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Major depressive disorder (MDD) is clinically, and likely pathophysiologically, heterogeneous. A potentially fruitful approach to parsing
this heterogeneity is to focus on promising endophenotypes. Guided by the NIMH Research Domain Criteria initiative, we used source
localization of scalp-recorded EEG resting data to examine the neural correlates of three emerging endophenotypes of depression:
neuroticism, blunted reward learning, and cognitive control deficits. Data were drawn from the ongoing multi-site EMBARC study.
We estimated intracranial current density for standard EEG frequency bands in 82 unmedicated adults with MDD, using Low-Resolution
Brain Electromagnetic Tomography. Region-of-interest and whole-brain analyses tested associations between resting state EEG
current density and endophenotypes of interest. Neuroticism was associated with increased resting gamma (36.5–44 Hz) current
density in the ventral (subgenual) anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC). In contrast, reduced cognitive control
correlated with decreased gamma activity in the left dorsolateral prefrontal cortex (dlPFC), decreased theta (6.5–8 Hz) and alpha2
(10.5–12 Hz) activity in the dorsal ACC, and increased alpha2 activity in the right dlPFC. Finally, blunted reward learning correlated
with lower OFC and left dlPFC gamma activity. Computational modeling of trial-by-trial reinforcement learning further indicated
that lower OFC gamma activity was linked to reduced reward sensitivity. Three putative endophenotypes of depression were found to
have partially dissociable resting intracranial EEG correlates, reflecting different underlying neural dysfunctions. Overall, these findings
highlight the need to parse the heterogeneity of MDD by focusing on promising endophenotypes linked to specific pathophysiological
abnormalities.
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INTRODUCTION

Major depressive disorder (MDD), as currently defined,
represents a highly heterogeneous disorder that is etiologi-
cally and pathophysiologically complex. One potentially
promising approach to parsing this heterogeneity is the
investigation of endophenotypes (Chan and Gottesman, 2008;
Gottesman and Gould, 2003). Endophenotypes are assumed
to lie on the pathway between genotype and disease, and be
less complex than the downstream symptom clusters that
currently define psychiatric diagnoses. Gottesman and

colleagues proposed that endophenotypes must meet the
following criteria: (1) be associated with the disease; (2) be
heritable; (3) be primarily state-independent; (4) cosegregate
within families; (5) be more common in non-affected family
members of individuals with the disease compared with the
general population; and (6) be measured reliably.
Neuroticism, blunted reward learning and cognitive

control deficits have emerged as among the most promising
behavioral endophenotypes of depression (Goldstein and
Klein, 2014; Pizzagalli, 2014; Snyder, 2013), and map well
onto central Research Domain Criteria (RDoC) domains,
particularly negative valence systems (neuroticism), positive
valence systems (reward learning), and cognitive systems
(cognitive control). First, neuroticism—the propensity to
experience negative emotions—is elevated in current and
remitted depression (De Fruyt et al, 2006; Klein et al, 2011),
and predicts first onset of MDD (Kendler et al, 2006). Twin
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studies indicate that neuroticism shares significant genetic
variance with depression, and is moderately heritable
(eg, Birley et al, 2006; Kendler et al, 2006). Moreover,
neuroticism cosegregates within families (Farmer et al, 2002;
Ouimette et al, 1996), and non-depressed family members of
those with MDD have higher levels of neuroticism than the
general population (Modell et al, 2003). Finally, measures of
neuroticism (eg, NEO Personality Inventory) have relatively
strong psychometric properties (Costa et al, 2005).
Second, blunted reward learning—defined as a diminished

ability to modulate behavior as a function of rewards—has
been observed in both individuals with current and remitted
MDD (Goldstein and Klein, 2014; Pechtel et al, 2013;
Pizzagalli, 2014). A twin study estimated the heritability of
reward learning to be 0.46 (Bogdan and Pizzagalli, 2009), as
assessed by a commonly used Probabilistic Reward Task
(PRT; Pizzagalli et al, 2005a). In addition, the same study
reported a moderate (r= 0.29) genetic correlation between
depression and reward learning. Data related to the reliability
of reward learning is limited, with one study finding
significant test–retest reliability (r= 0.57) over 38 days
(Pizzagalli et al, 2005a). To our knowledge, no study has
evaluated whether reward learning fulfills the cosegregation
or familial association endophenotype criteria.
Finally, MDD is characterized by broad impairments in

cognitive control, which often persist following remission
(Snyder, 2013) and exhibit trait-like stability (Sarapas et al,
2012). Moderate-to-high heritability (Friedman et al, 2008;
Stins et al, 2004), as well as strong test–retest reliability
and internal consistency (Wöstmann et al, 2013) have been
reported for commonly used cognitive control paradigms
(eg, Stroop, Eriksen Flanker). In addition, there is evidence
of cognitive control impairments in healthy, unaffected twins
discordant for MDD (Christensen et al, 2006). Evidence for
cosegregation and familial association is lacking.
With regards to neural substrates, neuroticism has been

associated with increased amygdala and anterior cingulate
cortex (ACC) activity (Haas et al, 2007; Servaas et al, 2013),
both in the ‘affective’ (ie, rostral (rACC) and subgenual
(sgACC)) and ‘cognitive’ subdivisions (ie, dorsal (dACC)).
In contrast, tasks tapping reward learning have been shown to
recruit the striatum, orbitofrontal cortex (OFC; Hornak et al,
2004; O’Doherty, 2004), dACC (Rushworth et al, 2007; Santesso
et al, 2008), and left dorsolateral prefrontal cortex (dlPFC; BA
9/46; Ahn et al, 2013; Pizzagalli et al, 2005b), especially in tasks
requiring integration of reinforcements over time (eg, PRT).
Finally, cognitive control has been reliably linked to the dlPFC
and dACC (Pizzagalli, 2011; Ridderinkhof et al, 2004).
Inspired by the RDoC initiative, the goal of this study was

to examine the association between these three candidate
endophenotypes and intracranial estimates of resting brain
electrical activity (EEG) in an unmedicated depressed
sample. We employed a region-of-interest (ROI) approach,
followed by an exploratory whole-brain analysis to test the
specificity of ROI findings. ROIs were selected based on the
literature reviewed above, and within the constraints of EEG
source localization techniques, which cannot probe sub-
cortical structures (eg, amygdala, caudate). Based on prior
studies, we hypothesized that: (1) neuroticism would be
associated with greater resting activity in the affective
(rACC/sgACC) and cognitive (dACC) subdivisions of the
ACC; (2) blunted reward learning would be linked to lower

activity in the OFC, dACC, and left dlPFC; and (3) reduced
cognitive control would correlate with lower activity in the
dlPFC and cognitive (dACC)—but not affective—ACC
subdivision. Finally, a cluster analysis was conducted in an
effort to empirically derive subgroups of depressed patients
on the basis of endophenotype profiles.

MATERIALS AND METHODS

Data were collected in a multi-site clinical trial entitled
‘Establishing Moderators and Biosignatures of Antidepres-
sant Response for Clinical Care for Depression’ (EMBARC).
Recruiting sites are Columbia University (CU), Massachu-
setts General Hospital (MGH), the University of Texas
Southwestern Medical Center (UT), and the University of
Michigan (UM). Participants completed several behavioral,
self-report, and physiological assessments before enrolling in
the double-blind, placebo-controlled clinical trial of sertra-
line and bupropion. Data collection for the treatment phase
is ongoing and the blind remains unbroken. Accordingly, the
current study only considers baseline resting EEG, behavioral
(Flanker and PRT), and self-report (NEO) data for the first
100 MDD subjects. Participants provided informed consent
following procedures approved by site IRBs.

Participants

Eligible participants (aged 18–65 years) met DSM-IV criteria
for a current MDD episode (SCID-I/P), scored 14 or above
on the 16-item Quick Inventory of Depression Symptoma-
tology (Rush et al, 2003), and were medication free for
43 weeks before completing any study measures. Exclusion
criteria included: history of psychosis or bipolar disorder;
substance dependence in the past 6 months (excluding
nicotine) or substance abuse in the past 2 months; active
suicidality; or unstable medical conditions (for more infor-
mation about the sample, see Supplementary Materials). Data
from 82 MDD subjects who passed quality control criteria for
both Flanker and PRT (see Supplementary Materials) and
had NEO scores were analyzed.

Measures

NEO Five-Factor Inventory: 3 (NEO-FFI-3). The NEO-
FFI is a 60-item self-report questionnaire assessing Neuroti-
cism, Extraversion, Openness, Agreeableness and Conscien-
tiousness (12 items/factor; McCrae and Costa, 2010).

Probabilistic Reward Task (PRT). The PRT uses a
differential reinforcement schedule to probe reward learning
(ie, the ability to modulate behavior as a function of
rewards), and has been described in detail (Pizzagalli et al,
2005a, 2008; see Supplementary Materials). Participants
performed two blocks of 100 trials.

Flanker Task. A modified version of the Eriksen Flanker
Task with an individually titrated response window was used
(Eriksen and Eriksen, 1974; Holmes et al, 2010). Participants
first completed a practice session followed by five blocks
consisting of 70 trials each (46 congruent and 24 incon-
gruent), for a total of 350 trials. On each trial, participants
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pressed a button to indicate whether a center arrow pointed
left or right. The central arrow was presented with adjacent
flankers, which either pointed in the same direction
(congruent condition) or the opposite direction (incongruent
condition) as the central arrow (see Supplementary Materials).
Both accuracy and reaction time (RT) were recorded.

Hamilton Rating Scale for Depression (HRSD). The 32-
item HRSD is a clinician-administered measure of depressive
symptom severity (Hamilton, 1960). It was administered by
trained clinical evaluators.

Data Acquisition and Reduction

Resting EEG recording consisted of four contiguous 2-min
trials (two eyes open, two eyes closed), for a total of 8 min.
Site certification, intersite standardization, quality assurance,
and preprocessing of resting EEG for all sites were performed
at the Columbia site (see Supplementary Materials for
details). McLean Hospital was responsible for site training
and certification, quality assurance, and analysis of Flanker
and PRT data as well as Low-Resolution Brain Electro-
magnetic Tomography (LORETA) analyses. Hypotheses were
tested for the theta (6.5–8 Hz), alpha1 (8.5–10 Hz), alpha2
(10.5–12 Hz), and gamma (36.5–44 Hz) frequency bands (for
rationale, see Supplementary Materials). LORETA (Pascual-
Marqui et al, 1999) was used to estimate the three-
dimensional intracerebral current density distribution for
each frequency band. With respect to the ACC, to test the
specificity of findings, LORETA voxels corresponding to the
affective (BA25 (sgACC); BA24/32 (rACC)) and cognitive
(BA24’/32’ (dACC)) subdivisions were identified (Pizzagalli,
2011). Similarly, anatomical considerations were used to
identify the dlPFC (lateral BA9 and BA46) and OFC
(BA11/13/47/12; Kringelbach and Rolls, 2004; see
Supplementary Material, Supplementary Figure 1, for ROI
definitions). For each ROI, intensity-normalized current
density was averaged across voxels.

Probabilistic Reward Task. The primary variable of
interest was change in response bias (RB) scores from the
first to the second block (RBBlock2−RBBlock1), which reflects
reward learning. In addition, discriminability scores, indexing
the ability to differentiate between stimuli, were included
as a covariate in specificity analyses (for formulas, see
Supplementary Materials). The development of a RB depends
both on the sensitivity to individual rewarding feedback and
the ability to incrementally associate stimuli/actions with
rewards over the course of the task. To discriminate between
these components of reward learning, we fitted a series of
reinforcement learning models to trial-by-trial behavioral
data as described previously (Huys et al, 2013). These
contained two key parameters: reward sensitivity, which
indexes the reinforcing strength of the individual reward
outcomes, and learning rate, which measures the ability to
progressively associate outcomes with antecedent stimuli/
actions (see Supplementary Materials).

Flanker task. The primary variables of interest were the
interference effects: lower accuracy and longer RTs on
incongruent than congruent trials. These effects were com-

puted as (AccuracyCompatible trials−AccuracyIncompatible trials)
and (RTIncompatible trials−RTCompatible trials).

Statistical Analyses

For ROI-based analyses, four separate sets of multiple
regressions were run to examine the association between
LORETA-derived EEG current density and (1) neuroticism,
(2) reward learning, and the Flanker interference effects on
both (3) accuracy and (4) RT. For neuroticism, current
density in the affective (sgACC and rACC) and cognitive
(dACC) subdivisions of the ACC were entered as predictors.
For reward learning, current density in the OFC, left and
right dlFPC, and dACC were entered as predictors. Finally,
for Flanker interference effects, separate multiple regressions
were run for accuracy and RT, with current density in the
rACC, dACC, and left/right dlPFC serving as predictors.
Regressions were run separately for each frequency band. All
predictor variables were entered simultaneously in multiple
regression models, and all models included site (CU/MGH/
UT/UM) as a covariate. For significant findings, specificity
analyses were performed to test whether associations
remained when accounting for (1) depression severity (by
entering HRSD scores as an additional predictor) and (2) the
other endophenotypes. In addition, to the extent that
significant findings emerged in the reward learning analyses,
we followed-up with two multiple regressions testing whether
significant ROIs also predicted the reward sensitivity and
learning rate parameters extracted from the computational
models. Regression analyses were carried out using SAS
version 9.2 PROC GLM. [Several univariate outliers (absolute
value z43.0) were identified. Specifically, gamma, theta,
alpha1, and alpha2 current density values in BA24/32 (rACC)
for 1 subject; theta, alpha1 and alpha2 in BA24’/32’ (dACC)
for 1 subject; gamma and alpha1 left dlPFC values for 1
subject. These data were omitted from the relevant analyses.]
To evaluate regional specificity, exploratory whole-brain

correlational analyses were conducted between (1) neuroti-
cism, reward learning and Flanker interference effects, and
(2) current density in the theta, alpha1, alpha2, and gamma
bands separately. To control for multiple comparisons, ana-
lyses were carried out using the ‘Randomise’ permutation-
based inference tool in FSL for nonparametric statistical
thresholding (5000 permutations, po0.05, FWE corrected;
Winkler et al, 2014). Finally, in an effort to empirically derive
subgroups of depressed patients on the basis of endopheno-
type measures, a two-step cluster analysis was conducted in
SPSS (Version 20) using the Log-likelihood distance measure
and Schwarz’s Bayesian Information Criterion as clustering
criteria (Chiu et al, 2001; Fava et al, 2012), and without pre-
specifying the desired number of clusters.

RESULTS

Supplementary Table 1 provides a summary of significant
ROI findings.

Neuroticism

The first regression predicted neuroticism scores, with
gamma current density in the cognitive (dACC) and affective
(sgACC) ACC subdivisions entered as predictors. As
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expected, when controlling for dACC, gamma activity in
sgACC was associated with neuroticism (β= 0.31, p= 0.018;
Figure 1a). In contrast, gamma activity in dACC did not
predict neuroticism (β=− 0.01, p= 0.965). An analogous
model entering gamma current density in the dACC and
rACC yielded a nonsignificant trend between rACC
and neuroticism (β= 0.24, p= 0.054; dACC: β=− 0.07,
p= 0.646). [Given the very high correlation between current
density in BA25 (sgACC) and neighboring BA24/32 (rACC)
(for gamma, r= 0.74), these variables were included as
predictors in separate regression models to minimize multi-
collinearity.] No significant predictors emerged for the theta
or alpha bands (p’s40.15).

Specificity analyses. The relationship between sgACC
gamma activity and neuroticism remained when accounting
for (1) current depressive symptoms (HRSD) and the other
NEO personality factors (β= 0.27, p= 0.024); and (2) Flanker
interference effects and reward learning (β= 0.29, p= 0.025).

Reward Learning

Greater gamma activity in the OFC (β= 0.33, p= 0.004) and
left dlPFC (β= 0.34, p= 0.002)—but not right dlPFC (β=
− 0.11, p= 0.358) or dACC (β=− 0.05, p= 0.682)—predicted
reward learning (Figure 1b and c). Importantly, the correla-
tions between reward learning and gamma activity in the left
(r= 0.31, p= 0.005) and right dlPFC (r=− 0.04, p= 0.711)
were significantly different (z= 2.36, p= 0.018; Meng et al,
1992). Models considering theta and alpha current density
yielded no significant associations (p’s40.06).

Specificity analysis. The relationships between gamma acti-
vity in the OFC/left dlPFC and reward learning remained sig-
nificant when accounting for (1) current depressive symptoms
and PRT discriminability (both β’s= 0.34, po0.005); and (2)
neuroticism and the Flanker interference effects (OFC:
β= 0.33, p= 0.008; left dlPFC: β= 0.41, po0.001).

Computational modeling. A multiple regression indicated
that gamma activity in the OFC (β= 0.27, p= 0.043)—but
not the left dlPFC (β= 0.11, p= 0.378)—positively predicted
reward sensitivity. No significant findings emerged in the
prediction of learning rate (p’s40.20).

Cognitive Control

Flanker interference effect (accuracy). The regression
revealed that gamma activity in the left dlPFC (β=− 0.31,
p= 0.009)—but not right dlPFC (β= 0.03), dACC (β= 0.20),
or rACC (β=− 0.05) (all p’s40.15)—was a significant
negative predictor of the Flanker interference accuracy effect
(Figure 1d). The correlations involving the left (r=− 0.30,
p= 0.007) and right (r=− 0.04, p= 0.71) dlPFC gamma
activity were different only at a trend level (z=− 1.72,
p= 0.085). Models for theta and alpha yielded no effects
(p’s40.05).

Specificity analysis. The relationship between gamma
current density in the left dlPFC and the Flanker interference
effect was confirmed when accounting for (1) current
depressive symptoms (β=− 0.32, po0.009) and (2) neuroti-
cism and reward learning (β=− 0.30, p= 0.020).

Figure 1 Partial regression plots displaying the association between (a) neuroticism and gamma current density in the subgenual anterior cingulate cortex
(sgACC; BA25), after controlling for the model covariates (site and gamma activity in BA 24'/32' (dACC)); (b) reward learning and gamma activity in the left
dorsolateral prefrontal cortex (dlPFC), after controlling for the model covariates (site and gamma activity in the right dlPFC, dACC, and orbitofrontal cortex
(OFC)); (c) reward learning and gamma activity in the OFC, after controlling for the model covariates (site and gamma activity in the left and right dlPFC, and
dACC); (d) Flanker interference effect on accuracy and gamma activity in the left dlPFC, after controlling for the model covariates (site and gamma activity in
the right dlPFC, dACC, and BA 24/32 (rACC)). The association in panel a remains significant (β= 0.29, p= 0.030) after removing the sgACC residual value at
the far right of panel.
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Flanker interference effect (RT). When considering gam-
ma, only current density in the left dlPFC was a negative
predictor of interference RT effects (β=− 0.23, p= 0.045;
Figure 2a). For theta, only dACC activity was negatively
associated with the interference RT effect (β=− 0.33,
p= 0.019; Figure 2c). For alpha2, dACC activity was
negatively associated (β=− 0.31, p= 0.020) and right dlPFC
activity positively associated (β= 0.51, p= 0.012), with the
interference effect (Figure 2b and d). All other predictors
were nonsignificant (p’s40.05).

Specificity analysis. The above relationships were con-
firmed when accounting for (1) current depressive

symptoms (theta dACC: β=− 0.34, p= 0.018; alpha2 dACC:
β=− 0.34, p= 0.012; alpha2 right dlPFC: β= 0.58, p= 0.005),
with the exception of gamma activity in the left dlPFC
(β=− 0.22, p= 0.054), and (2) neuroticism and reward
learning (theta dACC: β=− 0.32; gamma left dlPFC:
β=− 0.32; alpha2 right dlPFC: β= 0.58; alpha2 dACC:
β=− 0.34, p’so0.020).

Exploratory Whole-Brain Analyses to Examine
Specificity of Findings

For the whole-brain correlations with neuroticism, 36 voxels
spanning the bilateral OFC and sgACC/rACC (BA11/47,
BA25, BA24) correlated positively with gamma activity

Figure 2 Partial regression plots displaying the association between Flanker interference effect on reaction time (RT) and (a) gamma current density in left
dlPFC, after controlling for model covariates (site and gamma activity in the right dlPFC, BA 24'/32' (dACC) and BA 24/32 (rACC), (b) alpha2 current density
in the right dlPFC, controlling for site and alpha2 activity in the left dlPFC, dACC, and rACC, (c) theta current density in dACC, controlling for theta activity in
rACC, and left and right dlPFC, and (d) alpha2 current density in dACC, controlling for alpha2 activity in rACC, and left and right dlPFC. The theta dACC effect
is reduced to a trend level (β=− 0.29, p= 0.060) in the model after removing the residual value at the bottom right corner of panel c. It should be noted that
the zero-order correlation (ie, excluding model covariates) between theta dACC and interference effect on RT is significant (r=− 0.25; p= 0.026).

Table 1 Whole-Brain Correlations between Candidate Endophenotypes and LORETA-Estimated Current Density

Peak-r MNI coordinates

Covariate Region (frequency band) Number of voxels x y z Mean r

Neuroticism Bilateral OFC/sgACC (γ) 36 11 31 − 27 0.27*

Reward learning L dlPFC/OFC (γ) 51 − 38 52 8 0.38***

Flanker ACC L dlPFC (γ) 4 − 38 38 36 − 0.38***

Abbreviations: dlPFC, dorsolateral prefrontal cortex; OFC, orbitofrontal cortex; sgACC, subgenual anterior cingulate cortex; γ, Gamma (36.5–44Hz).
For each cluster, the number of voxels exceeding the statistical threshold is reported (using the ‘Randomise’ permutation-based inference tool in FSL for nonparametric statistical
thresholding, with 5000 permutations, po0.05, FWE corrected for multiple comparisons; Winkler et al, 2014); Neuroticism=NEO Five-Factor Inventory (Neuroticism total
score); Reward Learning=Change in response bias scores from block 1 to block 2 in the Probabilistic Reward Task; Flanker ACC= Flanker interference effect on accuracy. Peak-
r MNI coordinates=MNI coordinates for the voxel associated with the largest Pearson’s correlation between the covariate and current density (unit: amperes per square meter,
A/m2); Mean r= the mean Pearson’s r averaged across all voxels belonging to the cluster. Similar to the analyses above, site is included as a covariate.
*po0.05, ***po0.001 (uncorrected).
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(Table 1 and Figure 3a). For reward learning, 51 voxels
encompassing the left OFC to the dlPFC (including lateral
BA10, BA11, BA47, BA9 and BA46) correlated positively
with gamma activity (Table 1 and Figure 3b). For the Flanker
accuracy interference effect, 4 voxels were significantly
negatively correlated with gamma activity (left dlPFC;
BA9/10; Table 1 and Figure 3c). For the interference RT
effect, no significant effects emerged.

Intercorrelations between Neuroticism, Reward
Learning, and Flanker Performance

The three endophenotypes were not significantly intercorre-
lated (see Supplementary Material).

Cluster Analysis

In an effort to delineate subgroups of depressed patients on
the basis of endophenotype profiles, we entered the following
standardized variables into a two-step cluster analysis:
neuroticism, PRT reward learning scores, and the Flanker

accuracy interference effect. A three-cluster solution yielded
the best fit (Bayesian Information Criterion= 180.69 and
LL= 1.21). The first cluster included 41% (N= 34) of the
sample, the second cluster 29% (N= 24), and the third cluster
28% (N= 23). ANOVAs revealed significant differences
across clusters in neuroticism (F(2,78)= 52.39, po0.001),
reward learning (F(2,78)= 75.41, po0.001), and the inter-
ference effect (F(2,78)= 11.46, po0.001). Notably, there were
no significant differences across clusters in total HRSD
depression scores (F(2,78)= 1.32, p= 0.27; see Figure 4 for
additional details).

DISCUSSION

MDD is increasingly recognized as a highly heterogeneous
disorder both in terms of symptom presentation and
etiology/pathophysiology. To parse this heterogeneity, there
has been increased interest in examining relatively less
complex and more tractable endophenotypes. The present
study examined whether three promising endophenotypes of

Figure 3 Whole-brain analysis displaying voxel-by-voxel correlations between (a) gamma (36.5–44 Hz) current density and neuroticism (displaying axial/
sagittal/coronal views of the bilateral OFC/subgenual ACC cluster (36 voxels) that was significantly positively correlated with neuroticism); (b) gamma current
density and reward learning (displaying axial/sagittal/coronal views of the left dlPFC/OFC cluster (51 voxels) that was significantly positively correlated with
reward learning); (c) gamma current density and Flanker interference effect on accuracy (displaying axial/sagittal/coronal views of the left dlPFC cluster
(4 voxels) that was significantly negatively correlated with the compatibility effect on accuracy).
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depression were associated with partially dissociable resting
intracranial EEG correlates. To this end, well-validated
measures of neuroticism (NEO), reward learning (PRT),
and cognitive control (Eriksen Flanker Task) were adminis-
tered to a sample of depressed adults and correlated with
source-localized estimates of resting EEG activity.
Interestingly, the majority of findings emerged in the

gamma band. Of note, a combined EEG/FDG-PET study
(Oakes et al, 2004) revealed that, of all the classic EEG bands,
positive correlations between LORETA estimates and resting
brain metabolic activity were strongest for gamma. Accord-
ingly, we interpret increased levels of gamma current density
as reflecting increased resting brain activity. Here, neuroti-
cism was associated with increased resting gamma current
density in a single cluster localized to the OFC and ventral
portions of the ACC (ie, subgenual BA25 and rostral BA24).
The latter ACC finding partially confirmed our hypotheses.
These ventral ACC regions correspond to the ‘affective’
subdivision of the ACC, which is densely interconnected
with limbic and paralimbic structures (eg, amygdala, nucleus
accumbens), has been implicated in emotion expression/
regulation, and is a critical hub in the default mode network
linked to self-referential processing (Buckner et al, 2008;
Etkin et al, 2011). Previous fMRI studies have associated
elevated neuroticism with ACC activity (Haas et al, 2007;
Servaas et al, 2013). One study (Haas et al, 2007) observed
that greater neuroticism correlated with elevated subgenual
ACC activation in a nonclinical sample engaged in an
emotional conflict task. Our findings extend these reports by
showing that neuroticism was associated with elevated
subgenual and ventral ACC gamma activity during rest
among an unmedicated MDD sample, suggesting that
depressed subjects with elevated neuroticism might engage
in maladaptive self-referential processing.
Studies probing the neural substrates of neuroticism must

contend with potential confounding variables, including
current depressive symptoms and related personality vari-
ables. Indeed, neuroticism has been repeatedly shown to
covary with current depressive symptoms (Klein et al, 2011),
which, in turn, have been associated with hyperactivity in
ventral ACC regions (Gotlib et al, 2005; Siegle et al, 2007). In
an effort to disentangle trait neuroticism effects from the
latter confounds, we controlled for current depressive
symptoms and the other four NEO factors. Notably, the

neuroticism-ACC gamma association remained significant,
suggesting that it more likely reflects the trait-like aspects of
neuroticism, rather than current depressive symptoms or
related personality trait confounds.
The neuroticism-OFC association was not anticipated.

However, neuroticism has previously been linked to both
reduced cortical thickness (Rauch et al, 2005; Wright et al,
2006) and gray matter volume (Kringelbach and Rolls, 2004)
in the OFC. Moreover, in addition to its role in value
encoding, the OFC has been implicated in emotional
processing and regulation/expression (Goodkind et al, 2012;
Rolls and Grabenhorst, 2008). In spite of parallels with prior
reports, the current link between OFC function and neuroti-
cism awaits replication.
Our hypotheses regarding reward learning were partially

supported. Specifically, blunted reward learning was asso-
ciated with reduced gamma activity in the left dlPFC and
OFC. Highlighting specificity, these associations remained
significant when controlling for current depressive symp-
toms and discriminability (an index of task difficulty).
Interestingly, gamma OFC also emerged as a significant
predictor of participants’ sensitivity to rewards, as derived
from computational modeling of trial-by-trial PRT perfor-
mance. Prior research has implicated both the OFC (Hornak
et al, 2004; O’Doherty, 2004) and left dlPFC (Ahn et al, 2013;
Pizzagalli et al, 2005b) in reward learning. In a prior study
using a different task, blunted reward responsiveness was
associated with reduced resting OFC and left dlPFC activity
among healthy controls (Pizzagalli et al, 2005b). However, in
contrast to the present study, the latter findings emerged in
the alpha2, rather than gamma, frequency band. More recent
research has implicated gamma activity in reward processing
(Marco-Pallarés et al, 2015). Contrary to our hypotheses,
resting dACC activity was not associated with reward
learning across any EEG band examined.
With regards to cognitive control, greater Flanker inter-

ference accuracy effects were associated with reduced left
dlPFC gamma power. When decomposing this effect, we
found that reduced left dlPFC gamma correlated with lower
accuracy for incongruent (r= 0.35, p= 0.001), but not
congruent (r= 0.08, p= 0.440), trials. [Although these find-
ings highlight specificity, it is important to emphasize that
variance in accuracy was reduced for the congruent (SD=
0.02), relative to the incongruent (SD= 0.13), trials, which

Figure 4 (a) Standardized means (with standard error bars) are displayed for neuroticism (NEO), Flanker interference effect on accuracy, blunted reward
learning (PRT), and total depression (HRSD) scores for each of three groups derived from the two-step cluster analysis. (b) Three-dimensional scatterplot
displaying association between the three endophenotype variables by cluster group. For consistency across measures, the PRT reward learning variable was
reverse scored such that higher scores on each of the displayed measures represent greater severity/impairment.
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may have limited the ability to detect a significant association
between LORETA current density and accuracy on con-
gruent trials.] Similarly, left dlPFC gamma activity was
negatively associated with interference RT effects. The dlPFC
has been strongly implicated in cognitive control (Pizzagalli,
2011; Ridderinkhof et al, 2004) and previous studies have
linked the left, but not right, dlPFC with cognitive control
(MacDonald et al, 2000), including studies using the Flanker
task (Fassbender et al, 2006). In contrast to these findings
from task-related fMRI paradigms, the current results
indicate that greater resting left dlPFC activity predicts
performance on a cognitive control task. Within our ROI—
but not whole-brain—analyses, increased alpha2 activity in
the right dlPFC and decreased theta and alpha2 activity in
the dACC were each associated with greater interference RT
effects. Because the theta and alpha2 effects were not
confirmed in whole-brain analyses, replications are war-
ranted. Importantly, most findings remained significant
when controlling for current depressive symptoms and the
other endophenotypes.
With regards to our gamma findings, there is evidence that

gamma oscillations may facilitate cortical circuit performance
and enhance information transmission by increasing signal-
to-noise ratio within neocortical circuits (Sohal et al, 2009).
Although speculative, it is possible that the latter mechanism
partially explains the observed findings (eg, greater gamma
activity in the left dlPFC reflects relatively enhanced cortical
circuit performance in this region, which in turn predicts
improved cognitive control performance on the Flanker).
The candidate endophenotypes examined in the current

study are themselves complex and multifaceted constructs,
which can be parsed into subcomponents. For example,
neuroticism has been defined with terms ranging from
temperamental, worrying, insecure, and self-conscious
(although most, if not all, personality theorists agree that
negative emotionality is a defining component; McCrae and
Costa, 1987). Similarly, cognitive control is an umbrella term
encompassing a range of related abilities, including the
ability to inhibit automatic or prepotent responses, shift in a
flexible manner between tasks or mental sets, and update
working memory in order to retain only relevant information
(Friedman et al, 2008; Snyder, 2013). Thus, fruitful findings
may emerge from studies examining whether different
subcomponents of promising endophenotypes have at least
partially dissociable neurobiological signatures.
It is also important to highlight that these endophenotypes

are not unique to MDD, but rather cut across several DSM
diagnostic categories. Thus, it will be important to investigate
the transdiagnostic value of candidate endophenotypes by
examining their neurobiological and genetic substrates
across psychiatrically heterogeneous samples. The current
study exclusively focused on MDD given that we were
specifically interested in exploring whether the well-
documented heterogeneity in this disorder category mapped
onto, at least partially, dissociable neural circuitry.
The extent to which these candidate endophenotypes have

diagnostic or clinical utility remains an open question. With
regards to the present data, an exploratory cluster analysis
indicated that three subgroups of depressed patients could be
differentiated on the basis of endophenotype profiles,
including a subgroup with relatively elevated neuroticism,
another with greater impairments in cognitive control, and a

final group with relatively blunted reward learning
(Figure 4). Although speculative, knowledge of endopheno-
type profiles may ultimately help inform optimal treatment
selection. For example, depressed individuals with impaired
cognitive control may benefit from interventions with pro-
cognitive effects (eg, vortioxetine, Mahableshwarkar et al,
2015). Similarly, certain pharmacological (eg, bupropion)
and psychotherapeutic (eg, behavioral activation; Dichter
et al, 2009) interventions may be particularly beneficial for
those depressed individuals characterized by blunted reward
learning and reward-circuitry deficits.

Limitations

Several limitations of the present study should be noted.
First, EEG source localization techniques cannot adequately
probe subcortical structures (eg, amygdala, caudate).
Although EEG has the benefits of being non-invasive and
relatively inexpensive, and thus may be relatively more
practical as a diagnostic tool in future clinical settings, it will
be important for subsequent studies examining the neural
correlates of plausible MDD endophenotypes to employ
modalities with greater spatial resolution (eg, fMRI), as well
as the ability to probe networks (eg, DMN, salience network).
Second, our findings were primarily in the gamma band.
There is some evidence suggesting that current density in
higher bands (eg, gamma and beta) may be contaminated by
muscle or EMG artifacts (Whitham et al, 2007). Although the
influence of muscle activity cannot be ruled out, we believe it
is unlikely that the current gamma findings (which emerged
from resting, task-free EEG data) are due to muscle activity
owing to their specificity in terms of hypothesized hemi-
spheric laterality and conditions. Finally, nicotine depen-
dence was not exclusionary, which may represent a possible
confound (eg, due to nicotine’s possible effects on cognitive
and reward function).
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Supplemental Methods and Materials 

Participants. In addition to the criteria listed in the main text, patients were excluded if 

they failed to respond to an adequate trial of an antidepressant in the current episode, or if they 

received treatment with ECT, VNS, rTMS or other somatic treatments in the current episode.  

For the present sample, mean age of first MDE was 16.2 (SD = 6.1), with a median number of 

prior MDEs of 6.0 (median length of current episode = 12 months). Ten percent (n=8) of the 

sample met criteria for current Panic Disorder; 7% (n=6) for PTSD; 12% (n=10) for GAD and 

15% (n=12) for Social Phobia.   

EEG Band Selection. Consistent with prior EEG source localization studies (Pizzagalli et 

al, 2006), analyses probing the ACC focused on the theta (6.5–8 Hz) and gamma (36.5–44 Hz) 

bands. The focus on these bands is justified on the basis of human and animal findings indicating 

that the ACC plays a critical role in the generation and/or modulation of theta activity (Cavanagh 

and Frank, 2014; Debener et al, 2005; Phillips et al, 2013; Tsujimoto et al, 2010; Womelsdorf et 

al, 2010), and that theta and gamma activity are functionally coupled (Burgess and Ali, 2002; 

Canolty et al, 2006; Düzel et al, 2003; Fell et al, 2003; Hajos et al, 2003; Schack et al, 2002). 

Further supporting the examination of gamma current density, a prior study (Oakes et al, 2004) 

found that the strongest positive correlations between resting brain metabolic activity (FDG-

PET) and intracranial estimates of standard EEG bands emerged for the gamma (36.5–44 Hz) 



frequency range. Moreover, gamma activity has been strongly implicated in reward processing 

(see Marco-Pallarés et al, 2015). In addition, both theta and gamma have been implicated in 

cognitive control (Cavanagh and Frank, 2014; Cavanagh and Shackman, 2014; Pizzagalli et al, 

2006) and neuroticism (Jaušovec and Jaušovec, 2007; Neo and McNaughton, 2011). It is 

important to note that the bulk of this research has focused on task-induced EEG activity (e.g., 

theta activity generated during cognitive control tasks, gamma activity induced during working 

memory and selective attention tasks). However, previous studies have observed associations 

between resting gamma activity and both neuroticism (Jaušovec, & Jaušovec, 2007) and 

cognitive control (e.g., post-error adjustment on the Flanker task; Pizzagalli et al., 2006).  Thus, 

to be consistent with previous relevant LORETA studies, and to facilitate comparison of 

findings, our investigation of gamma current density was restricted to 36.5-44hz (e.g., see 

Mueller et al, 2014; Oakes et al, 2004; Wacker et al, 2009). Finally, given prior research 

implicating resting alpha band activity in reward learning (Pizzagalli et al, 2005), we also 

examined current density in the alpha1 (8.5-10 Hz) and alpha2 (10.5–12 Hz) frequency range. 

 Probabilistic Reward Task. In this task, which is rooted in signal detection theory, subjects 

were asked to determine, via button press, whether one of two stimuli was presented on the 

screen: a short (11.5 mm) or a long (13 mm) mouth, superimposed on a previously mouthless 

cartoon face. In the present study, two blocks consisting of 100 trials were presented. Within 

each block an equal number of short and long mouths were presented. Each trial consisted of a 

fixation cross (jittered 750-900 ms) followed by a mouthless face (500 ms), after which either the 

short or a long mouth appeared on the face (100 ms). Importantly, to induce a response bias, an 

asymmetric reinforcer ratio was employed. Namely, correct identification of either the long or 

short mouth was rewarded (“Correct!! You won 5 Cents”) three times more frequently (“rich” 



stimulus) than the other mouth (“lean” stimulus). Participants were informed at the beginning of 

the task that the purpose of the game was to win as much money as possible, but that not every 

correct response would yield reward feedback. Keys and conditions (long or short mouth as 

“rich” stimulus) were counterbalanced across participants. Participants were excluded if any of 

the following quality control checks were not met: (1) less than 80 valid trials in each block (i.e., 

less than 20% outlier responses, as defined by RT shorter than 150 ms or greater than 2,500 ms 

and the log-transformed RT exceeding the participant’s mean±3SD; see [Pizzagalli et al., 2008] 

for more detail); (2) less than 24 rich rewards or less than 7 lean rewards in each block; (3) rich-

to-lean reward ratio < 2.5 in any block; and (4) rich or lean accuracy < 0.40 in any block.   

RB scores – our main variable of interest – capture a participant’s preference for the most 

frequently rewarded (“rich”) stimulus, and were calculated as (Pizzagalli et al, 2008): 

log b =  0.5*log{[(RichCorrect+0.5) * (LeanIncorrect+0.5)]/  

[(RichIncorrect+0.5) * (LeanCorrect+0.5)]}.   

In addition, discriminability scores, indexing the ability to differentiate between the two 

stimuli, were included as a covariate in specificity analyses. Consistent with prior research, 

discriminability was calculated as (Pizzagalli et al, 2008): 

log d =  0.5*log{[(RichCorrect+0.5) * (LeanCorrect+0.5)]/  

[(RichIncorrect+0.5) * (LeanIncorrect+0.5)]}. 

Computational Modeling. A series of reinforcement-learning models were fitted to the 

PRT choice data (see Huys et al, 2013). These models tested whether subjects associated rewards 

with stimulus-action pairs, with actions, or with a mixture of the two stimulus-action associations 

weighted by an uncertainty factor. They also tested whether subjects treated zero outcomes as 

losses. The models were fitted using an empirical Bayesian random-effects approach and were 



compared using integrated group-level BIC factors following previously established procedures 

(Huys et al, 2013). All sessions were fitted at once, meaning that individual subject parameter 

inference was constrained by an empirical prior distribution, i.e., a prior that was in turn inferred 

from all the data. No further assumptions were made and all sessions were treated equally.  

There was no evidence that subjects treated zero outcomes as losses. A model in which 

the rewarding outcomes were associated purely with actions gave the most parsimonious account 

of the data (log10iBIC compared to second-most parsimonious model > 100 which is decisive 

evidence in favor of the better fitting model). This model had four parameters. Reward 

sensitivity (mean; 1.84, SD: 0.89) measured the immediate behavioral impact of rewards. 

Learning rate (mean: 0.16, SD: 0.22) measured subjects’ ability to accumulate rewards over time 

and hence to learn from the rewards. Instruction sensitivity (mean: 1.49, SD: 0.64) measured 

subjects’ tendency to follow the instructions (i.e., which response to press for which stimulus). 

Initial bias (mean: -0.11, SD: 0.07) measured subjects’ initial bias towards one response or the 

other. The present study focused on the reward sensitivity and learning rate parameters.  

Eriksen Flanker Task. Participants first completed a practice session consisting of 15 

congruent and 15 incongruent trials. The flanking arrows were first presented alone (100 ms) and 

were then joined by the central arrow (50 ms), for a total stimulus duration of 150 ms. 

Participants were asked to indicate, via button press, whether the center arrow pointed left or 

right. Both accuracy and reaction time (RT) were recorded. Following the practice session, 

participants completed five blocks consisting of 70 trials each (46 congruent, 24 congruent), for a 

total of 350 trials. To ensure adequate task difficulty, a response deadline was established for 

each block that corresponded to the 85th percentile of the RT distribution from incongruent trials 

in the preceding block (in the first block, the practice RT distribution was used). Stimulus 



presentation was followed by a fixation cross (1400 ms). If the participant did not respond by the 

response deadline, a screen reading “TOO SLOW!” was presented (300 ms). Participants were 

told that if they saw this screen, they should speed up. If a response was made before the 

deadline, the “TOO SLOW!” screen was omitted and the fixation cross remained onscreen for 

the 300 ms interval. Finally, each trial ended with presentation of the fixation cross for an 

additional 200-400 ms. Thus, total trial time varied between 2050-2250 ms. The sequence of 

congruent and incongruent trials was established with optseq2 

(http://surfer.nmr.mgh.harvard.edu/optseq/) and was identical across participants. 

While data collection was ongoing, block-by-block feedback was added to maintain 

performance at desired levels. Specifically, if participants made fewer than three incongruent 

errors in a block, they were shown a screen reading, “Remember to respond as QUICKLY as 

possible while still being accurate”. If six or more incongruent errors were committed, the screen 

read, “Remember to respond as ACCURATELY as possible while still being fast”. Otherwise, 

the screen read, “Please respond as quickly and accurately as possible”.  

Quality control checks were used to exclude datasets characterized by unusually poor 

performance. First, for each participant outlier trials were defined as those in which the raw RT 

was less than 150 ms or the log-transformed RT exceeded the participant’s mean±3SD, 

computed separately for congruent and incongruent stimuli.  Second, we excluded datasets with: 

35 or more RT outliers (i.e., greater than 10% of trials), fewer than 200 outlier-free congruent 

trials, fewer then 90 outlier-free incongruent trials, or lower than 50% correct for congruent or 

incongruent trials. Trials characterized by RT outliers were excluded from all analyses. Data 

from 82 subjects passed both the Flanker and PRT checks and constitute the final sample. 

 



EEG Acquisition Methods 

 Intersite Standardization. Staff responsible for administering EEG sessions used the same 

pre-written set of instructions, and were certified, via videoconference, by the CU site after 

demonstrating: 1) proper EEG cap placement, 2) accurate administration of task instructions and 

3) submitting satisfactory EEG data from a practice administration with a volunteer. The EEG 

data were acquired using different recording equipment at each of the four study sites (CU, TX, 

UM, MGH). To maximize intersite comparability, the location of the recording electrode 

montage was optimized in all cases using direct measurements of electrode locations 

corresponding 10-20 system landmarks (nasion, inion, auditory meatus, vertex). Below, we 

describe the EEG acquisition methods at each site. 

 CU acquisition methods. The electrode montage consisted of 72 expanded 10-20 system 

scalp channels (Pivik et al, 1993) on a Lycra stretch electrode cap (Electro Cap International, 

Inc.). The cap includes 12 midline sites (nose, Nz to Iz) and 30 homologous pairs over the left 

and right hemisphere, extending laterally to include the inferior temporal lobes. EEG signals 

from the Ag/AgCl electrodes were recorded using an active reference (ActiveTwo EEG system) 

at sites PPO1 (common mode sense) and PPO2 (driven right leg). The scalp placements involved 

a conventional water soluble electrolyte gel and the interface was verified by the ActiView 

acquisition software. Additional care was taken to avoid electrolyte bridges (Alschuler et al, 

2014; Tenke and Kayser, 2001). Continuous EEG was acquired at 256 samples/s using the 24-bit 

Biosemi system. Raw data files were saved in the native (.bdf) format.  

 TX acquisition methods. Fifty-eight expanded 10-20 system scalp channels on a Lycra 

stretch electrode cap served as the electrode montage. The electrode cap included 8 midline sites 

(Nz to Iz) and 26 homologous pairs over the left and right hemisphere, extending laterally to 



include the two mastoids (recorded using nose reference). Continuous EEG was acquired at 250 

samples/s using the 32-bit Neuroscan system. Raw data files were saved in the native (.cnt) 

format. 

  UM acquisition methods. Sixty expanded 10-20 system scalp channels on a Lycra stretch 

electrode cap served as the electrode montage at this site. The montage included 8 midline sites 

(FPz to Oz) and 26 homologous pairs over the left and right hemisphere, extending laterally to 

include the two mastoids (recorded using a nose reference). Continuous EEG was acquired at 

250 samples/s using the 32-bit Neuroscan system. Raw data files were saved in the native (.cnt) 

format.  

 MGH acquisition methods. EEG acquisition for the MGH site took place at McLean 

Hospital. The electrode montage consisted of a 128-channel geodesic net (Electrical Geodesics, 

Inc.; EGI), including 10 midline sites (Nz to Iz) and 52 homologous pairs over the left and right 

hemisphere, extending laterally below to include the two mastoids (below the 10-20 landmarks). 

The montage also included 2 electrodes below each ear and 5 on each side of the face. A Cz 

reference was employed. The scalp electrodes were prepared using a saline solution, with 

impedances verified by the Netstation acquisition software, and with particular care taken to 

optimize the montage based on landmarks of the 10-20 system (nasion, inion, auditory meatus, 

vertex). Continuous EEG was acquired at 250 samples/s using NetStation software. Raw data 

files saved in the native (.raw) format.  

 

EEG Preprocessing Methods  

 EEG data processing was performed at the CU site, whereas LORETA analyses were 

conducted at McLean Hospital. All EEG data were first converted to BDF format (EEGLAB). 



Subsequently, data were converted to the 72-channel CU electrode montage. Specifically, 

missing channels from the UM and TX data were interpolated using spherical splines (Perrin et 

al, 1989), while all 72 channels were interpolated from the existing 128 channels for the McLean 

Hospital data. Finally, PolyREX was used to remove DC offsets, optimize data scaling, re-

reference to a nose-tip reference, and convert to 16-bit CNT. 

 The continuous EEG data were blink corrected using a spatial, singular value 

decomposition (NeuroScan) and segmented into 2-s epochs every .5-s (75% overlap). To aid 

identification of blinks and eye movements, bipolar EOG recordings (interpolated using 

spherical splines) were employed. The continuous data were epoched and averaged in a separate 

process prior to blink correction, and the resulting Hjorth averages were inspected. Epoched data 

were then screened for electrolyte bridges (Alschuler et al, 2014; Tenke and Kayser, 2001). 

Channels containing artifacts or noise for any given trial were identified using a reference-free 

approach to identify isolated EEG channels containing amplifier drift, residual eye activity, 

muscle or movement-related artifacts for any given trial, which were then replaced by spherical 

spline interpolations from artifact-free channels (i.e., if fewer than 25% of all channels contained 

artifact). Finally, an automated step was included to reject any remaining epochs exceeding a 

±100 V. Three members of the Columbia University study staff were involved in data cleaning 

and processing, and each was supervised by Craig E. Tenke, Ph.D 

Low Resolution Electromagnetic Tomography (LORETA). LORETA computes 

intracranial estimates of current density from scalp-recorded EEG data by assuming similar 

levels of activation among neighboring neurons (no assumption is made about the number of 

generating sources). LORETA partitions the brain into 2,394 cubic “voxels” (voxel dimension: 7 

mm3) and is limited to cortical gray matter and hippocampi, according to the digitized MNI 



probability atlases available from the Montreal Neurologic Institute (MNI; Montreal, Quebec, 

Canada). This distributed source localization technique has received cross-modal validation from 

studies combining LORETA with functional MRI (fMRI) (Mulert et al, 2004; Vitacco et al, 

2002), structural MRI (Cannon et al, 2011; Worrell et al, 2000), intracranial EEG recordings 

(Zumsteg et al, 2005a, 2006) and PET (Pizzagalli et al, 2004; Zumsteg et al, 2005b), but see 

(Gamma et al, 2004). Consistent with established procedures (Pizzagalli et al, 2004), LORETA 

activity was normalized to a total power of 1 before statistical analyses. To reduce differences 

across sites, a smoothness parameter of 10-5 was used. Mean intensity-normalized current density 

(averaged across voxels) was extracted from a priori regions-of-interest (see Figure S1). 

 

Supplemental Results 

Intercorrelations between neuroticism, reward learning and Flanker performance 

 The three endophenotypes were not significantly inter-correlated: neuroticism - reward 

learning (r = .15; p = .18), neuroticism - Flanker accuracy and RT (r = .21; p = .055; r = -.14; p = 

.201, respectively); reward learning - Flanker accuracy and RT (r = -.10; p = .392; r = .04; p = 

.738, respectively).  
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Supplemental Table 1 
 

Summary of Significant ROI-based Findings 
 

The table summarizes all significant findings from the primary ROI analyses predicting neuroticism, 
reward learning, Flanker interference effects on accuracy and reaction time (RT). As stated in the 
text, all effects control for site. sgACC = Subgenual anterior cingulate cortex (ACC; BA25); rACC = 
Rostral ACC (BA24/32); dACC = dorsal ACC (BA 24’/32’); OFC = Orbitofrontal cortex; dlPFC = 
Dorsolateral prefrontal cortex, left (L) and right (R) hemisphere.  

 

Predictors 

 

Dependent Variable 

Frequency Band   Parameter     

 Estimate () 

 

p-value 

sgACC  

        Neuroticism 

Gamma .31 .018* 

rACC   ns ns 

dACC   ns ns 

OFC 

Reward Learning 

Gamma .33 .004** 

dlPFC (L) Gamma .34 .002** 

dlPFC (R)  ns ns 

dACC   ns ns 

dlPFC (L) 

Flanker  
Interference Effect 

(Accuracy) 

Gamma -.31 .009** 

dlPFC (R)  ns ns 

dACC  ns ns 

rACC  ns ns 

dlPFC (L)  Gamma -.23 .045* 

dlPFC (R) Flanker 
Interference Effect 

(RT) 

          Alpha2 .51 .012* 

dACC Theta, Alpha2 -.33, -.31 .019*, .020* 

rACC  ns ns 



*p<.05, **p<.01 
Supplemental Figure S1. Regions-of-Interest (ROIs). Location and extent of (A) ACC 

subdivisions (BA25: 17 voxels; BA24: 12 voxels; BA32: 25 voxels; BA32’: 20 voxels; BA24’: 

48 voxels: BA25 = Subgenual ACC; BA24/32 = Rostral ACC; BA24’/32’ = Dorsal ACC), (B) 

OFC (BA11/13/47/12: 66 voxels), and (C) left and right dlPFC (lateral BA9: 73 voxels and 

BA46: 24 voxels) ROIs, as defined by the Structure-Probability Maps [Lancaster et al., 1997] 

and displayed on the LORETA template. Coordinates in mm (MNI space); origin at anterior 

commissure; (X) = left(–) to right(+); (Y) = posterior(–) to anterior(+); (Z) = inferior(–) to 

superior(+). 
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