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Abstract

Background. Major depressive disorder (MDD) is a highly heterogeneous condition in terms
of symptom presentation and, likely, underlying pathophysiology. Accordingly, it is possible
that only certain individuals with MDD are well-suited to antidepressants. A potentially fruit-
ful approach to parsing this heterogeneity is to focus on promising endophenotypes of depres-
sion, such as neuroticism, anhedonia, and cognitive control deficits.
Methods. Within an 8-week multisite trial of sertraline v. placebo for depressed adults (n =
216), we examined whether the combination of machine learning with a Personalized
Advantage Index (PAI) can generate individualized treatment recommendations on the
basis of endophenotype profiles coupled with clinical and demographic characteristics.
Results. Five pre-treatment variables moderated treatment response. Higher depression sever-
ity and neuroticism, older age, less impairment in cognitive control, and being employed were
each associated with better outcomes to sertraline than placebo. Across 1000 iterations of a
10-fold cross-validation, the PAI model predicted that 31% of the sample would exhibit a clin-
ically meaningful advantage [post-treatment Hamilton Rating Scale for Depression (HRSD)
difference ⩾3] with sertraline relative to placebo. Although there were no overall outcome
differences between treatment groups (d = 0.15), those identified as optimally suited to sertra-
line at pre-treatment had better week 8 HRSD scores if randomized to sertraline (10.7) than
placebo (14.7) (d = 0.58).
Conclusions. A subset of MDD patients optimally suited to sertraline can be identified on the
basis of pre-treatment characteristics. This model must be tested prospectively before it can be
used to inform treatment selection. However, findings demonstrate the potential to improve
individual outcomes through algorithm-guided treatment recommendations.

Introduction

Meta-analyses reveal that average differences in depressive symptom improvement between
antidepressant medications [ADMs; most commonly, selective serotonin reuptake inhibitors
(SSRIs)] and placebo are often small (i.e. between-group differences in symptom change of
<3 points on the Hamilton Depression Rating Scale (Hamilton, 1960; Moncrieff et al.,
2004; Kirsch et al., 2008; Fournier et al., 2010; Kirsch, 2015; Jakobsen et al., 2017; Cipriani
et al., 2018)). A potential reason for this modest differentiation is that major depressive disorder
(MDD) is a highly heterogeneous condition in terms of symptom presentation and, likely,
underlying pathophysiology (Wakefield and Schmitz, 2013; Fried and Nesse, 2015a; 2015b;
Baldessarini et al., 2017). Accordingly, it is possible that subsets of depressed individuals
are better suited to SSRIs, whereas others may derive limited benefit. For example, for certain
depressed individuals, the mere passage of time – possibly coupled with the expectation of
improvement – may result in symptom remission (e.g. ‘spontaneous remitters’). Such indivi-
duals may not require SSRIs. Instead a less costly, low-intensity alternative intervention with
minimal or no side effects may be sufficient for symptom remission [e.g. internet-based cog-
nitive behavioral therapy (CBT), which is included in the National Institute for Health and
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Care Excellence Guidelines (NICE, 2018) as an efficacious inter-
vention]. Currently, treatment selection is largely based on
trial-and-error. Approximately 55–75% of depressed individuals
in primary care fail to achieve remission to first-line antidepres-
sants, and 8–40% will switch to at least one other medication
(Rush et al., 2006; Marcus et al., 2009; Schultz and Joish, 2009;
Vuorilehto et al., 2009; Milea et al., 2010; Saragoussi et al.,
2012; Thomas et al., 2013; Ball et al., 2014; Mars et al., 2017).
Identifying predictors of antidepressant response may ultimately
inform the development of algorithms generating personalized
predictions of optimal treatment assignment for clinicians and
patients to consider in their decision-making regarding which
intervention to select.

A range of pre-treatment variables (e.g. baseline clinical,
demographic, and neurobiological characteristics) have been
examined as predictors of SSRI response.1 Perhaps the most well-
supported clinical moderator of SSRI v. placebo response is base-
line depressive symptom severity (Khan et al., 2002; Kirsch et al.,
2008; Fournier et al., 2010). Meta-analyses indicate that in
patients with MDD, lower levels of depressive symptom severity
predicts minimal to no advantage of ADM over placebo, but
that as depression severity increases, so does the magnitude of
the advantage of ADM over placebo (Khan et al., 2002; Kirsch
et al., 2008; Fournier et al., 2010). Other relevant predictors of
greater ADM response include younger age (Fournier et al.,
2009), being female (Trivedi et al., 2006; Jakubovski and Bloch,
2014), higher education (Trivedi et al., 2006), being employed
(Fournier et al., 2009; Jakubovski and Bloch, 2014), lower anhedo-
nia (McMakin et al., 2012; Uher et al., 2012a), non-chronic
depression (Souery et al., 2007), and lower anxiety (Fava et al.,
2008). Although each of these variables has limited predictive
power when considered individually, recent advances in multi-
variable machine learning approaches allow for the combination
of large sets of variables to predict treatment response (Gillan
and Whelan, 2017). Critically, to be clinically useful for treatment
selection, predictors of treatment response must be applicable to
individual patients. Consistent with the goals of precision medi-
cine, such work aims to translate treatment outcome moderation
findings to actionable, algorithm-guided treatment recommenda-
tions (Cohen and DeRubeis, 2018).

We sought to use machine learning coupled with a recently
published Personalized Advantage Index (PAI) (DeRubeis et al.,
2014; Huibers et al., 2015) to predict treatment outcome at the
individual level on the basis of pre-treatment patient data. Our
aim was to use the above approach to identify the subset of patients
who may be optimally suited to SSRI. With regards to machine-
learning approaches, we used four complementary variable selec-
tion procedures in an effort to identify a reliable and stable set of
predictors from the initial, larger set of baseline variables. These
procedures rely on different algorithms, such as decision tree-based
ensemble learning methods [e.g. Random Forests (RF)] and
regression-based methods [e.g. Elastic Net Regularization (ENR)].
This approach encouraged the selection of a set of predictors
that emerged consistently across differing variable selection

algorithms (see ‘Variable selection’ section below). Data were
derived from the multi-site EMBARC (Establishing Moderators
and Biosignatures of Antidepressant Response for Clinical Care)
clinical trial comparing SSRI (sertraline) v. placebo (Trivedi
et al., 2016). Of relevance, in a recent study based on EEG and clus-
ter analyses, we reported that the substantial heterogeneity of MDD
could be parsed by considering three putative endophenotypes of
depression: neuroticism, blunted reward learning, and cognitive
control deficits (Webb et al., 2016). Endophenotypes are hypothe-
sized to lie on the pathway between genes and downstream symp-
toms, and are traditionally defined as meeting the following criteria
(Gottesman and Gould, 2003): (1) associated with the disease, (2)
heritable, (3) primarily state-independent, (4) cosegregate within
families, (5) familial association, and (6) measured reliably
(Goldstein and Klein, 2014). We posited that depressed patients
with certain endophenotype profiles may be differentially respon-
sive to certain interventions (e.g. the cluster of depressed patients
defined by relatively high levels of neuroticism may be more
responsive to SSRIs). Indeed, there is an evidence that depressed
individuals characterized by elevated neuroticism may derive rela-
tively greater therapeutic benefit from SSRIs relative to CBT (Bagby
et al., 2008) or placebo (Tang et al., 2009). Thus, we examined
whether the combination of putative endophenotypes (neuroti-
cism, reward learning, cognitive control deficits, anhedonia) with
both baseline clinical (depressive symptom severity, depression
chronicity, anxiety severity) and demographic (gender, age, marital
status, employment status, years of education) variables previously
linked with antidepressant response could be used to identify indi-
vidual depressed patients optimally suited to SSRIs. Plausible neu-
roimaging predictor variables (McGrath et al., 2013; Pizzagalli
et al., 2018) were excluded from this particular study given that
they are substantially more costly and time-consuming than the
above set of clinical, demographic, and behavioral variables, the lat-
ter of which could be reasonably integrated into a current psychi-
atric clinic for the purpose of treatment selection.

Methods and materials

After providing informed consent, participants completed several
behavioral and self-report assessments prior to enrolling in an
8-week, double-blind, placebo-controlled clinical trial of sertraline
v. placebo. The clinical trial design has been described in detail in
a previous publication (Trivedi et al., 2016).

Participants

Eligible participants (ages 18–65) met Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria
for a current MDD episode (SCID-I/P), scored ⩾14 on the
16-item Quick Inventory of Depression Symptomatology
(QIDS-SR16) (Rush et al., 2003), and were medication-free for
⩾3 weeks prior to completing any study measures. Exclusion cri-
teria included: history of bipolar disorder or psychosis; substance
dependence (excluding nicotine) in the past 6 months or sub-
stance abuse in the past 2 months; active suicidality; or unstable
medical conditions (see online Supplementary Methods). Data
from 216 MDD subjects who passed quality control criteria for
both Flanker and Probabilistic Reward Task and completed at
least 4 weeks of treatment (American Psychiatric Association,
2010; Fournier et al., 2013) were included (online
Supplementary Methods).

1The term predictor is used differently in different contexts [e.g. a ‘prescriptive pre-
dictor’ or ‘moderator’ (i.e. defined as a treatment group × predictor variable interaction)
of outcome v. a ‘prognostic’ (i.e. treatment non-specific) predictor of outcome] ( Fournier
et al., 2009; Kraemer 2013). Here, we include variables that have either demonstrated
moderation (e.g. baseline depression and neuroticism moderating SSRI v. placebo differ-
ences in outcome), but also include findings from single-arm designs demonstrating that
a particular variable (e.g. educational level) predicts outcome within ADM.
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Endophenotype measures

NEO Five-Factor Inventory-3 (NEO-FFI-3) (McCrae and Costa,
2010). The 12-item neuroticism subscale from the NEO-FFI
was used.

Probabilistic Reward Task (PRT). The PRT uses a differential
reinforcement schedule to assess reward learning (i.e. the ability
to adapt behavior as a function of rewards), and has been
described in detail in previous publications (Pizzagalli et al.,
2005, 2008a) (see online Supplementary Methods).

Snaith-Hamilton Pleasure Scale (SHAPS) (Snaith et al., 1995).
The SHAPS is a 14-item self-report scale, with items asking about
hedonic experience in the ‘last few days’ for a variety of pleasur-
able activities. Items consist of four response categories, with
‘strongly agree’ (=1), ‘agree’ (=2), ‘disagree’ (=3), ‘strongly dis-
agree’ (=4). Higher scores indicate higher anhedonia.

Flanker Task (Eriksen and Eriksen, 1974). An adapted version
of the Eriksen Flanker Task that included an individually titrated
response window was used to assess cognitive control (see online
Supplementary Methods) (Holmes et al., 2010).

Clinical measures

Hamilton Rating Scale for Depression (HRSD) (Hamilton, 1960).
The 17-item HRSD, a clinician-administered measure of depres-
sive symptom severity, was administered by trained clinical
evaluators.

Mood and Anxiety Symptoms Questionnaire (MASQ) (Watson
et al., 1995). The anxious arousal subscale from a 30-item adap-
tation of the MASQ (MASQ-AA) assessed anxiety.

Data acquisition and reduction

PRT. The primary variable of interest was reward learning, which
has been found to predict response to antidepressant treatment
among inpatients with MDD (Vrieze et al., 2013). As in prior
studies (Pizzagalli et al., 2008b; Vrieze et al., 2013), reward learn-
ing was defined as change in response bias (RB) scores throughout
the task [here, from the first to the second block (RBBlock2–
RBBlock1)].

Flanker Task. The primary variable of interest was the interfer-
ence effect on accuracy, defined as lower accuracy on incongruent
relative to congruent trials, computed as (AccuracyCompatible trials

−AccuracyIncompatible trials). Higher scores reflect greater interfer-
ence (i.e. reduced cognitive control).

Data Pre-Processing. Missing data were imputed using a
RF-based imputation strategy [missForest (Stekhoven and
Bühlmann, 2012) package in R (R Core Team, 2013)] (see online
Supplementary Methods) (Waljee et al., 2013). This approach can
handle both categorical and continuous variables, and generates a
single imputed dataset via averaging across multiple regression
trees. Consistent with the recommendation of Kraemer and
Blasey (Kraemer and Blasey, 2004), continuous variables were
mean-centered and categorical variables were transformed into
binary variables with the values of −0.5 and 0.5. Of the 216 indi-
viduals in this sample, 10.19% were missing data for the outcome
variable (week 8 HRSD) and thus had their data imputed. There
were no significant differences in week 8 completion rates
between the SSRI (88.0%) or placebo (91.5%) conditions [χ2

(1) = 0.41, p = 0.52]. For additional analyses on dropout rates
and medication/placebo adherence, see online Supplementary
Methods.

Statistical analyses

Variable selection
Prior to implementing the PAI algorithm, pre-treatment variables
that interact with treatment group (SSRI or placebo) in predicting
HRSD outcome (week 8 scores) must be selected. We implemen-
ted (1) RF modeling [using the mobForest (Garge et al., 2013)
package in R (R Core Team, 2013)], (2) ENR [glmnet package
(Friedman et al., 2010)], and (3) Bayesian Additive Regression
Trees [BART; bartMachine package (Kapelner and Bleich,
2016)]. For each of these three models, we entered all of our
selected pre-treatment variables simultaneously: four endopheno-
type variables [neuroticism (NEO-FFI-3), cognitive control
(Flanker interference effect on accuracy), reward learning (PRT),
and anhedonia (SHAPS)], three clinical variables [baseline sever-
ity of depressive symptoms (HRSD), baseline severity of anxiety
(MASQ-AA), and chronic MDD (yes/no)] and five demographic
variables (age, gender, marital status, employment status, and
years of education). Variables showing treatment group × predictor
variable interactions in two of the three models were entered into
a final stepwise AIC-penalized bootstrapped variable selection
[using the bootStepAIC package (Austin and Tu, 2004)]. For
details on each of these approaches and how variables are selected
from each model, see online Supplementary Methods.

Generating PAIs

Briefly, to generate treatment recommendations with the PAI
approach, a regression model is built and used to predict treat-
ment outcome (week 8 HRSD) for each patient in SSRI and pla-
cebo separately. A patient’s PAI is the signed difference between
the two predictions (i.e. week 8 HRSD predicted in SSRI minus
week 8 HRSD predicted in placebo), where a negative value
reflects a predicted better outcome in SSRI, and a positive value
reflects the reverse. Moreover, the magnitude of the absolute
value of the PAI reflects the strength of the differential prediction,
such that patients with larger PAIs, in either direction, are those
who are most likely to evidence a substantially better outcome in
their PAI indicated, relative to their PAI non-indicated treatment.
To limit bias that could occur when evaluating model perform-
ance on individuals whose data were used to set model weights,
PAIs were generated using 10-fold cross-validation. This proced-
ure ensures that each model is estimated absent any data from the
patient whose outcome will be predicted (see PAI generation and
PAI evaluation in the online Supplementary Methods for details;
see also Alternative PAI models section below).

Evaluating PAIs

To assess whether PAI scores moderate treatment group differ-
ences in depression outcomes, we tested a treatment group ×
PAI score interaction with week 8 HRSD scores as the dependent
variables. Next, and similar to previous PAI publications
(DeRubeis et al., 2014; Huibers et al., 2015), to evaluate the utility
of the PAIs, we compared mean week 8 HRSD scores for
SSRI-indicated individuals who were randomized to SSRI in com-
parison to SSRI-indicated participants who received placebo. We
performed the analogous comparison for those identified as
‘placebo-indicated’. We then evaluated the above comparisons
with only those patients for whom the absolute value of the
PAI was 3 or greater (i.e. predicted to have a ‘clinically significant’
advantage in one treatment condition) (DeRubeis et al., 2014).
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Finally, the entire 10-fold cross-validation procedure and evalu-
ation was repeated 1000 times to generate stable estimates.

Results

Variable selection

See Table 1 for variable selection results, including which vari-
ables were selected during each stage. The following variables sur-
vived the four-step procedure and were included in the final
model (see Fig. 1 and Table 2):

Y = treatment× (depression severity[HRSD]
+ neuroticism[NEO− FFI− 3]
+ cognitive control [Flanker Interference Accuracy

( )]
+ age+ employment status).

Predicted outcomes and PAIs

The average absolute value of PAI scores was 3.4 (S.D. = 2.6), indi-
cating that our model predicted an average 3.4-point difference in
week 8 HRSD scores between indicated and non-indicated treat-
ment assignment. The absolute value of the PAI was 3 or greater

in approximately half (48.6%) of the sample (see Fig. 2 for distri-
bution of PAI scores). Specifically, 31.5% of the sample was pre-
dicted to have a ‘clinically significant’ advantage (DeRubeis et al.,
2014) in the SSRI condition (PAI⩽−3), whereas this value was
17.1% for placebo (PAI⩾ 3). In contrast, the model indicates
that 51.4% of the sample was predicted to exhibit relatively min-
imal differences in outcome between treatment conditions.

Observed outcomes in indicated v. non-indicated treatment
condition

Full sample
First, it is important to highlight that, in the full sample, patients
randomized to SSRI (M = 10.86; S.D. = 6.27) and placebo (M =
11.88; S.D. = 7.37) did not significantly differ in mean week 8
HRSD outcomes (adjusting for baseline HRSD scores) [F(1,213)
= 0.92; p = 0.339; Cohen’s d = 0.15; Fig. 3, left panel). Critically,
a significant treatment group × PAI interaction emerged in pre-
dicting week 8 HRSD scores, indicating that PAI scores moder-
ated treatment group differences in outcome [F(1,212) = 6.68; p =
0.010). For the full sample, patients randomized to their
PAI-indicated treatment condition (M = 10.39; S.D. = 6.97) were
observed to have lower week 8 HRSD scores relative to those ran-
domized to their contraindicated condition (M = 12.38; S.D. =
6.70) [d = 0.29, t(214) = 2.16; p = 0.032]. For patients predicted
to have better outcomes to SSRI than placebo (PAI < 0), those
randomized to SSRI (M = 10.57; S.D. = 6.48) were observed to
have lower week 8 HRSD scores than those randomized to pla-
cebo (M = 13.12; S.D. = 7.03) [d = 0.38, t(121) = 2.08; p = 0.040;
see Fig. 3, right panel]. However, for patients predicted to have
better outcomes to placebo (PAI > 0), those who received placebo
(M = 10.18; S.D. = 7.54) did not differ significantly in outcome
relative to those who received SSRI (M = 11.23; S.D. = 6.04) [d =
0.16; t(91) = 0.74; p = 0.460; see Fig. 3, right panel].

Largest PAIs (PAI⩾ |3|)
Among this subset, patients randomized to their indicated treat-
ment condition (M = 9.53; S.D. = 6.68) were observed to have
lower week 8 HRSD scores relative to those randomized to their
contraindicated condition (M = 14.09; S.D. = 6.42) [d = 0.70, t
(103) = 3.59; p < 0.001]. SSRI-indicated patients randomized to
SSRI (M = 10.68; S.D. = 7.04) were observed to have lower week
8 HRSD scores than those randomized to placebo (M = 14.66;
S.D. = 6.83) [d = 0.58; t(66) = 2.34; p = 0.023; see Fig. 3, right
panel]. Conversely, placebo-indicated patients randomized to pla-
cebo (M = 7.65; S.D. = 5.64) had better outcomes than those rando-
mized to SSRI (M = 13.06; S.D. = 5.57) [d = 1.01; t(35) = 3.07; p =
0.004; see Fig. 3, right panel].

Alternative PAI models

See online Supplementary Material for results from two alterna-
tive PAI models. First, a PAI model was run including all 12 a
priori baseline variables, rather than the reduced set of five mod-
erators emerging from our variable selection procedure. In other
words, in the former model including all a priori variables, our
variable selection procedure was not performed. The fact that a
similar pattern of findings emerged in this control PAI analysis
suggests that our findings are likely not attributable to overfitting
due to running our PAI analysis on a reduced set of variables
emerging from our variable selection steps. Second, to evaluate
the utility of treatment recommendations based solely on

Table 1. Variable selection results

Pre-treatment
variable

Random
Forest

Elastic
Net BART

Included
in
bootstep
AIC?

Depression
severity
(HDRS)a

Yes Yes Yes Yes

Anxiety severity
(MASQ-AA)

No Yes No No

Chronic MDD
(yes/no)

No Yes No No

Neuroticism
(NEO-FFI-3)a

Yes Yes Yes Yes

Anhedonia
(SHAPS)

No No No No

Reward
learning (PRT)

No No No No

Cognitive
control (Flanker
ACC)a

Yes Yes Yes Yes

Gender No No No No

Agea Yes Yes Yes Yes

Marital status No No No No

Employment
statusa

Yes Yes Yes Yes

Years of
education

No Yes No No

HDRS, Hamilton Depression Rating Scale (17-item)(Hamilton, 1960); MASQ-AA, Mood and
Anxiety Symptoms Questionnaire, Anxious Arousal subscore (Watson et al., 1995); MDD,
major depressive disorder; NEO-FFI-3, NEO Five-Factor Inventory – 3 (McCrae and Costa,
2010); SHAPS, Snaith–Hamilton Pleasure Scale (Snaith et al., 1995); PRT, Probabilistic
Reward Task (Pizzagalli et al., 2005); Flanker ACC, Flanker Interference Accuracy score
(=AccuracyCompatible trials− AccuracyIncompatible trials); higher scores indicate more interference
(i.e. reduced cognitive control); BART, Bayesian Additive Regression Trees.
aVariables selected by BootStepAIC to be included in the final model.
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Fig. 1. Plots of baseline predictor by treatment group interactions from the final model.

Table 2. Final model

Variable B S.E. p Value

(Intercept) 11.51 0.43 0.00**

Treatment −0.65 0.85 0.44

Depression severity (HDRS) 2.17 0.44 0.00**

Neuroticism (NEO-FFI-3) 0.42 0.45 0.35

Cognitive control (Flanker ACC) −0.31 0.45 0.49

Age 0.85 0.45 0.06

Employment status −2.61 0.87 0.00**

Treatment × depression severity
(HDRS)

−1.29 0.88 0.14

Treatment × neuroticism (NEO-FFI-3) −2.56 0.90 0.01**

Treatment × cognitive control (flanker
ACC)

1.86 0.89 0.04*

Treatment × age −2.25 0.91 0.01*

Treatment × employment status −3.21 1.74 0.07

HDRS, Hamilton Depression Rating Scale (17-item) (Hamilton, 1960); NEO-FFI-3, NEO
Five-Factor Inventory – 3 (McCrae and Costa, 2010); Flanker ACC, Flanker Interference
Accuracy score (= AccuracyCompatible trials− AccuracyIncompatible trials).
+p < 0.10. *p < 0.05. **p < 0.01.

Fig. 2. Frequency histogram displaying distribution of Personalized Advantage Index
(PAI) scores, computed as the predicted difference in week 8 HRSD scores for SSRI
minus placebo. Accordingly, a PAI score <0 signifies that SSRI was indicated, whereas
a PAI score >0 indicates that placebo was expected to yield a better outcome. The
kernel density estimate illustrates the expected distribution of PAI scores in the
population.
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depression severity (rather than our five moderator variables), we
re-ran the above analysis using only baseline depressive symptom
(HRSD) severity to inform the PAI, which did not yield signifi-
cant findings.

Discussion

This study used the variable selection approach proposed by
Cohen et al. (Cohen et al., 2017) combining machine learning
with a previously published PAI algorithm (DeRubeis et al.,
2014; Huibers et al., 2015) to generate individualized treatment
recommendations on the basis of (i) putative behavioral endo-
phenotypes of depression (Goldstein and Klein, 2014; Webb
et al., 2016) and (ii) clinical and demographic characteristics
previously linked with antidepressant response. Ultimately, the
goal is to translate research on predictors of antidepressant
response to actionable treatment recommendations for individuals.
First, it is important to highlight that the baseline moderators
emerging from our machine learning variable selection steps are
largely consistent with prior research. In particular, depressed indi-
viduals with higher baseline severity of depressive symptoms
(Khan et al., 2002; Kirsch et al., 2008; Fournier et al., 2010), higher
neuroticism (Tang et al., 2009), and who were employed (Fournier
et al., 2009; Jakubovski and Bloch, 2014) had better outcomes to
SSRI than placebo. In addition, relatively older patients and
those with lower deficits in cognitive control (i.e. smaller Flanker
accuracy interference effect) also exhibited better outcomes to
SSRI. Of note, owing to their minimal cost and relatively low
time burden, these baseline measurements could be more easily
integrated into a treatment clinic than baseline assessments involv-
ing neuroimaging.

Perhaps the most well-supported clinical moderator of SSRI v.
placebo response is baseline depressive symptom severity (Khan
et al., 2002; Kirsch et al., 2008; Fournier et al., 2010). It should
be noted that total depression score at baseline is not the only
meaningful marker of depression severity. Other relevant vari-
ables such as episode chronicity and anhedonia were included
in our initial models but did not survive the variable selection
steps. Chronicity is known to be linked with poor response to pla-
cebo (Khan et al., 1991; Dunner, 2001), yet did not emerge as a

moderator of SSRI v. placebo response. Consistent with prior
work, higher neuroticism was associated with greater response
to SSRI relative to placebo, which may in part be due to the
role of SSRIs in blunting negative affect (Quilty et al., 2008;
Tang et al., 2009; Soskin et al., 2012). It is important to highlight
that elevated neuroticism moderated SSRI v. placebo response
above and beyond the contribution of baseline depression (i.e.
while the baseline HRSD × treatment group interaction was
included in the model).

The interpretation of the cognitive control finding is less clear.
Namely, those with more intact cognitive control exhibited better
outcomes in SSRI v. placebo; whereas those with greater impair-
ments showed little between-group differences in outcome.
Continued cognitive impairments – even following symptom
remission – are among the most common residual symptoms of
depression (Herrera-Guzmán et al., 2009; Lam et al., 2014).
Moderation may be more likely to be observed when comparing
a treatment that more successfully targets cognitive control defi-
cits [e.g. vortioxetine, (Mahableshwarkar et al., 2015)] v. one
with limited pro-cognitive effects (also see Etkin et al., 2015).

Of the 12 a priori variables we initially included, seven did not
survive our four-step variable selection procedure. It may be that
some of these variables are prognostic predictors of outcome, but
were not selected as they do not moderate SSRI v. placebo
response. For example, higher anhedonia (McMakin et al., 2012;
Uher et al., 2012a) and blunted reward learning (Vrieze et al.,
2013) have each been shown to predict worse antidepressant out-
come. Although anhedonia did not moderate of SSRI v. placebo
response, it did emerge as a prognostic predictor of worse out-
come across groups (t = 3.51, p < 0.001; reward learning ns; see
online Supplementary Results). With regards to the specific vari-
able selection approaches used, both RF and BART identified the
same five variables; whereas ENR selected a larger set of eight
variables. Differences in results between these approaches are
not unexpected, and may be due to the fact that both RF and
BART rely on a similar decision tree-based ensemble learning
algorithm, whereas ENR is a variant of classic regression. As
well, unlike ENR, both RF and BART consider both unspecified
non-linear relationships and higher order interactions between
variables.

Fig. 3. Comparison of mean week 8 HRSD for patients
randomized to SSRI or placebo (left panel) (n = 216).
Comparison of mean week 8 HRSD scores for patients
randomly assigned to their PAI-indicated treatment v.
those assigned to their PAI-contraindicated treatment
for the full sample (n = 216) v. including only patients
for whom the algorithm predicted a clinically significant
advantage in one treatment condition (PAI ⩾ |3|); n =
105) (right panel). Error bars represent standard error.
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Importantly, there were no overall differences in depression
outcomes between patients randomized to SSRI and placebo in
the overall sample (d = 0.15). These findings are in line with
meta-analyses of SSRI v. placebo indicating small overall differ-
ences in outcome (Moncrieff et al., 2004; Kirsch et al., 2008;
Fournier et al., 2010; Kirsch, 2015; Jakobsen et al., 2017;
Cipriani et al., 2018). However, overall between-group compari-
sons obscure any meaningful between-patient characteristics that
may moderate SSRI v. placebo differences in outcome. Indeed,
we identified five patient characteristics that moderated group dif-
ferences in depression outcome. These variables were subsequently
entered into a PAI algorithm (DeRubeis et al., 2014; Huibers et al.,
2015) to generate patient-specific predictions of SSRI v. placebo
outcome. Results using our PAI model indicated that approxi-
mately one-third of the sample would have a clinically significant
advantage (DeRubeis et al., 2014) with SSRI relative to placebo
(PAI⩽−3). Intriguingly, and unexpectedly, the model also pre-
dicted that a subset (17%) of depressed individuals would exhibit
a clinically significant advantage in placebo.

As the treatment recommendations for some individuals indi-
cated almost no advantage of one treatment over the other (e.g.
see distribution of PAI scores near 0 in Fig. 2), one might reason-
ably expect that differences in outcome between patients who
received their PAI-indicated v. contraindicated treatment would
be larger for those individuals predicted to have more clinically
meaningful differences in outcomes (i.e. larger absolute PAI
values), which our sub-analyses confirmed. Notably, when con-
sidering the subset with larger PAIs (absolute PAI values ⩾3),
the effect size for the difference in outcome for SSRI-indicated
patients who were randomized to SSRI v. placebo (d = 0.58) was
substantially larger than the overall treatment group difference
between SSRI and placebo (d = 0.15), as well as larger than the
effect sizes reported in systematic reviews of ADM v. placebo
comparisons (d∼ 0.30) (Kirsch et al., 2008; Turner et al., 2008;
Fournier et al., 2010; Khin et al., 2011; Kirsch, 2015; Moncrieff
and Kirsch, 2015; Cipriani et al., 2018 ), and those observed
between active treatments and controls from general medical con-
texts (d∼ 0.45) (Leucht et al., 2012). In sum, findings suggest that
our statistical approach may identify patients who are optimally
suited to SSRI treatment. Of course, this study compared SSRI
v. a placebo condition, rather than an alternative evidence-based
treatment (e.g. CBT). Thus, our model identified individuals
who would likely evidence greater depressive symptom improve-
ment on an SSRI relative to an intervention providing the
‘non-specific’ therapeutic elements associated with a pill placebo
condition (i.e. the expectation of symptom improvement, the
passage of time, symptom monitoring and minimal contact/
support from a clinician).

Although no statistically significant advantage was observed
for placebo-indicated patients who received their indicated treat-
ment, a significant advantage of placebo over SSRI was observed
for the 17% of the sample for whom placebo was more strongly
indicated (PAIs ⩾ 3; d = 1.01). The possibility that SSRIs are rela-
tively ineffective or countertherapeutic for certain patients (e.g.
due to side effects) requires additional research (Bet et al., 2013;
Julien, 2013; Hollon, 2016). It is important to emphasize that
this finding did not emerge in the full sample. Given the reduced
sample size in the latter analysis, conclusions must be tempered
and replications are required.

An alternative PAI model based exclusively on pre-treatment
HRSD scores did not yield significant findings, suggesting that
baseline depressive symptom severity alone is not as informative

as our model incorporating baseline data on five variables.
Second, a similar pattern of findings emerged in a control PAI
analysis (in which all 12 a priori variables were included) relative
to our primary analysis, suggesting that our findings are likely not
attributable to overfitting due to running our PAI analysis on a
reduced set of variables emerging from our variable selection steps.

Limitations

Several limitations should be noted. First, and importantly, pro-
spective tests are needed in which a PAI model is built in one
sample, and then tested in a separate sample. The k-fold cross-
validation approach we used approximates such a test by leaving
each patient’s data out of the model used to generate their pre-
dicted outcomes. However, although we implemented cross-
validation during the weight-setting stage, we used the full sample
for variable selection which can lead to overfitting and inflated
associations (Hastie et al., 2009; Fiedler, 2011). Until such models
are tested and replicated in separate samples, it will be difficult to
determine the extent to which overfitting contributes to findings
and whether models generalize to new sets of treatment-seeking
depressed individuals. Second, we focused on clinical, demo-
graphic, and putative behavioral endophenotypes that could be
collected at low cost and with relatively minimal clinic staff and
patient burden. The extent to which neural assessments provide
incremental predictive validity above and beyond such variables
is an important direction for research, particularly with regards
to relatively less costly and non-invasive imaging approaches
(e.g. EEG). Third, it is unclear whether findings would generalize
to depressed individuals who do not meet the inclusion/exclusion
criteria of this trial. In addition, as others have highlighted (Uher
et al., 2012b), measures of outcome (HRSD) and predictors
include a certain amount of error, which may significantly attenu-
ate the magnitude of observed predictor–outcome associations.
Fourth, sample size was relatively small. Finally, the current PAI
model relies on randomized designs (i.e. to examine outcomes
for those randomly assigned to their indicated v. non-indicated
treatment). An important future direction for research is to
adapt these statistical models for the investigation of optimal
treatment assignment in current clinical practice settings in
which patients are not randomly assigned to interventions.
These limitations notwithstanding, our findings demonstrate the
potential for precision medicine to improve individual outcomes
through model-guided treatment recommendations rather than
the current practice of trial-and-error. Findings from replicated
prescriptive algorithms could ultimately be used to inform the
development of web-based ‘treatment selection calculators’ avail-
able to clinicians and patients to facilitate decision-making.
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