The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial Prefrontal Cortex Morphology

Emily L. Belleau, Michael T. Treadway, and Diego A. Pizzagalli

ABSTRACT

Volumetric reductions in the hippocampus and medial prefrontal cortex (mPFC) are among the most well-documented neural abnormalities in major depressive disorder (MDD). Hippocampal and mPFC structural reductions have been specifically tied to MDD illness progression markers, including greater number of major depressive episodes (MDEs), longer illness duration, and nonremission/treatment resistance. Chronic stress plays a critical role in the development of hippocampal and mPFC deficits, with some studies suggesting that these deficits occur irrespective of MDE occurrence. However, preclinical and human research also points to other stress-mediated neurotoxic processes, including enhanced inflammation and neurotransmitter disturbances, which may require the presence of an MDE and contribute to further brain structural decline as the illness advances. Specifically, hypothalamic-pituitary-adrenal axis dysfunction, enhanced inflammation and oxidative stress, and neurotransmitter abnormalities (e.g., serotonin, glutamate, gamma-aminobutyric acid) likely interact to facilitate illness progression in MDD. Congruent with stress sensitization models of MDD, with each consecutive MDE it may take lower levels of stress to trigger these neurotoxic pathways, leading to more pronounced brain volumetric reductions. Given that stress and MDD have overlapping and distinct influences on neurobiological pathways implicated in hippocampal and mPFC structural decline, further work is needed to clarify which precise mechanisms ultimately contribute to MDD development and maintenance.

Keywords: Depression, Hippocampus, Illness progression, Medial prefrontal cortex, Neuroprogression, Stress

https://doi.org/10.1016/j.biopsych.2018.09.031

Major depressive disorder (MDD) is frequently a chronic progressive illness. Approximately 60% of individuals with MDD will experience recurrent episodes, and each successive episode carries a 10% to 20% risk of failing to remit with current therapeutic approaches (1). While several neural pathways have been linked to the development and recurrence of depression, the hippocampus and medial prefrontal cortex (mPFC) have been repeatedly implicated in the pathophysiology and progression of this illness (2,3).

In this review, we examine clinical and preclinical data pointing to the pivotal role of stress in the development of hippocampal and mPFC abnormalities in depression and a chronic (often treatment-refractory) course of the disorder. Based on existing evidence, we propose a model (Figure 1) by which chronic/severe life stress can trigger the initial development of mPFC and hippocampal volume reductions. However, these reductions are neither necessary nor sufficient for inducing a major depressive episode (MDE). On the other hand, stress also instigates other neurotoxic processes (hypothalamic-pituitary-adrenal [HPA] axis dysregulation, inflammation, oxidative stress, and neurotransmitter disturbances) that interact and may drive the development of a chronic type of MDD marked by further reductions in hippocampal and mPFC volumes. Expanding on recent conceptualizations, we highlight how each of these stress-linked neurotoxic processes has been related to hippocampal and mPFC structural aberrations and the development of persistent courses of depression.

HIPPOCAMPUS AND mPFC VOLUME REDUCTIONS: CAUSE VERSUS CONSEQUENCE OF MDD?

MDD is phenomenologically, etiologically, and pathophysiologically highly heterogeneous. Consequently, identifying reliable biological or imaging markers has been significantly more challenging than anticipated. One exception has been structural imaging of the hippocampus and mPFC; several meta-analyses have demonstrated that relative to healthy control individuals (HCs), those with MDD show reduced hippocampus and mPFC volumes, including dorsal and ventral mPFC portions extending into the medial orbital frontal cortex as well as rostral and dorsal portions of the anterior cingulate cortex (2,4–14). These meta-analyses have reported moderate effect sizes for reduced hippocampal volume in MDD (Cohen’s d range = −.41 to −.47) (6,8,9). While most studies have examined the whole hippocampus owing to spatial resolution...
limitations, those that have parcellated the hippocampus into different subfields have found evidence for reduced cornu ammonis 1 to 3, dentate gyrus/cornu ammonis 4, and subiculum volumes as well as both anterior and posterior subdivisions in MDD [e.g., (15,16)]. With respect to mPFC volume reductions, small to large effect sizes have been reported (Figure 2). Given that extant meta-analyses have also included portions of the PFC outside of the mPFC, we focused on calculating effect sizes for individual studies that targeted aspects of the mPFC, including the ventral mPFC/medial orbitofrontal frontal cortex, the rostral anterior cingulate cortex/dorsal anterior cingulate cortex, and the dorsal mPFC (Figure 2 and Supplemental Table S1). In addition, these estimates are likely affected by antidepressant use and presence of other psychiatric comorbidities, given that they were not exclusionary in most studies. Notably, longitudinal studies have shown that common antidepressants lead to increases in hippocampus and mPFC volumes (17). Moreover, individuals with MDD and an anxiety disorder were found to have more pronounced mPFC reductions than those with just one disorder (18).

Despite these effects, the volume reduction findings remain significant even when accounting for antidepressant use and common psychiatric comorbidities (5,7,8).

While the presence of hippocampal and mPFC volume reductions in first-onset MDD is mixed (2,7), they have been consistently associated with markers of a progressive course
of MDD characterized by more recurrent episodes/relapses (3,19–25), longer illness duration (24,26–30), and non-
remission/treatment resistance (28,31–38). Importantly, a meta-analysis found that hippocampal volume reduction was
found only in patients who had been depressed for at least 2
years and had more than one episode (2). More critically,
longitudinal work has shown that hippocampal and mPFC
volume reductions become more pronounced when depre-
sive symptoms do not remit (35,38). These findings suggest
that hippocampal and mPFC volume reductions may be a
selective marker for the propensity toward and/or the conse-
quence of episodic recurrence. However, contrary to this,
several other studies have found that these structural changes
may reflect a preexisting vulnerability to an MDE, particularly
for individuals with certain genetic profiles and/or early life
stress (ELS) histories (39–45).

Interestingly, a preclinical longitudinal study involving a
chronic mild stress model of depression attempted to directly
address the cause/consequence debate (46). This study found
that both resilient rats and susceptible rats exhibiting a
depressive phenotype were characterized by reduced hippo-
campal cell proliferation. In addition, among the susceptible
rats, the development of depressive behaviors occurred prior
to reductions in hippocampal cell proliferation (46). These
results contradict both cause and consequence hypotheses of
hippocampal abnormalities in MDD. Instead, this study sug-
gests that hippocampal changes result from stress and are
likely independent of MDE development. Consistent with this
hypothesis, other preclinical work has demonstrated similar
stress-related microstructural changes in the hippocampus in
both resilient mice and mice exhibiting depressive behavior
(47). In addition, longitudinal human imaging work has high-
lighted that greater baseline life stress was associated with the
development of smaller hippocampal volumes 3 months later
in a sample of HCs (48). A possible explanation for these
seemingly contradictory findings may be that chronic stress
drives initial hippocampal and mPFC abnormalities, but other
risk factors need to be present (e.g., genetic, abnormal phys-
iological response to stress) for development of an MDE.
Moreover, possibly via the upregulation of stress-induced
neurotoxic processes (e.g., inflammation, oxidative stress),
further hippocampal decline occurs among individuals who
develop chronic MDD. While the presence of hippocampal and
mPFC damage alone might not be sufficient for inducing an
MDE, recent work has shown that the induction of long-term
potentiation within the hippocampus is sufficient to generate
antidepressant effects (49). Thus, abnormalities within these
structures may nevertheless contribute to the maintenance or
exacerbation of depressive symptoms (see Table 1 for a cause
vs. consequence debate synopsis).

**STRESS AND HIPPOCAMPAL/mPFC VOLUME
REDUCTION IN MDD**

Two classes of stress-related models, the stress sensitization
and stress autonomy models, have been proposed to explain
how relationships between stress and depression change as a
function of illness course. However, while the stress sensitization model hy-
pothesizes that with recurrent episodes of depression more
minor stressors are capable of triggering MDEs, the stress
autonomy model posits that successive MDEs develop inde-
pendent of stressful life events. In support of both models,
prospective studies have found that the likelihood of a severe
stressful life event occurring during the 3 months prior to an
MDE onset was reduced among those with a prior history
of depression compared with those experiencing their first MDE
(51,52). However, more consistent with the stress sensitization
model, these longitudinal studies also found that the likelihood
of an MDE onset increased when nonsevere life stressors were
present during the 3 months prior to the episode among those
with a prior history of depression (51,52).

In addition, cross-sectional research examining the role of
stressful life events in hippocampal and mPFC anomalies in
MDD is supportive of both stress models. A human study
found that a greater number of stressful life events during the 3
months prior to an initial MDE was linked to increased hippo-
campal volume reductions in male individuals with a first MDE
(53). However, a recent study demonstrated that individuals
with a history of multiple MDEs exhibited smaller hippocampal
and mPFC volumes, yet reported less perceived life stress,
than those with fewer episodes (3). This suggests that while
high levels of stress may have an important role in initiating
hippocampal vulnerabilities among individuals with a first MDE,
this relationship may be weaker among those with recurrent
MDEs. However, given the cross-sectional nature of this study,
it is unclear whether the hippocampal declines were driven by
lower stress levels (supportive of a stress sensitization model)
or were occurring independent of stress (supportive of a stress
autonomy model). Future prospective work is needed to clarify
whether hippocampal and mPFC volume decline related to
MDD illness progression is linked to stress-dependent or -in-
dependent mechanisms.

While stress-related models of MDD have historically
focused on relationships between recent life stressors and
MDE onset, researchers have expanded these models to
incorporate ELS. Consistent with the stress sensitization
model, longitudinal research examining relationships among
ELS, recent life stressors, and development of MDEs has
shown that individuals with an ELS history are more prone
to developing an MDE under less amounts of recent life stress
than those without an ELS history (54,55). Further bolstering
connections between ELS and illness progression, a meta-
analysis found that a history of childhood maltreatment was
associated with a greater probability of developing recurrent
and persistent cycles of depression as well as treatment
resistance (56). Imaging studies have also demonstrated that
an ELS history was associated with hippocampal and mPFC
volumetric decline (57–65). Some of these studies have noted
that the relationship may be independent of the presence of
MDD (61,64,65). However, the link between ELS and the
development of chronic courses of depression marked by
greater hippocampal and mPFC damage may be mediated by
the persistent manifestation of neurotoxic processes that are
triggered by even minor stressors. Congruent with this idea,
one study found that individuals with an ELS history, both with
and without an MDD diagnosis, exhibited increased adreno-
corticotropic hormone levels in response to a moderate
A body of human research has supported the hypothesis that hippocampal and mPFC volume reductions occur prior to the onset of depression and ultimately cause a first MDE. However, independent evidence has shown that hippocampal and mPFC deficits are found only among those with a history of major depressive episodes and greater illness progression. Furthermore, a third hypothesis has emerged from preclinical and human research, demonstrating that hippocampal and mPFC deficits are produced by stress and occur irrespective of whether depressive symptomology emerges.

MDD, major depressive disorder; MDE, major depressive episode; mPFC, medial prefrontal cortex.

THE ROLE OF HPA AXIS DYSREGULATION IN STRESS-MEDIATED HIPPOCAMPAL AND mPFC DEFICITS

Animal models have established that prolonged stress can lead to HPA axis hyperreactivity and depressive behaviors along with hippocampal and mPFC abnormalities (68,69). Specifically, excessively high, as well as blunted, glucocorticoid receptor expression has been linked to reduced neurogenesis within the dentate gyrus (69). Higher circulating levels of glucocorticoids have also been shown to cause neuronal atrophy and dendritic retraction within the mPFC (70).

In accordance with the animal literature, a meta-analysis of clinical studies noted that individuals with MDD showed higher basal cortisol levels, particularly in the afternoon when cortisol levels should be dropping (71). However, this meta-analysis highlighted substantial variability in HPA axis functioning in MDD (71). Longitudinal studies have found that both enhanced and blunted cortisol levels predicted MDE recurrence among those with a prior history of MDD (72–74). Similarly, cortisol responses to a laboratory psychosocial stressor in MDD are mixed, with some showing cortisol hyperreactivity and others showing hyporeactivity (75,76).

One of the factors complicating the interpretation of abnormal cortisol levels in MDD is the potential presence of glucocorticoid resistance (77). A lower cortisol output may reflect its bioavailability, or it may be an indicator of reduced responsiveness to the presence of glucocorticoids (77). In addition, even in the presence of cortisol hypersecretion, elevated cortisol may represent an attempt to counteract inflammatory responses in the presence of high glucocorticoid levels (77). Thus, a measure of glucocorticoid expression is also needed to clarify the pathophysiology of HPA axis aberrations leading to MDD-related neural abnormalities. Another confounding factor is antidepressant use, which has been found to reduce HPA axis activity (78). Thus, further research is needed to tease apart which mechanisms may contribute to different aspects of HPA dysregulation in depression.

Relatedly, HPA axis dysregulation has also been associated with hippocampal and mPFC structural abnormalities. Specifically, higher baseline cortisol levels, as well as higher cortisol/dehydroepiandrosterone ratios, have been linked to smaller hippocampal and mPFC volumes among HC and MDD samples (79,80), further highlighting the importance of stress (rather than the presence of MDD per se) in facilitating initial structural damage. Critically, animal models have shown that dehydroepiandrosterone reduces the adverse effects of cortisol on the central nervous system (81), so it is likely important to consider other stress-related hormones when assessing cortisol levels.

However, in addition to these positive findings, several imaging studies in MDD have failed to find associations between cortisol and structural abnormalities (82–87). This may partly reflect evidence supporting the impact of chronic stress and persistent types of MDD on mPFC and hippocampal morphology. Importantly, these studies did not report on levels of life stress prior to neuroimaging assessment. Moreover, none of these studies examined whether relationships between structural deficits and cortisol levels vary as a function of clinical MDD illness progression markers (e.g., number of MDEs, illness duration) of MDD. In addition, given that these studies are cross-sectional, and brain structural changes may occur long after stress exposure, prospective studies are needed to link distinct cortisol trajectories with different life stress profiles, structural deficits, and illness course. This would clarify potential HPA axis–related mechanisms leading to hippocampal and mPFC decline in MDD.

STRESS-MEDIATED INFLAMMATORY PATHWAYS TO HIPPOCAMPAL AND mPFC DEFICITS IN MDD

Another possible stress-related mechanism linking structural changes in the hippocampus and mPFC to MDD illness
progression is inflammation (88). Particularly relevant to this review, animal models have demonstrated that chronic unpredictable stress promotes the production of proinflammatory cytokines in the hippocampus (89) and mPFC (90,91). Moreover, the stimulating effects of peripheral proinflammatory cytokines on brain microglia can result in reduced hippocampal neurogenesis (92). Thus, stress-mediated enhancement of central and peripheral proinflammatory cytokines may contribute to subsequent structural alterations. With respect to connections with MDD, a preclinical chronic stress study demonstrated that mice exhibiting anhedonic behavior (but not stress-resistant mice) showed enhanced inflammation in the mPFC (90). This suggests that some stress-related mPFC and hippocampal inflammatory processes may require the presence of depressive symptomology in addition to stress.

Accordingly, recent imaging studies in individuals with depression have reported enhanced neuroinflammation in the hippocampus and mPFC compared with HCs (93,94). In addition, higher levels of peripheral proinflammatory cytokines, greater expression of inflammation-related genes, and reduced expression of neuroprotective genes all have been associated with greater hippocampal volume decline and mPFC thinning in MDD (95–97). Enhanced peripheral inflammation has also been related to MDD recurrence/relapse, number of episodes, illness duration, and treatment nonresponse (98–100). However, responders to antidepressant treatment showed reduced peripheral inflammation over the course of treatment compared with nonresponders (101).

OXIDATIVE STRESS AS A MECHANISM CONTRIBUTING TO MDD-RELATED BRAIN STRUCTURAL DEFICITS

Closely tied to inflammatory mechanisms, preclinical studies have also demonstrated that chronic stress initiates production of oxidative stress and impairment of antioxidant defense mechanisms in the hippocampus and mPFC (102). This can result in hippocampal and mPFC cellular damage and reduced hippocampal neurogenesis (102), likely contributing to hippocampal and mPFC atrophy. With respect to MDD, increased oxidative stress, lower antioxidant levels, and imbalanced oxidant:antioxidant levels have been well documented within the hippocampus (103,104) and mPFC (104–106), resulting in associated markers of DNA/RNA damage in these regions. While few studies have examined relationships between oxidative stress and brain structural deficits in MDD, one study found that lower antioxidant levels were associated with more pronounced hippocampal volume reductions in MDD (107). Consistent with neural markers of progressive illness, greater oxidative stress, lower antioxidant, and greater oxidative stress-related DNA/RNA damage have been linked to clinical markers of MDD illness progression, including greater chronicity, more MDEs, and treatment resistance (98,108–113). Conversely, response to antidepressant treatment has been shown to normalize the oxidant:antioxidant imbalance seen in MDD (108). Findings to date suggest a psychosocial stress-induced oxidative stress pathway that contributes to hippocampus and mPFC structural deficits in MDD.

SEROTONIN DYSFUNCTION CONTRIBUTES TO BRAIN STRUCTURAL DECLINE AND MDD ILLNESS PROGRESSION

Neurotransmitter disturbances, such as serotonin dysfunction, are likely prominent pathways to illness progression in MDD. Preclinical chronic mild stress models of depression show reduced serotonin concentration, expression, release, and neurotransmission in both the hippocampus and mPFC (114–116). Interestingly, a study comparing stress-resilient mice with mice exhibiting anhedonic behavior noted that stress-elevated expression of serotonin 2A receptors within the mPFC occurred in both groups of mice, whereas additional serotonin transporter elevations occurred exclusively in the depression-susceptible mice (90). This suggests that some stress-related serotonergic abnormalities are independent of the development of depressive behavior, whereas others are specific to anhedonia development.

While the animal literature has demonstrated clear pathways to serotonin dysregulation within specific brain regions that are linked to depressive behaviors, human imaging findings in MDD have been more mixed (117–119). There has been evidence of decreased serotonin 1A receptor messenger RNA levels within the hippocampus of individuals with MDD compared with HCs (117). Conversely, two recent meta-analyses failed to find significant alterations in serotonin transporter binding/availability in the hippocampus and mPFC in MDD (118,119). Discrepancies may be due to clinical heterogeneity, including illness stage, particularly because greater serotonin dysfunction has been described among individuals with MDD who have experienced a greater number of past MDEs (120).

Few studies have examined associations between hippocampal/mPFC volume reductions and serotonin system dysfunction. Recent longitudinal studies have linked smaller hippocampal volumes to MDD onset among individuals with ELS and carrying the S allele of the serotonin transporter gene, which is associated with reduced serotonin uptake (44,45). One of these studies noted that greater parental display of positive behaviors was protective against hippocampal volume reductions among those carrying the S allele. However, these connections have yet to be explored in conjunction with MDD illness progression markers, which is an important area for future research given the connection between greater serotonergic dysfunction and number of MDEs. In addition, more studies are needed to clarify which serotonergic disturbances are consequences of stress that do not necessarily lead to MDD and which ones result in MDD development.

GLUTAMATERGIC CONTRIBUTIONS TO MDD-RELATED BRAIN STRUCTURAL DECLINE

The glutamate system is also highly affected by stress. Chronic stress disrupts glutamate release, glutamate clearance from the synapse, and glutamate transmitter expression, but the direction of the effects is region specific (121). Some studies have reported enhanced chronic stress–related glutamate release and glutamate receptor expression but reduced glutamate clearance/metaabolism in the hippocampus (122,123). A study that directly compared stress-resilient mice with stress-susceptible mice displaying depressive behaviors indicated that enhanced
hippocampal glutamate expression was unique to depression-susceptible mice (122). A different pattern has been described in the mPFC, with some reporting reduced chronic stress-related glutamate receptor expression, which has been speculated as a potential protective mechanism against excessive glutamate signaling and excitotoxicity [e.g., (124,125)]. However, these studies did not examine potential differences between stress-resilient and MDD-susceptible mice. In contrast to these results, reduced glutamate clearance (and thus enhanced accumulation of glutamate in the mPFC) has been shown to produce anhedonic behaviors (126). Accordingly, increased chronic stress-related glutamate expression in the hippocampus and mPFC may be unique to those who develop the depressive phenotype.

With respect to in vivo human imaging work in MDD, magnetic resonance spectroscopy studies have provided evidence of glutamate dysfunction in MDD [e.g., (127,128)]. However, the glutamate measures are primarily intracellular, so it is difficult to interpret relationships with glutamate neurotransmission. In addition, many of these studies have reported on combined glutamate and glutamine metabolite levels or metabolite ratios, further complicating interpretations. In general, studies have found reduced glutamate as well as combined glutamate and glutamine levels in the mPFC and hippocampus in MDD, with individuals who have a more chronic course showing greater declines compared with individuals who are experiencing a first episode (127,128). Reduced glutamate levels may reflect cellular abnormalities associated with decreased glutamate availability resulting from hyperactive glutamate neurotransmission (129). While it has yet to be applied to MDD samples, a human imaging study noted associations between increased extracellular glutamate levels and hippocampal volume reductions (130).

There is also emerging evidence of impaired glutamate–glutamine cycling in the mPFC and hippocampus among those with MDD. Glutamate is produced in neurons from glutamine by glutamase. Astrocytes uptake glutamate once it is released from the synaptic terminal and convert glutamate back to glutamine via glutamine synthase. A preclinical study showed that inhibiting glutamine synthase and glutamine transport in the mPFC led to the development of depressive behavior (131). In addition, another preclinical study showed that enhanced stimulation of glutamate cycling in the mPFC via three different classes of antidepressants was associated with the onset of rapid antidepressant action (132). Several human postmortem studies have also shown reductions in the expression of several components critical to astrocyte function, largely in the mPFC, but also some evidence in the hippocampus, suggesting impaired glutamate–glutamine cycling (133). Together, these findings indicate that glutamate dysregulation likely has a strong role in neural and clinical markers of MDD illness progression.

GAMMA-AMINOBUTYRIC ACIDERGIC DISTURBANCES ASSOCIATED WITH BRAIN STRUCTURAL DECLINE AND CHRONIC MDD

Gamma-aminobutyric acid (GABA) is also likely centrally involved in hippocampal and mPFC abnormalities in MDD (134). With respect to preclinical models of depression, chronic stress has been shown to decrease GABA expression in the hippocampus and mPFC (135,136). Serotonin is known to regulate the GABAergic system (137). Therefore, when the serotonin system is dysregulated, this can contribute to reduced GABAergic inhibitory control, resulting in enhanced glutamate and HPA axis reactivity and ultimately reduced hippocampal neurogenesis (124,138).

Several human magnetic resonance spectroscopy studies have reported lower mPFC GABA levels in MDD (139–141). Reduced mPFC GABA levels in MDD have been associated with smaller hippocampal volumes (139) and treatment resistance.

Figure 3. A stress-mediated neurotoxic pathway leading to chronic major depressive disorder (MDD) hippocampal and medial prefrontal cortex volume reduction. Chronic stress sets off a cascade of neurotoxic processes. The presence of chronic stress triggers dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which can be either enhanced or blunted due to glucocorticoid resistance. This HPA axis dysregulation triggers the immune system, leading to enhanced inflammation (stress can also have a direct effect on inflammation not mediated by the HPA axis). In turn, enhanced inflammation can produce further dysregulation of the HPA axis. Proinflammatory cytokines then activate indoleamine 2,3-dioxygenase (IDO), an enzyme that catabolizes tryptophan, leading to serotonin depletion and the production of kynurenine. Kynurenine can be converted to neurotoxic 3-hydroxykynurenine (3HK) and quinolinic acid, which can increase glutamate release and oxidative stress as well as reduce gamma-aminobutyric acid (GABA) inhibitory control. Dysregulated serotonin levels lead to further reductions in GABA inhibitory control. This reduction in GABA inhibitory control can lead to further glutamate release. With successive major depressive episodes, even minor levels of stress can trigger this pathway, leading to further hippocampal and medial prefrontal cortex volume decline. Genetic risk profiles can also increase vulnerability to chronic stress triggering of these neurotoxic pathways to illness progression and brain structural decline.
Effects of Stress and MDD on Hippocampus and mPFC

(142,143). However, antidepressants known to target the monoaminergic system have also been shown to counteract GABAergic abnormalities (134). This suggests that GABA may have a key role in multiple pathways leading to hippocampal and mPFC structural deficits in MDD and treatment resistance.

A COMMON PATHWAY LEADING TO MDD ILLNESS PROGRESSION–RELATED HIPPOCAMPAL AND mPFC VOLUME REDUCTIONS

Based on the above evidence, it is likely that these neurotoxic processes interact to form multiple pathways leading to hippocampal and mPFC volume decline and MDD illness progression. One possible common pathway involves chronic stress triggering HPA axis dysfunction and enhanced production of cell-mediated immune cytokines, which activate indoleamine 2,3-dioxygenase (68), an enzyme that catabolizes tryptophan, leading to serotonin depletion and production of kynurenine. Kynurenine is then converted to neuroprotective metabolites (kynurenic acid) or neurotoxic metabolites (3-hydroxykynurenine and quinolinic acid) (68). The production of neurotoxic 3-hydroxykynurenine and quinolinic acid leads to increased glutamate and oxidative stress as well as reduced GABA expression. Together, this pathway may trigger hippocampal and mPFC cellular damage and volume reductions (138,144,145). In line with stress sensitization models, with each successive MDE, it may take smaller amounts of stress to trigger these pathways and produce further brain structural decline. ELS and genetic risk profiles may program this vulnerability early on by enhancing psychological and biological reactivity to minor stressful life events (Figure 3). In support of this pathway, a study found that a lower kynurenic acid/quinolinic acid ratio correlated with reduced hippocampal volumes (146). Moreover, both reduced kynurenic acid/quinolinic acid and kynurenic acid/3-hydroxykynurenine ratios partially mediated the relationship between MDD and mPFC cortical thinning (147). In addition, preclinical evidence suggests that neurotoxic dorsal hippocampal kynurenine metabolism may drive depressive behavior when inflammation is enhanced (148).

CONCLUSIONS

The proposed model provides numerous directions for future research. Much of the preclinical literature has focused on the impact of chronic stress on the hippocampus and mPFC without directly comparing animals that did not exhibit depressive behaviors (resilient phenotype) versus those that exhibited depressive behaviors (susceptible phenotype). Those studies that directly compared the two groups have provided some promising leads in identifying which neurotoxic processes affecting hippocampal and mPFC structure are unique to the development of depression. This work can inform which neurotoxic components to target in future prospective studies of MDD and brain structural decline. Prospective studies focusing on at-risk samples by virtue of living in highly stressful environments would address which stress-related neurotoxic processes affecting hippocampal and mPFC structure are relevant to MDD onset and which processes are implicated at different stages of MDD illness. In addition, these studies would clarify temporal relationships among neurotoxic processes, hippocampal and mPFC structural aberrations, and MDD illness progression. This would allow for a more precise identification of stress-related mechanisms signifying biomarkers of MDD, which could lead to more effective treatment targets.

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by a Kaplen Fellowship (Harvard Medical School), an Adam J. Connel Young Investigator Award (McLean Hospital), and a Klingenstein Third Generation Foundation Postdoctoral Fellowship (all to ELB); by National Institute of Mental Health (NIMH) Grant Nos. R01 MH102355 and R01 MH108605 (to MTT); and by NIMH Grant Nos. R01 MH086376, R01 MH101521, R01 MH108602, and R01 MH095809 (to DAP). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

During the past 3 years, MTT has served as a paid consultant to NeuroCog Trials, Avanir Pharmaceuticals, and BlackThorn Therapeutics. Over the past 3 years, DAP has received consulting fees from Akil Interactive Labs, BlackThorn Therapeutics, Boehringer Ingehelm, Post Science, and Takeda Pharmaceuticals for activities unrelated to the current review. No funding from these entities was used to support the current work, and all views expressed are solely those of the authors. ELB reports no biomedical financial interests or potential conflicts of interest.

ARTICLE INFORMATION

From McLean Hospital (ELB, DAP), Belmont, and Harvard Medical School (ELB, DAP), Boston, Massachusetts; and Department of Psychology (MTT), Emory University, Atlanta, Georgia.

Address correspondence to Diego A. Pizzagalli, Ph.D., Center for Depression, Anxiety and Stress Research, McLean Hospital, 115 Mill Street, de Mameffe Building, Room 233C, Belmont, MA 02478; E-mail: dap@mclean.harvard.edu.

Received Apr 6, 2018; revised Jul 25, 2018; accepted Sep 10, 2018.

Supplementary material cited in this article is available online at https://doi.org/10.1016/j.biopsycho.2018.09.031.

REFERENCES

Effects of Stress and MDD on Hippocampus and mPFC

Effects of Stress and MDD on Hippocampus and mPFC

