multiple obser-
vations – Level 1 – are clustered within participants – Level 2).
Multilevel (mixed effects) linear regression analyses take the vari-
ability associated with each level of nesting into account (Snijders
and Bosker, 1999). For these analyses, the MIXED command in
STATA 13.1 (StataCorp, 2013) was used. To control for potential
time trends in the ESM data, analyses controlled also for sampling
time (in days, including two decimals, starting from midnight of
the first sampling day increasing up to the last completed beep
questionnaire) as well as the time within a day (in minutes, start-
ing from midnight that day). Since we were mostly interested in
within-person effects, predictors of the analyses with lagged vari-
ables were person-mean-centred. These models additionally
included the lagged version of the outcome variable in order to
control the effect of the other lagged predictors for the autocorrel-
ation in the dependent variable. The structure of the residual
errors within the lowest-level groups was left to default (i.e. inde-
pendent and identically distributed with one common variance)3.

Lastly, since not all models in which the variance-covariance
matrix of the random effects was set to unstructured (thereby
allowing estimation of all variances and covariances separately)
converged, this structure was set to an identity matrix in which
covariances were assumed to be 0. In addition to a standard max-
imum likelihood approach (using the observed information
matrix to estimate the variance-covariance matrix of the fixed
effects), we ran analyses using the robust Huber–White sandwich
estimator (using subjects as the clustering variable), which is
robust to some types of misspecification of the variance-
covariance matrix (Rogers, 1993). For a complete description of
the models that were tested, see Supplemental Materials.

All analyses controlled for age (in years) and gender. For each
outcome, analyses were corrected for multiple testing of the four
ROIs following the Holm method (Holm, 1979; Aickin and
Gensler, 1996).

Results

Participants

Of the 132 included participants, 114 provided complete data.
After quality checks of behavioural, imaging and ESM data, 87
participants were analyzed (16 excluded for RL task performance,
8 for MRI-related artifacts; 3 for ESM-related inconsistencies, see
online Supplementary Fig. S1). There were no significant differ-
ences in age, gender, total MADRS score at inclusion and
IDS-SR total score4 between analyzed and not analyzed partici-
pants (all ps>0.2). Table 1a summarizes sociodemographic and
clinical characteristics of the final sample (n = 87; n/l-D = 37
and m/m-D = 50). The groups did not differ significantly in
age, gender or education (all ps>0.10). As expected, groups dif-
fered significantly in their depression severity as measured by
interview (MADRS, both at inclusion ( p < 0.001) and scan ( p <
0.001) sessions) and self-report (IDS-SR, at scan session, p <
0.001), as well as average levels of daily-life reward anticipation
( p < 0.001) and activity pleasantness ( p < 0.001), with the m/
m-D group reporting more symptoms and lower levels of the
ESM items.

RL task performance and model fitting

Participants with optimal choice accuracy on the gain trials ⩽55%
were excluded from further analyses since it could not be ascer-
tained whether they were engaged in the task (excluded: 6 n/
l-D, 10 m/m-D). Depressive symptoms (interview and self-report)
were not associated with average reaction time, the number of
non-responses, average optimal choice accuracy or the total
amount of money won on gain trials (all ps>0.2; Table 1b).

Additionally, depressive symptoms (interview and self-report)
were not associated with model-fit-measures nor learning para-
meters (all ps>0.2; Table 1c). See online Supplementary Fig. 2
for choice probabilities predicted by the computational model.
For the fMRI analyses, a fixed alpha was chosen and a learning
model was fitted with a single set of parameters (Pessiglione
et al., 2006; Daw, 2011). Specifically, we used averaged estimates
of alpha calculated across all subjects during reward (alpha: 0.2).

fMRI

Replicating previous results, across all subjects significant RPE
clusters were found in the dorsal and ventral striatum extending
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to the amygdala, cingulate gyrus, frontal cortex, inferior parietal
lobule (Garrison et al., 2013; Chase et al., 2015) as well as in
the hippocampus and precuneus (see Fig. 2a and online
Supplementary Table S1).

ROI analyses indicated that average activity in all four regions
(bilateral NAcc and putamen) was significantly correlated with
model-based RPE signals (see online Supplementary Table S3
and Fig. 2c) across all subjects.

Associations of RPE from each ROI with depression symptoms

None of the associations between RPE signals in each of the ROIs
and MADRS total score were significant (all ps>0.20). However,
the association between RPE and IDS-SR total score was signifi-
cant for the right putamen (b =−0.13, p = 0.009) and right
NAcc (b =−0.017, p = 0.010), indicating decreased RPE-related
striatal activity in participants with higher self-reported depres-
sion scores (see Table 2 and Fig. 2d).

Associations of RPE from each ROI with the ESM reward
measure

See Supplemental Materials for details on beep questionnaire
response rates.

ROI RPEs did not significantly moderate the linear relation
between reward anticipation and activity pleasantness (all
ps>0.10). However, after visual inspection of the data, it seemed
that a non-linear relation between reward anticipation and activity
pleasantness might be a better fit. Hence, post-hoc analyses were
performed examining the moderating role of ROI RPE on the
quadratic association between reward anticipation and activity
pleasantness, yielding significant results for the left NAcc (b =
0.031, p = 0.010), right NAcc (b = 0.026, p = 0.011) and right puta-
men (b = 0.047, p < 0.001). In other words, the association
between reward anticipation (squared) at time t-1 and activity
pleasantness at time t (on average 90 min later) depended on
how well brain activity followed the model-derived RPE signal,
with an increased association between these time-lagged ESM

Fig. 2. fMRI results and correlations between RPE and self-reported depressive symptoms. (a) Active clusters during Reward Prediction Error (average over the
whole group). (b) Regions of Interest, extracted from Chase et al. (2015). (c) Mean activation per Region of Interest for each participant. (d) Scatterplots of RPE
beta weight and IDS-SR total score for the right Nucleus Accumbens and Putamen. L, left; R, right; NAcc, Nucleus Accumbens; RPE, reward prediction error;
IDS-SR, Inventory of Depressive Symptomatology (Self-Report).
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Table 1. Demographic and clinical descriptive information (a); Information regarding behavioural performance on the Reward Learning task (b); and computational modelling output (c)

m/m-D (n = 50) n/l-D (n = 37)
Group difference

(95% CI)

Association (coef, 95% CI) with

MADRS IDS-SR

(a) Demographic information and MADRS scores.

Age: mean, S.D., range 20.7 (2.3) 16–25 21.1 (1.7) 18–25 [−0.5 to 1.3]

Sex: female, n (%) 41 (82) 31 (84) [−1.3 to 1.0]

Education: high, n (%) 42 (84) 35 (95) [−2.8 to 0.4]

MADRS total score: mean, S.D., range

At interview 16.3 (3.9) 10–26 1.5 (2.0) 0–8 [13.4–16.3]*

At scan 13.9 (5.0) 2–27 1.6 (2.1) 0–9 [10.6–14.0]*

IDS-SR total score: mean, S.D., range 23.4 (10.1) 5–42 6.2 (4.4) 0–20 [13.7–20.7]*

(b) RL task performance (gain trials only): mean, S.D., range

RT (ms) 925 (127) 612–1194 903 (157) 601–1385 [−83 to 38] 0.89 [−3.25 to 5.04] .46 [−2.11 to 3.02]

Non-responses 1.12 (2.16) 0–14 1.05 (2.01) 0–7 [−0.97 to 0.84] 0.01 [−0.06 to 0.07] .018 [−0.02 to 0.06]

Optimal choice accuracy 0.83 (0.13) 0.56–0.99 0.84 (0.14) 0.56–1.00 [−0.04 to 0.07] 6.41 × 10−5 [−3.95 × 10−3 to 3.82 × 10−3] −1.21 × 10−3 [−3.60 × 10−3 to 1.17 × 10−3]

Money won 9.89 (1.00) 7.20–11.40 9.85 (1.22) 6.60–11.20 [−0.51 to 0.44] 7.58 × 10−3 [−2.46 × 10−3 to 3.97 × 10−3] −5.48 × 10−3 [−0.03 to 0.01]

(c) Model fit measures: mean, S.D., range

LLHmodel −24.98 (15.86) −52.54–−0.69 −23.41 (16.67) −51.48 to −0.69 [−5.42 to 8.55] 2.0 × 10−3 [−0.48 to 0,47] −0.13 [−0.42 to 0,17]

AICa 53.96 (31.72) 5.39–109.07 50.83 (33.33) 5.39–106.96 [−17.10 to 10.85] 4.05 × 10−3 [−0.95 to 0.96] 0.26 [−0.33 to 0.84]

BICb 58.69 (31.71) 10.05–113.84 55.56 (33.31) 10.15–111.72 [−17.10 to 10.84] 3.91 × 10−3 [−0.95 to 0.96] 0.26 [−0.33 to 0.84]

PseudoR2c 0.54 (0.29) 0.04–0.99 0.57 (0.31) 0.03–0.99 [−0.10 to 0.16] 7.42 × 10−5 [−8.92 × 10−3 to 8.77 × 103] −2.51 × 10−3 [−7.95 × 103 to 2.94 × 10−3]

Parameters: mean, S.D., range

Learning Rate (α) 0.20 (0.22) <0.01–0.90 0.26 (0.18) <0.01–0.71 [−0.02 to 0.15] −2.96 × 10−3 [−9.00 × 10−3 to 3.07 × 10−3] 2.67 × 10−4 [−3.49 × 10−3 to 4.03 × 10−3]

Temperature (β) 0.20 (0.22) <0.01–>0.99 0.25 (0.25) <0.01–>0.99 [−0.05 to 0.15] −4.43 × 10−3 [−1.12 × 102 to 2.39 × 103] −1.40 × 10−4 [−4.40 × 10−3 to 4.12 × 10−3]

(d) ESM variables: mean, S.D._b, S.D._w, range

Reward anticipation 4.60 (0.63, 1.62) 1–7 5.25 (0.64, 1.32) 1–7 [−0.92 to −0.38]* −0.05 [−0.07 to −0.03]* −0.03 [−0.04 to −0.02]*

Activity pleasantness 4.98 (0.54, 1.53) 1–7 5.41 (0.53, 1.22) 1–7 [−0.65 to −0.20]* −0.03 [−0.05 to −0.02]* −0.02 [−0.03 to −0.01]*

S.D., standard deviation; S.D._b, between subjects standard deviation; S.D._w, within subjects standard deviation; n, number of participants; MADRS, Montgomery-Åsberg Depression Scale; IDS-SR, Inventory of Depressive Symptomatology – Self-Report;
RL, Reward Learning; RT, reaction time, ms, miliseconds; m/m-D, group of participants included based on the report of moderate symptom severity; n/l-D, group of participants included based on the report of low depressive symptom severity, CI,
confidence interval, LLH, log-likelihood.
*p < 0.001.
aAIC: Akaike Information Criterion, calculated as −2 × LLH + 2 × k, where k is the number of parameters (k = 2).
bBIC: Bayesian Information Criterion, calculated as −2 × LLH + log(t) × k, where t is the number of trials (depends on how many responses a subject gave on the task) and k is the number of parameters (k = 2).
cPseudoR: calculated as -(LLHmodel-LLHchance)/LLHchance. LLHchance = log(0.5) × t, where t is the number of trials.
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variables for higher brain RPE-related activity levels. These results
remained significant when using a robust – but more rigorous –
estimation of the standard errors of the effects (see Table 2 and
Fig. 3).

Exploratory analyses examined whether ROI RPE mean activa-
tions were associated with the individual ESM items that com-
prised the ESM measure of interest (reward anticipation and
activity pleasantness). No significant associations were found for
any of the ROIs (all ps>0.05, see Table 2).

Discussion

The current study found that RPE signals in the right putamen
and nucleus accumbens correlated with self-reported depression
severity suggesting that individuals with higher depression sever-
ity scores exhibit lower striatal RL signals. Second, although
RPE-related brain activity in these areas did not moderate the
lagged linear association between reward anticipation and activity
pleasantness, quadratic effects emerged. Specifically, RPE-related
brain activity in the putamen (right) and NAcc (left and right)
moderated the lagged relation between quadratic reward anticipa-
tion and activity pleasantness. This suggests that a lower striatal
RPE signal during a laboratory-based RL task was associated
with increased decoupling between real-life enjoyment of activ-
ities and previous anticipation of pleasure (possibly akin to a
real-life prediction error). Collectively, these findings reveal an
association between how the brain processes RPEs under abstract
and controlled circumstances and how much people change their
behaviour towards pleasant activities following the anticipation of
reward during day-to-day life.

Striatal RPE and depressive symptomatology

The current paper used a dimensional approach, with which we
found significantly reduced striatal activation during unexpected
rewards with increasing self-reported depression severity, which
complements previous case-control analyses (Kumar et al.,
2008; Gradin et al., 2011; Robinson et al., 2012). This is of interest
since there is an on-going debate regarding the discreteness of
MDD (Hankin et al., 2005; Prisciandaro and Roberts, 2009;
Ruscio et al., 2009). Our findings indicate that striatal RPE is
blunted with increasing depression severity, and is not a discon-
tinuous, abrupt process emerging with an MDD diagnosis.

A recent study suggested that earlier findings regarding altered
RPE signals in MDD might have been due to medication use
(Rothkirch et al., 2017). However, this cannot explain the di-
mensional association with depressive symptoms we found in
our non-help-seeking and unmedicated sample. Since MDD is
a very heterogeneous disorder (Sharpley and Bitsika, 2013;
Zimmerman et al., 2015) and different symptoms are present dur-
ing different stages of the disorder (Rakofsky et al., 2013), it is
possible that clinical heterogeneity is partially responsible for
inconsistent findings. We, therefore, advocate for better sample
characterization and report sample averages per symptom in the
supplementary materials.

It is important to note that we found a significant association
between striatal RPE signal and depressive symptoms, only when
the latter was assessed with a self-report measure (IDS-SR) and
not with an interview-administered scale (MADRS). This discrep-
ancy likely stems from the fact that self-report and interview
assessments in general measure slightly different things (Uher
et al., 2007; Fantino and Moore, 2009; Uher et al., 2012).Ta

b
le

2.
As
so
ci
at
io
ns

be
tw

ee
n
m
ea
n
ac
ti
va
ti
on

in
R
N
Ac
c
an

d
P
ut
am

en
an

d
re
w
ar
d-
re
la
te
d
ES

M
m
ea
su
re
s
(c
on

tr
ol
le
d
fo
r
ag

e
an

d
ge
nd

er
,
an

d
th
e
ES

M
an

al
ys
es

al
so

fo
r
ov
er
al
l
ti
m
e
of

m
ea
su
re
m
en

t,
ti
m
e
of

m
ea
su
re
m
en

t
w
it
hi
n
th
e
da

y)

Sy
m
pt
om

m
ea
su
re

L
N
Ac
c

L
P
ut
am

en
R
N
Ac
c

R
P
ut
am

en

be
ta

(S
.E
.)

p
be

ta
(S
.E
.)

p
be

ta
(S
.E
.)

p
be

ta
(s
e)

P

M
AD

R
S

−
0.
00
3
(0
.0
09
)

0.
75
0

−
0.
00
1
(0
.0
08
)

0.
81
6

−
0.
01
1
(0
.0
10
)

0.
26
8

−
0.
00
9
(0
.0
08
)

0.
26
7

ID
S-
SR

−
0.
01
2
(0
.0
06
)

0.
03
7

−
0.
00
7
(0
.0
05
)

0.
17
7

−
0.
01
7
(0
.0
06
)

0.
01
0*

−
0.
01
3
(0
.0
05
)

0.
00
9*

ES
M

m
ea
su
re

L
N
Ac
c

L
P
ut
am

en
R
N
Ac
c

R
P
ut
am

en

be
ta

(S
.E
. M

L)
–
(S
.E
. ro

b
)

p M
L

p r
o
b

be
ta

(S
.E
. M

L)
–
(S
.E
. ro

b
)

p M
L

p r
o
b

be
ta

(S
.E
. M

L)
–
(S
.E
. ro

b
)

p M
L

p r
o
b

be
ta

(S
.E
. M

L)
–
(S
.E
. ro

b
)

p M
L

p r
o
b

Re
w
ar
d
an

ti
ci
pa

ti
on

.0
39

(0
.1
53
)
–
(0
.1
83
)

0.
79
9

0.
83
2

−
0.
09
5
(0
.1
77
)
–
(0
.1
58
)

0.
59
4

0.
55
0

0.
10
7
(0
.1
43
)
–
(0
.1
78
)

0.
45
3

0.
54
7

0.
12
8
(0
.1
70
)
–
(0
.1
59
)

0.
45
1

0.
42
1

Ac
ti
vi
ty

pl
ea
sa
nt
ne

ss
.0
70

(0
.1
07
)
–
(0
.1
17
)

0.
51
2

0.
54
8

0.
01
5
(0
.1
24
)
–
(0
.1
27
)

0.
90
3

0.
90
5

0.
11
4
(0
.1
00
)
–
(0
.1
14
)

0.
25
4

0.
31
5

0.
18
8
(0
.1
18
)
–
(0
.1
06
)

0.
11
0

0.
07
6

Ac
ti
vi
ty

pl
ea
sa
nt
ne

ss
(t
)

←
Re

w
ar
d
an

ti
ci
pa

ti
on

(t
-1
)

qu
a

0.
03
1
(0
.0
12
)
–
(0
.0
13
)

0.
01
0*

0.
01
6*

0.
01
9
(0
.0
15
)
–
(0
.0
17
)

0.
20
5

0.
25
7

0.
02
6
(0
.0
10
)
–
(0
.0
11
)

0.
01
1*

0.
01
6*

0.
04
7
(0
.0
12
)
–
(0
.0
15
)

<0
.0
01
*

0.
00
1*

lin
0.
02
5
(0
.0
26
)
–
(0
.0
26
)

0.
32
6

0.
34
0

0.
00
9
(0
.0
30
)
–
(0
.0
33
)

0.
75
3

0.
77
3

0.
03
3
(0
.0
22
)
–
(0
.0
24
)

0.
13
8

0.
16
6

0.
00
4
(0
.0
28
)
–
(0
.0
35
)

0.
87
6

0.
90
0

Al
lE

SM
pr
ed

ic
to
rs

w
er
e
pe

rs
on

-m
ea
n-
ce
nt
er
ed

.M
od

el
s
w
it
h
ti
m
e-
va
ry
in
g
pr
ed

ic
to
rs

in
cl
ud

e
ra
nd

om
sl
op

es
of

th
os
e
pr
ed

ic
to
rs

(in
cl
.q

ua
dr
at
ic
va
ri
ab

le
s)
.M

od
el
s
w
it
h
la
gg

ed
pr
ed

ic
to
rs

in
cl
ud

e
th
e
la
gg

ed
ou

tc
om

e
as

a
pr
ed

ic
to
r.
L,
le
ft
;R

,r
ig
ht
;N

Ac
c,

N
uc
cl
eu

s
Ac
cu
m
be

ns
;
M
AD

R
S,

M
on

tg
om

er
y–
Ås
be

rg
D
ep

re
ss
io
n
Sc
al
e;

ID
S-
SR

,
In
ve
nt
or
y
of

D
ep

re
ss
iv
e
Sy
m
pt
om

at
ol
og

y
–
Se

lf-
Re

po
rt
;
S.
E.
,
st
an

da
rd

er
ro
r;
p,

p
va
lu
e;

S.
E.
M
L,
st
an

da
rd

er
ro
r
es
ti
m
at
ed

us
in
g
st
an

da
rd

lo
g-
lik
el
ih
oo

d
pr
oc
ed

ur
e;

S.
E.
ro
b
,

st
an

da
rd

er
ro
r
es
ti
m
at
ed

us
in
g
th
e
ro
bu

st
H
ub

er
–W

hi
te

sa
nd

w
ic
h
es
ti
m
at
io
n
pr
oc
ed

ur
e;

p M
L,
p
va
lu
e
of

ef
fe
ct

ba
se
d
on

th
e
lo
g-
lik
el
ih
oo

d
st
an

da
rd

er
ro
r
es
ti
m
at
io
n;

p r
o
b
,
p
va
lu
e
of

ef
fe
ct

ba
se
d
on

ro
bu

st
H
ub

er
–W

hi
te

sa
nd

w
ic
h
es
ti
m
at
io
n;

qu
a,

qu
ad

ra
ti
c
(r
ef
er
ri
ng

to
ti
m
e-
la
gg

ed
qu

ad
ra
ti
c
ef
fe
ct

of
re
w
ar
d
an

ti
ci
pa

ti
on

on
ac
ti
vi
ty

pl
ea
sa
nt
ne

ss
;
lin

,
lin

ea
r
(r
ef
er
ri
ng

to
ti
m
e-
la
gg

ed
lin

ea
r
ef
fe
ct

of
re
w
ar
d
an

ti
ci
pa

ti
on

on
ac
ti
vi
ty

pl
ea
sa
nt
ne

ss
).

*I
nd

ic
at
es

a
si
gn

ifi
ca
nt

p
va
lu
e
af
te
r
co
rr
ec
ti
on

fo
r
m
ul
ti
pl
e
te
st
in
g
fo
llo

w
in
g
th
e
H
ol
m

m
et
ho

d
(H
ol
m
,
19
79
;
Ai
ck
in

an
d
G
en

sl
er
,
19
96
),
co
rr
ec
ti
on

pe
rf
or
m
ed

w
it
hi
n
ea
ch

ro
w

of
th
e
ta
bl
e.

Psychological Medicine 2447

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033291718003446
Downloaded from https://www.cambridge.org/core. Harvard-Smithsonian Centerfor Astrophysics, on 10 Oct 2019 at 13:37:58, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0033291718003446
https://www.cambridge.org/core


However, the scales also differ in their contents. For example,
whereas the MADRS includes only two items related to the
Positive Valence System (PVS; ‘Inability to feel’ and ‘Lassitude’),
the IDS-SR assesses similar concepts in four items (‘Response
of mood to good/desired events’, ‘General interest’, ‘Energy
level’, ‘Capacity for pleasure/enjoyment’). The latter might, there-
fore, be more sensitive to variations in specific sub-domains of

PVS functioning. Future research should include measures devel-
oped to specifically measure different PVS domains [e.g., the
Temporal Experience of Pleasure Scale (Gard et al., 2006)].

Lastly, the reduced striatal activation during unexpected re-
wards with increasing self-reported depression severity was not
accompanied by a decreased average learning performance. That
is, average optimal choice accuracy was not associated with
depression severity. This discrepancy in associations of neural
and behavioural data of the same task could be due to several rea-
sons. One option we explored is that individuals with more symp-
toms of depression (and reduced neural PE-related striatal
activation) learn slower, but that the task was long enough for
these individuals to ‘catch up’. Indeed, a post-hoc analysis exam-
ining whether the cumulative choice accuracy (i.e. per trial, the
percentage of optimal choices of all trials up to that trial) differs
for different depression levels resulted in a significant quadratic
effect ( p < 0.001) characterized by a less steep (quadratic) learning
curve for increasing depression severity (online Supplementary
Fig. 4). Again, this effect was only visible for IDS-SR and not
for MADRS scores.

Striatal RPE and a measure of real-life reward-related
behaviour

The current study fits within the relatively recent approach to
combine neuroimaging techniques with real-world psychological
experiences. However, it is the first to examine a computational
model-based brain signal in this context. Previous work on
reward-processing in depression showed that striatal activation
during anticipation and receipt of rewards was associated with a
daily life measure of PA in a group of depressed adolescents
(Forbes et al., 2009). This finding was replicated in healthy con-
trols (Forbes et al., 2010). These reports added significant eco-
logical validity to other imaging studies reporting reduced
striatal activity during reward anticipation (Smoski et al., 2009;
Gotlib et al., 2010; Olino et al., 2014) and reward receipt
(McCabe et al., 2009; Pizzagalli et al., 2009; McCabe et al.,
2012; Sharp et al., 2014) in individuals, and offspring of indivi-
duals, currently or previously diagnosed with MDD.

Recent research suggests that, in the context of mood-related
psychopathology, neural RPE processing might be a relevant
measure in addition to these more static reward-processing mea-
sures (Rutledge et al., 2014; Eldar et al., 2016). By investigating a
dynamic ESM measure, i.e., how two variables are related over
time, we were able to gain insight into which real-life processes
are related to the striatal RPE signal. Evolutionary theories pose
that goals for behaviour are specified by reward and punishment
evaluation (Rolls, 1999), hence forming the basis for flexible
(approach and avoidance) behaviours. The assumption is that
flexible approach behaviour requires learning to recognize stimuli
signalling potential rewards, followed by a cost-benefit analysis,
possibly leading to a change in behaviour. Our ESM data show
that, on average, people do report taking more pleasure in their
activity when earlier they reported looking forward to a future
situation.

However, in our sample, this was more so the case in indivi-
duals whose striatal activation more closely followed the model-
derived RPE signal. Interestingly, the relevant interaction was
only found with a quadratic association between daily life reward
anticipation and activity pleasantness. This was characterized by
lower striatal PE-related activity being associated with more
decoupling between the two constructs only at higher levels of

Fig. 3. Simple slopes to illustrate significant moderating effects of RPE beta weight of
three ROI’s on the time-lagged association between Reward anticipation and Activity
pleasantness, at three levels of the RPE beta weight (group average, and 2 standard
deviations below/above this group average). R, right; L, left; NAcc, Nucleus
Accumbens; EMM, estimated marginal mean; WP, within-person; S.D., standard devi-
ation; RPE, Reward Prediction Error; ROI, Region of Interest
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reward anticipation. This could indicate that these individuals
might be less able to change their behaviour following the recog-
nition of a cue highly predictive of reward, which would be in line
with experimental findings by Sherdell et al. (2012) indicating
that liking and motivation are dissociated in individuals with
MDD. Another option for this quadratic effect could be that
these individuals are limited by reduced reward sensitivity and
thus, even though they might have changed their behaviour fol-
lowing the highly predictive cues, they were not able to like the
activity as much as individuals with less blunted striatal PE errors.
Since mood affects reward sensitivity (Eldar and Niv, 2015), the
role of mood in the brain-daily life associations reported in
the current paper will have to be investigated more closely in
the future.

Gaining more insight into real-life dynamics could ultimately
lead to the refinement of psychotherapeutic interventions aiming
at normalizing PVS dysfunction, [e.g., Craske et al. (2016)]. Our
results suggest that a focus on increasing the coupling of reward
anticipation and engagement in pleasing activities might be a rele-
vant target, for example with the use of experience sampling inter-
ventions. On an individualized basis, individuals could be made
aware of what disrupts this coupling by reviewing, with the help
of a professional, their own data after a week of ESM (similar to
Kramer et al., 2014). More advanced technology could addition-
ally be used to provide real-life prompts to teach people to reduce
this decoupling, for example by providing motivating messages
following the report of reward anticipation.

Limitations

The results should be interpreted in the context of certain limita-
tions. First, the current ESM design could not ascertain whether
anticipated (at t-1) and reported (at t) pleasure referred to the
same activities/situations [as was done in (Wu et al., 2016)].
This was a conscious choice as otherwise we would influence
the participant’s mood and/or behaviour (asking whether one
actually performed what one was anticipating could make one
aware of the failure, or change behaviour in order to avoid this
failure). As our goal was to investigate whether, in general, an
increase in activity pleasantness is preceded by an increase in
reward anticipation this issue did not affect our aims.

Second, even though studies show that depression might be
dimensional in nature (Liu, 2016), it cannot be assumed that
our ESM-fMRI association results generalize to clinical samples.
Additionally, sub-threshold symptoms are known to be diffuse
(van Os, 2013), hence sub-threshold comorbidities are a concern.

Third, the current probabilistic RL task was adapted from a
purely behavioural version. It, therefore, has several shortcomings,
including the fact that the timings of the response and feedback
overlapped, possibly confounding the RPE signal with motor-
related activity. However, the pattern of whole-brain RPE results
was comparable with previous meta-analyses (Garrison et al.,
2013; Chase et al., 2015), which provides reassurance. In addition,
after a win or a loss the total amount of winnings was updated (so
that people could keep track of their progress), but only at the
start of the next trial. This prevented us from analysing the neural
correlates of model-based expected value – which might be rele-
vant in MDD (Gradin et al., 2011) – as these signals may be con-
founded by the effects of feedback.

Fourth, the cut-off for performing at chance level was set at
55%, which is an arbitrary limit. This cut-off was decided a priori
to ensure the inclusion of compliant participants. Only three

participants had accuracy scores between 50 and 55%, and their
inclusion in the analyses did not affect the significance of the
results. Additionally, the task was rather long (∼24 min) and
was part of a larger protocol including additional tasks. Hence,
it is unclear whether participants performing below chance did
so because of alterations in neural RPE mechanisms, fatigue or
general reluctance to comply with instructions in order to finish
more quickly. Owing to this design, we had to exclude a substan-
tial number of participants due to potential task non-compliance.
However, included and excluded participants did not differ in
demographic or clinical variables. Future studies would benefit
from including a post-scan questionnaire probing how motivated
participants felt during the scan-session.

Notes
1 One participant developed depressive symptoms during participation in the
study. The SMARTSCAN protocol had a mirrored design (two similar meas-
urement moments). Hence, only data of this participant of the second-time
point were included in the current analyses as part of the m/m-D group.
2 Activity_Pleasantness (t)ij = α0i + β1i Reward_Anticipation (t−1)ij + β2i
Activity_Pleasantness (t−1)ij + ϵij
3 Assuming and estimating an AR structure allowing for unequally spaced
time values does not affect the significance of the results.
4 Since IDS-SR scores were collected at the second measurement, only data of
120 participants were available.
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