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ABSTRACT
BACKGROUND: Stress is widely known to alter behavioral responses to rewards and punishments. It is believed that
stress may precipitate these changes through modulation of corticostriatal circuitry involved in reinforcement learning
and motivation, although the intervening mechanisms remain unclear. One candidate is inflammation, which can
rapidly increase following stress and can disrupt dopamine-dependent reward pathways.
METHODS: Here, in a sample of 88 healthy female participants, we first assessed the effect of an acute laboratory
stress paradigm on levels of plasma interleukin-6 (IL-6), a cytokine known to be both responsive to stress and
elevated in depression. In a second laboratory session, we examined the effects of a second laboratory stress
paradigm on reward prediction error (RPE) signaling in the ventral striatum.
RESULTS: We show that individual differences in stress-induced increases in IL-6 (session 1) were associated with
decreased ventral striatal RPE signaling during reinforcement learning (session 2), though there was no main effect of
stress on RPE. Furthermore, changes in IL-6 following stress predicted intraindividual variability in perceived stress
during a 4-month follow-up period.
CONCLUSIONS: Taken together, these data identify a novel link between IL-6 and striatal RPEs during reinforcement
learning in the context of acute psychological stress, as well as future appraisal of stressful life events.
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Stress is a major risk factor for psychiatric disorders (1–3),
though its effects are not fully understood. Stress exposure
can initiate a neuroendocrine cascade that modulates how
individuals perceive and respond to rewarding or threatening
cues in their environment (4–11). Specifically, it has been
shown that stress may reduce acquisition of reward-related
information (8,12,13) as well as disrupt normal reinforcer
devaluation (9,14,15), two phenomena that are commonly
observed in stress-related psychiatric disorders (16–20).

In animal models, substantial research has suggested that
stress may induce these behavioral changes to rewarding
stimuli via effects on the mesocorticolimbic dopamine (DA)
system. Acute stressors transiently increase DA release in the
nucleus accumbens (NAcc) while also promoting longer-term
DAergic increases in the medial prefrontal cortex (10,21–23).
Interestingly, more recent studies have suggested that stress
may have selective effects on DAergic responses to reward
receipt (24), raising the possibility that behavioral changes to
reinforcers may be mediated by the effects of stress on
DAergic reward prediction error (RPE) signaling, a core
mechanism of reinforcement learning (RL) (25,26).

While early research on the relationship among stress,
DAergic function, and subsequent behavioral changes focused
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on the role of the hypothalamic-pituitary-adrenal axis (27),
recent work has increasingly recognized an important role for
stress-induced immune responses (28–31). As with glucocor-
ticoids, proinflammatory cytokines such as interleukin-6 (IL-6),
IL-1, and tumor necrosis factor alpha can be stimulated by
acute stress exposure (32–34). Behaviorally, acute adminis-
tration of these proinflammatory cytokines has been shown to
reduce sensitivity to rewards while augmenting sensitivity to
punishment (35), a pattern that is consistent with evolutionary
models (31) and matches the effects of acute stress (12,13,36)
[though see also (6,37,38)]. Importantly, only IL-6 has been
reliably shown in meta-analyses to be both elevated in
depression (39–42) and sensitive to laboratory measures of
acute stress (33), and it is increasingly recognized as a playing
an important role in mood disorders (43).

A growing body of evidence suggests that DA and cyto-
kines may influence each other through multiple pathways.
Both acute and chronic treatment with cytokine inducers—
including direct administration of IL-6—has been shown to
disrupt DA synaptic availability and synthesis in rodents
(44–46), nonhuman primates (47,48), and humans (49). Simi-
larly, in human functional neuroimaging studies, both chronic
and acute administration of cytokine inducers has been
E ALSO VIDEO CONTENT ONLINE
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Figure 1. Schematic diagram illustrating the
design of study sessions 1 and 2. (A) Overall flow
of participants through the study. (B) During ses-
sion 1, participants first completed a Structured
Clinical Interview for DSM and other screening
measures (see Methods and Materials), a baseline
blood draw, and then the Maastricht Acute Stress
Task (MAST) laboratory stress challenge. Following
the MAST, two other blood draws were collected.
(C) During session 2, participants completed a
functional magnetic resonance imaging (fMRI)
scanning session in which they had to complete
blocks of a reinforcement learning (RL) task that
were interleaved between easy and hard (stressful)
blocks of the Montreal Imaging Stress Task (MIST).
For each of the three stress conditions (prestress,
during stress, poststress), runs of the MIST and RL
were completed twice. IL-6, interleukin-6.
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associated with blunted ventral striatal responses to reward
anticipation (49,50), prediction-error signaling during RL (35),
and novelty-driven activity in the DAergic midbrain (51). Alter-
natively, however, there is also growing evidence that DA
signaling may modulate cytokine responses. DA receptors
have been identified on numerous components of the innate
immune system (52), including lymphocytes and T cells. These
studies have largely suggested that DA acts to inhibit the
actions of activated T cells. In particular, DA receptor D2
knockout mice show a remarkable anti-inflammatory response,
suggesting that DA signaling may be primarily anti-
inflammatory in nature (53,54), though not in all cases (52).

Given these potentially bidirectional pathways between
inflammation on DA signaling pathways, we predicted that
stress-induced increases in inflammatory cytokines would be
associated with a reduction in DA-dependent RPE signals
during RL. To date, however, no study has tested the rela-
tionship between stress-induced IL-6 and stress-related
changes in striatal prediction error signaling and whether
these mechanisms predict future levels of stress appraisal.

In the present study, we sought to address these questions
through a combination of laboratory stress challenges, plasma
measures of IL-6, and functional neuroimaging in a sample of
88 healthy female participants assessed across two study
visits (Figure 1). Only women were investigated owing to
elevated prevalence of depression in female subjects (55), as
well as significant sex differences in psychological and hor-
monal responses to stress (56) that could substantially reduce
our power to detect individual differences. During the first
session, participants were exposed to the Maastricht Acute
Stress Task (MAST) (57), a robust laboratory stress paradigm,
while blood was sampled intravenously. During the second
session, participants completed a functional neuroimaging
session that included functional runs of an RL task (58) inter-
leaved with blocks of a well-validated neuroimaging stress
paradigm, the Montreal Imaging Stress Task (MIST) (59). Ef-
fects of both stressors on mood were assessed using visual
analog mood scales (VAMS) (60). We hypothesized that larger
increases in IL-6 following stress (as assessed in the first
Biological Psy
behavioral session) would predict a greater blunting of RPE
signals during stress (as assessed in the second session). After
these laboratory visits, participants were followed for a period
of 4 months to assess self-reported stressful experiences in
daily life. For these assessments, we predicted that greater
biological responses to laboratory stressors would predict self-
reported stressful experiences during the follow-up period.

METHODS AND MATERIALS

Participants and Study Description

A total of 88 healthy female participants were included in this
study. For details on participant eligibility criteria, see
Supplemental Methods. All recruitment and testing procedures
were approved by the Partners Institutional Review Board. The
study comprised two laboratory visits followed by a 4-month
period of self-report questions administered online every 2
weeks. Details of study procedures can be found in
Supplemental Methods. Subject demographic characteristics
are summarized in Supplemental Table S1.

Session 1: MAST Laboratory Stressor

To induce stress during the first session, participants
completed the MAST (57). The MAST is a laboratory stress
paradigm that combines alternating periods of well-validated
stress-inducing procedures including a cold pressor and per-
formance of serial subtraction in front of evaluators. For details
of the MAST administration, see Supplemental Methods.

Session 1: Sample Collection and Analysis

To assess IL-6 responses, plasma samples were drawn
intravenously at 210 minutes (before stressor), 145 minutes
following stressor, and 190 minutes following stressor. To
assess salivary cortisol, saliva samples were collected at six
time points: 2110 minutes (before stressor), 230 minutes,
immediately before stressor, 120 minutes following
stressor, 135 minutes, and 180 minutes. For details of
collection and analysis, see Supplemental Methods.
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Figure 2. Change in plasma interleukin-6 (IL-6) levels (raw values)
following the Maastricht Acute Stress Task. Error bars represent SE.
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Session 2: Laboratory Stressor

For the session 2 laboratory stressor (Figure 1), which was
performed during a functional magnetic resonance imaging
scan, we used a modified version of the MIST (59), a widely
used and well-validated stress paradigm. Briefly, this task
requires participants to solve arithmetic problems while their
performance is publicly evaluated. For details of the MIST
administration, see Supplemental Methods. To assess salivary
cortisol during session 2, saliva samples were collected at four
time points: before entry into the scanner, 3 minutes before
onset of stress blocks, 125 minutes after the onset of the
stress blocks, and 140 minutes after the onset of the stress
blocks.

Reinforcement Learning Task

To assess RPE signals, participants were asked to complete a
well-validated instrumental conditioning paradigm (58). Details
of the task are presented in Supplemental Methods. Briefly,
subjects were instructed to choose between two visual stimuli
displayed on a screen. Each of the stimuli in the pairs was
associated with either an 80% or 20% probability of a given
outcome (gain: win $1 or $0; loss: lose $1 or $0; neutral: look at
gray square or nothing). There were a total of six RL runs
across the experiment, with two runs for each stress condition
(prestress, during stress, poststress).

Primary analysis focused on a parametric modulation
contrast for RPE signals extracted from an anatomically
defined NAcc mask. For details on the computational model,
neuroimaging acquisition, processing and region-of-interest
(ROI) analysis, see the Supplement.

Follow-up Period

To examine the ecological validity of biological responses to
laboratory stressors, all participants were asked to complete
online self-report questionnaires every 2 weeks for a 4-month
follow-up period. Our primary measure of interest was the
Perceived Stress Scale (PSS) (61), which was used to assess
ongoing perceptions of stress in daily life. We examined both
mean level of perceived stress and variability over time. To
assess variability, we calculated mean sum of squared differ-
ences, a standard metric used to capture variability in symp-
tom experience (62).

RESULTS

Session 1: Effects of Acute Stress on Plasma IL-6
and Salivary Cortisol

Using a three (time points) repeated-measures analysis of
variance (ANOVA), we found that the MAST induced a sig-
nificant increase in plasma IL-6 (F1.43,92 = 17.89, p = 8.0 3

1026; hp
2 = .28) (Figure 2). This effect remained highly sig-

nificant when controlling for menstrual cycle phase (70%
follicular; 30% luteal) (F1.43,90 = 16.77, p = 1.6 3 1025;
hp

2 = .27), and there was no time points 3 menstrual cycle
phase interaction (F1.43,90 = 0.89, p = .384). There was,
however, a main effect of cycle phase such that participants
in the luteal phase had lower levels of IL-6 than those in the
follicular phase (F1,45 = 5.24, p = .027; hp

2= .10). Given prior
studies (63), we also examined whether body mass index was
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associated with change in IL-6, but we did not find an
association between body mass index and change in IL-6
following stress (see Supplemental Table S2). Baseline PSS
scores were also unrelated to change in IL-6 levels
(Spearman r = .10, p = .466), though we did observe baseline
associations with the State-Trait Anxiety Inventory (see
Supplement).

Additionally, using a six (time points) repeated-measures
ANOVA, we found that the MAST produced a significant in-
crease in salivary cortisol (F2.34,182.38 = 27.87, p = 1.53 10212),
with a strong quadratic effect (F1,78 = 33.14, p = 1.62 3 1027)
(see Supplemental Figure S1).

Session 1: Effects of Acute Stress on Mood and
Relationships to IL-6

Using an 8 (time points) x 5 (questions) repeated-measures
ANOVA, we found that the MAST stressor during session 1
induced a significant overall change in mood (F3.28,553 = 70.78,
p = 1.78 3 10235), with the expected quadratic effect
(F1,79 = 125.05, p = 5.98 3 10218) showing an increase in
negative mood following the stressor (Figure 3A). This quadratic
effect remained significant when controlling for menstrual cycle
phase (F1,77 = 30.56, p = 4.26 3 1027), and there was no
interaction between this quadratic effect and menstrual cycle
phase (F1,77 = 0.064, p = .801). For each individual VAMS
question, quadratic effects revealed that immediately following
the MAST participants felt less happy (F1,80 = 113.84,
p = 4.87 3 10217), relaxed (F1,80 = 98.01, p = 1.51 3 10215),
friendly (F1,80 = 114.65, p = 4.11 3 10217), sociable (F1,80 =
66.79, p = 3.71 3 10212), and quick witted (F1,80 = 67.08,
p = 3.71 3 10212).

There were no relationships among change in IL-6 levels in
response to the MAST and change in mood ratings as
assessed by any of the five VAMS questions: (happy:
Spearman r = .06, p = .663; relaxed: Spearman r = .13,
p = .345; friendly: Spearman r = .10, p = .473; sociable:
Spearman r = .001, p = .992; quick witted: Spearman r = .02,
p = .868).
g/journal
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Figure 3. Stress manipulations increase negative affect. (A) In session 1,
the Maastricht Acute Stress Task induced a significant increase in negative
affect across all five visual analog mood scales (VAMS) questions (happy-
sad, relaxed-tense, friendly-hostile, sociable-withdrawn, quick witted–
mentally slow). (B) Similarly, in session 2, the Montreal Imaging Stress Task
also induced a significant decrease in mood across all five VAMS questions.
All VAMS items are scored such that higher scores indicate more negative
affect.

Interleukin-6 and Reinforcement Learning
Biological
Psychiatry
Session 2: Effects of Acute Stress on Mood and
Salivary Cortisol

Using a 5 (time points) 3 5 (questions) repeated-measures
ANOVA, we found that the MIST stressor during session 2
also induced a significant overall decrease in mood (F2.05,260 =
50.65, p = 2.46 3 10217) with a quadratic effect (F1,65 = 67.85,
p = 1.10 3 10211) (Figure 3B). This quadratic effect remained
significant when controlling for menstrual cycle phase (F1,61 =
7.28, p = .009), and there was no interaction between this
quadratic effect and menstrual cycle phase (F1,61 = 0.003,
p = .960). Specifically, immediately following the MIST partic-
ipants reported feeling less happy (F1,65 = 46.60, p = 3.51 3

1029), relaxed (F1,65 = 39.75, p = 2.88 3 1028), friendly (F1,65 =
62.92, p = 3.85 3 10211), sociable (F1,65 = 36.48, p = 8.27 3

1028), and quick witted (F1,65 = 24.56, p = 5.0 3 1026). In
addition to these main effects, individual differences in mood
responses to stress were significantly correlated between the
MAST (session 1) and MIST (session 2) stressors for all five
questions (happy: Pearson r = .48, p = .0002; relaxed: r = .31,
p = .019; friendly: r = .35, p = .007; sociable: r = .38, p = .004;
quick witted: r = .46, p = .0004).
Biological Psy
For salivary cortisol, a three (time points) repeated-
measures ANOVA revealed no main effect of the MIST
stressor on cortisol (F1.71,116.06 = 21.31, p = .437) (see
Supplemental Figure S1). This null result was driven by the
absence of a positive cortisol response in approximately one
half of the participants, which is consistent with other studies
using the MIST (59,64). Importantly however, the percentage of
change in cortisol from prestress to poststress during session
1 was positively correlated with the percentage of change in
cortisol from prestress to poststress during session 2 (Pearson
r = .40, p = .006).

Session 2: Effects of Acute Stress on Behavioral
Performance

A 2 (valence: win/loss) 3 3 (stress condition: prestress, during
stress, poststress) 3 2 (run number) repeated-measures
ANOVA with menstrual cycle phase included as a between-
groups variable revealed a main effect of the stress condition
such that performance accuracy increased over the course of
the experiment (F2,106 = 3.30, p = .041). There was no main
effect of valence (win/loss) (F1,53 = 2.5, p = .120) nor stress
condition 3valence interaction (F2,106 = 1.60, p = .21), though
follow-up Student t tests did reveal a significant improvement
in performance on loss trials during stress as opposed to
prestress (t62 = 2.96, p = .004), with no change in accuracy for
win trials (t62 = 0.20, p = .842).

There was no main effect of menstrual cycle phase, nor any
interactions with menstrual cycle phase and stress condition,
though there was a significant interaction between menstrual
cycle phase and valence (F1,52 = 7.94, p = .007) such that
women in the luteal phase showed a greater overall accuracy
for win trials relative to loss trials, while women in the follicular
phase showed little difference between the two.

Session 2: Prediction Error Signaling

Averaging across all RL sessions, we observed a main effect of
positive RPE signals in the NAcc using a small volume
correction with a bilateral NAcc anatomical mask drawn from
the Harvard-Oxford probabilistic atlas (small volume correction
left NAcc: x = 26, y = 10, z = 26, t = 5.25, familywise error
p = .0005; small volume correction right NAcc: x = 8, y = 6,
z = 24, t = 4.69, familywise error p = .003) (Figure 4A). For
negative RPE, a whole-brain analysis revealed significant ac-
tivity in bilateral anterior insula and areas of dorsal anterior
cingulate and dorsomedial prefrontal cortex (for a full list of
regions identified by RPE contrasts, see Supplemental
Table S3). There was no main effect (linear or quadratic) of
the MIST stress manipulation on the magnitude of positive or
negative RPE signals. Consistent with prior studies (58,65), the
strength of positive RPE signals in the NAcc was positively
associated with performance accuracy across win and loss
trials accuracy (see Supplement).

Session 2: Stress-Induced Change in RPE Signals
and IL-6 (Assessed in Session 1)

Using extracted RPE b weights from an anatomically defined
NAcc ROI, we examined the relationships between change in
IL-6 during stress (assessed in session 1) and change in NAcc
RPE b weights following stress (assessed in session 2). We
chiatry October 15, 2017; 82:570–577 www.sobp.org/journal 573
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Figure 4. Positive and negative reward prediction
error (RPE) signals during reinforcement learning and
relationship to stress-induced change in interleukin-
6 (IL-6). (A) Model-based PE signals averaged
across all three stress conditions (prestress, during
stress, and poststress) and found to predict activity
in ventral striatum (positive RPE) and bilateral insula/
dorsal anterior cingulate cortex (negative RPE). All
reported regions were corrected for multiple com-
parisons. Activation patterns are shown using an
uncorrected height threshold of t . 2.5 for visuali-
zation purposes. (B) Association between stress-
induced change in left (L) (top) and right (R)
(bottom) nucleus accumbens (NAcc) positive RPE b
weight (RPE contrast: prestress – during stress) and
change in plasma IL-6 following stress. Note:
Extracted values for right and left NAcc regions of
interest were defined anatomically to avoid statistical
nonindependence (see Methods and Materials).
Note that for L NAcc, one subject was a univariate
outlier (Z = 4.38), but the association with change in
IL-6 was unaltered when including (r = 2.39,
p = .019) or excluding this subject (r = 2.42,
p = .014).
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observed an inverse relationship such that larger increases in
IL-6 following stress at times 2 and 3 were associated with
larger decreases in NAcc RPE b weights following stress (see
Table 1 and Figure 4B). This effect was strongest in the left
NAcc for the comparison of prestress . poststress RPE sig-
nals. Importantly, the association between IL-6 and RPE
remained when controlling for change in cortisol (b = 20.60,
t = 23.54, p = .002). This targeted ROI analysis was also fol-
lowed by a whole-brain analysis for both positive and negative
RPE contrasts, but no region showed a significant association
after controlling for multiple comparisons. There were no sig-
nificant associations with baseline IL-6 and NAcc RPE across
the prestress, during-stress, and poststress time points,
though these associations were not significantly different
Table 1. Spearman Correlations Between Stress-Induced
Change in IL-6 and Change in Striatal RPE Signals

Log IL-6 Increase
Time 1 to Time 2

Log IL-6 Increase
Time 1 to Time 3

Change in L NAcc RPE From
Prestress to During Stress

20.08 20.10

Change in R NAcc RPE From
Prestress to During Stress

20.21 20.34a

Change in L NAcc RPE From
Prestress to Poststress

20.39b 20.39a

Change in R NAcc RPE From
Prestress to Poststress

0.04 20.16

IL-6, interleukin-6; L, left; NAcc, nucleus accumbens; R, right; RPE,
reward prediction error.

ap , .05.
bp , .01.

574 Biological Psychiatry October 15, 2017; 82:570–577 www.sobp.or
from the correlations observed using difference scores (see
Supplemental Table S4).

Follow-up Data

To assess how well inflammatory responses to a laboratory
stressor predicted perceived stress over the 4-month follow-
up period, we examined associations between stress-
induced IL-6 levels and mean PSS scores as well as mean
sum of squared differences in PSS scores. The latter is a
commonly used measure of symptom variability over time (62).
There was no relationship between stress-induced change in
IL-6 response and average PSS score over the 4-month time
period. However, for participants followed for at least 1 month
with available IL-6 data (n = 47), greater change in IL-6
following stress predicted heightened variability of perceived
stress (r = .39, p = .007) (Supplemental Figure S2). We detected
a similar effect for participants followed for at least 2 months
(n = 44, r = .37, p = .014), 3 months (n = 40, r = .46, p = .003),
and for participants completing the full 4 months of follow-up
data (n = 31, r = .48, p = .007).

To demonstrate these relationships were not driven solely
owing to the effects of mood during the MAST, multiple
regression analyses were conducted to evaluate the relation-
ship between change in IL-6 following stress and variability of
perceived stress when controlling for changes in mood ratings.
When controlling for VAMS rating changes, stress-induced
change in IL-6 predicted perceived stress variability more
strongly (b = 0.60, t = 4.53, p = .00005). As an additional
control, we examined whether this association remained pre-
sent when controlling for baseline PSS scores, and findings
were confirmed (b = 20.60, t = 23.54, p = .002). Finally, we
g/journal
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additionally examined whether changes in RPE signals were
similarly predictive of PSS variability, but we did not observe a
significant relationship for either left (r = 2.20, p = .146) or right
(r = .03, p = .829) NAcc ROIs.
DISCUSSION

In this study we observed that stress-induced IL-6 was
significantly predictive of subsequent stress-induced changes
in NAcc RPE signals during RL. In addition, stress-induced
change in IL-6 predicted variability of perceived stress in
daily life over the ensuing 4 months even when controlling for
stress-induced changes in mood. To our knowledge, this is the
first study with a prospective component to link IL-6 and
striatal RPE responses to stress, suggesting that individual
differences in immune responses to stress may be a marker of
vulnerability for stress-related effects on reward processes.

The relationship between cytokines and DA signaling is
complex, and prior work suggests possible bidirectional path-
ways that may account for our observed relationships. One
possibility is that acute increases in IL-6 may suppress striatal
DA, thereby disrupting RPE signals (66). Evidence for such
rapid (,30 minutes) effects of systemic IL-6 injections on
striatal DA has been found in several rodent microdialysis
studies (44,45). Moreover, such effects appear somewhat
specific to striatal DA levels and have not been detected in
other regions [e.g., (67)]. This interpretation is also consistent
with prior work in humans showing that acute administration of
cytokine inducers leads to blunted ventral striatal activity
following reward cues (50), RPE signals (35), and midbrain
responses to novelty (51). Similarly, chronic exposure to cyto-
kine inducers has been shown to reduce DA availability and
synthesis in primates (47,49). One caveat to this interpretation
is the timing of IL-6 changes. While a statistically significant
increase was observed within 30 minutes of the MAST, the
magnitude of the increase was small. It is unclear whether this
small increase would be sufficient to have a major effect on
striatal DA. Moreover, the MIST was a less potent stressor.
Consequently, it may be that the relationship is better
conceptualized as amarker of individual differences in immune-
striatal interactions as compared to a casual description of the
direct effects of increased IL-6 on striatal function.

An alternative possibility, however, is that lower levels of DA
may influence cytokine responses to stress. As noted in the
introduction, DA receptors have been identified on a variety of
cells within the innate immune system, including T cells and
lymphocytes (52), and may regulate immune responses in the
body and brain at multiple levels. Consequently, the observed
relationship may be driven by the effects of stress-induced DA
release on cytokine signaling. Additionally, it should be
emphasized that while our analyses focused on the associa-
tion between change in IL-6 and change in RPE following
stress, these results should not be taken to suggest that
baseline levels in either case are necessarily unrelated.

In addition to the association between inflammatory re-
sponses to stress and RPE signals, we also observed that the
magnitude of IL-6 increases following stress was predictive of
variability in perceived stress during a 4-month follow-up
period but not of overall mean level of perceived stress.
Initially, we had hypothesized that both mean and variability on
Biological Psy
PSS might be related to IL-6 responses. One explanation for
this discrepancy from our hypotheses is that mean level of
stress may be more determined by the presence or absence of
external stressors than variability. Importantly, we found that
this relationship was robust and remained significant even
when controlling for sample attrition, baseline PSS scores, and
stress-induced change in mood, thereby helping extend the
ecological validity of our laboratory-based stress paradigms as
a means to probe neurobiological responses to stress. Vari-
ability of symptom and risk factor expression is increasingly
recognized as an important marker of psychological disorders
(68–71), and our data suggest that variability—rather than
mean level—may be a critical factor.

An important potential caveat to our findings is the lack of
concurrent assessment for all measures, particularly given the
absence of main effect of the MIST stressor (session 2) on
striatal RPE signals or salivary cortisol. This raises the possi-
bility that the second stress manipulation (MIST) was not as
effective as the first one (MAST) and could limit the interpret-
ability of the prestress versus poststress change in RPE sig-
nals. Specifically, it is possible that changes in RPE signals
were not due to stress, given the weakness of the MIST
stressor and the use of a fixed-order design, which was cho-
sen to maximize power for individual differences analysis.
Arguing against this point is the fact that there were clear
increases in negative affect, and individual differences in both
salivary cortisol and mood reactivity to the MAST (session 1)
and MIST (session 2) stressors were correlated, suggesting
that while the session 2 stressor had a less potent effect
overall, the examination of individual differences across the
two sessions is still valid (63).

There are several other limitations worth noting. First, our
sample included female participants only. This was done to
limit sex-based heterogeneity in hormonal response to stress,
but it is unclear whether the current findings will extend to male
subjects. While possible sex differences is a critical question,
the inclusion of both genders would likely have significantly
reduced our statistical power for identifying individual differ-
ences. Additionally, our study design required multiple stress
sessions, which may have produced some degree of habitu-
ation. Still, we observed clear affective responses to both
stressors (Figure 3), and we likely reduced habituation by using
two different stress manipulations. Additionally, caution is
warranted in attributing the observed changes in RL perfor-
mance accuracy to the stress manipulation due to the lack of a
no-stress control group for the neuroimaging session. We also
note that for collection of plasma samples, we used an intra-
venous catheter, which may have itself stimulated some de-
gree of IL-6 production (72). That said, this effect has generally
only been observed over longer time periods (e.g., .3 hours)
than were required for the current study (73). Additionally, we
note that while IL-6 is generally conceptualized as being
proinflammatory (43), it is important to note that it can also be
anti-inflammatory depending on the target (43,74,75).

In sum, we found that stress-induced changes in IL-6 levels
were associated with both striatal RPEs during RL as well as
stress sensitivity during a 4-month follow-up period. These
data have important implications for understanding the
relationships between stress and IL-6 and their impact on
reward-related corticostriatal circuitry.
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Erratum to: “Oxytocin Receptors in the Anteromedial Bed
Nucleus of the Stria Terminalis Promote Stress-Induced
Social Avoidance in Female California Mice (Biol Psychia-
try 2018; 83:203–213); https://doi.org/10.1016/j.biopsych.
2017.08.024.

The authors detected an error in the Discussion section.
Specifically, in column 1 on page 209, the sentence that
ª 2017 Society of Biological Psychiatry.
ical Psychiatry February 1, 2018; 83:296 www.sobp.org/journal
originally read “Injections of OT into the lateral septum reduce
social play in juvenile female mice but not in juvenile male mice
(44)” incorrectly referred to mice rather than rats. The sentence
should have read “Injections of OT into the lateral septum
reduce social play in juvenile female rats but not in juvenile
male rats (44).” This error has been corrected in the final
paginated version of this article.
Erratum to: “It Is Time to Address the Crisis in the Pharma-
cotherapy of Posttraumatic Stress Disorder: A Consensus
Statement of the PTSD Psychopharmacology Working Group
(Biol Psychiatry 2017; 82:e51–e59); https://doi.org/10.1016/j.
biopsych.2017.03.007.
The middle initial for author Theresa Gleason is incorrect in
the published version of this article. This author’s correct name
is Theresa C. Gleason.
Erratum to: “Association Between Interleukin-6 and Striatal
Prediction-Error Signals Following Acute Stress in Healthy
Female Participants” (Biol Psychiatry 2017; 82:570–577);
https://doi.org/10.1016/j.biopsych.2017.02.1183.

The authors have detected typographical errors at several
points in the text where the description of a difference score
calculation between two time points is incorrect. The analyses
themselvesarecorrect andarecorrectly interpreted in thearticle.
To avoid confusion regarding the difference score calculation
used to obtain the reported results, the errors are detailed here.
Specifically, on page 574, in the 5th line of column 1, the
text reads “prestress . poststress,” whereas it should read
“prestress , poststress.” On this same page, in the legend
for Figure 4, panel B is described as “RPE contrast: prestress –
during stress” whereas it should read “RPE contrast: during
stress – prestress.” Lastly, two similar errors are also pre-
sent in Supplemental Table S2. For the “Change in IL-6”
rows of data, “Time 1 2 Time 2” should instead be “Time
2 2 Time 1,” and “Time 1 2 Time 3” should instead be
“Time 3 2 Time 1.”
https://doi.org/10.1016/j.biopsych.2017.11.009
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