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ing, phasic modulations of activity in midbrain dopamine neurons are conveyed
to the dorsal anterior cingulate cortex (dACC) and basal ganglia (BG) and serve to guide adaptive responding.
While the animal literature supports a role for the dACC in integrating reward history over time, most human
electrophysiological studies of dACC function have focused on responses to single positive and negative
outcomes. The present electrophysiological study investigated the role of the dACC in probabilistic reward
learning in healthy subjects using a task that required integration of reinforcement history over time. We
recorded the feedback-related negativity (FRN) to reward feedback in subjects who developed a response
bias toward a more frequently rewarded (“rich”) stimulus (“learners”) versus subjects who did not (“non-
learners”). Compared to non-learners, learners showed more positive (i.e., smaller) FRNs and greater dACC
activation upon receiving reward for correct identification of the rich stimulus. In addition, dACC activation
and a bias to select the rich stimulus were positively correlated. The same participants also completed a
monetary incentive delay (MID) task administered during functional magnetic resonance imaging. Compared
to non-learners, learners displayed stronger BG responses to reward in the MID task. These findings raise the
possibility that learners in the probabilistic reinforcement task were characterized by stronger dACC and BG
responses to rewarding outcomes. Furthermore, these results highlight the importance of the dACC to
probabilistic reward learning in humans.

© 2008 Elsevier Inc. All rights reserved.
Introduction
Optimal behavior relies on the ability to internally monitor
responses and to evaluate external reinforcements in order to
learn about the appropriateness of those responses. Mounting
evidence suggests that this reinforcement learning may de-
pend on the basal ganglia and midbrain dopamine system.
Accordingly, non-human primate studies have shown that
negative reinforcement elicits phasic decreases in neuronal
activity of midbrain dopaminergic neurons (i.e., negative pre-
diction error), whereas positive reinforcement elicits increases
of dopaminergic activity (i.e., positive prediction error)
(Montague et al., 2004; Schultz, 2007). These phasic modula-
tions are thought to act as teaching signals for the anterior
cingulate cortex (ACC) and basal ganglia (BG) to implement
goal-directed behaviors and update predictions of success or
failure (Holroyd and Coles, 2002). This model has received
support in the human electrophysiology literature with
li).
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respect to negative reinforcement (Holroyd and Coles, 2002;
Holroyd and Krigolson, 2007; Hajcak et al., 2007), but fewer
studies have examined positive reinforcement. In particular,
the role of the human dorsal region of the ACC (dACC) in
probabilistic reward learning is not well understood.

The dACC appears critical for encoding rewards and using
reinforcement histories to guide behavior (Akitsuki et al.,
2003; Amiez et al., 2006; Ernst et al., 2004; Rushworth et al.,
2007). In non-human primates, ACC lesions impair the ability
to integrate reinforcement history over time and choose ad-
vantageous responses (Kennerley et al., 2006). In humans,
modulation of behavior by reinforcement history can be in-
vestigated using two-alternative probabilistic reward tasks in
which correct responses to the two stimuli are differentially
rewarded; the development of a response bias towards the
more frequently rewarded (“rich”) stimulus indicates reward
sensitivity (Pizzagalli et al., 2005, 2008). Impaired learning on
this task has been demonstrated in anhedonic individuals
(Pizzagalli et al., 2005), mood disorder patients characterized
bydysfunctional reward processing (Pizzagalli et al., in press-a,
in press-b), and in healthy participants receiving a pharmaco-
logical challenge hypothesized to disrupt phasic DA signaling
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(Pizzagalli et al., 2008). This task thus appears suitable for
examining reward learning mediated by the midbrain dopa-
mine system. Consistent with this assumption, in a computa-
tional model of striatal–cortical function (Frank, 2005),
blunted response bias was accounted for by reduced DA bursts
to reward (Santesso et al., unpublished), suggesting that this
task is sensitive to learning mediated by the midbrain DA
system. The primary goal of the present study was to examine
reward learning during this task using the feedback-related
negativity (FRN) as an electrophysiological index of ACC
reward-related activity.

We recorded the feedback-related negativity (FRN) as an
indexofACC reward-relatedactivity. The FRNpeaks 200–400ms
following feedback and has been localized to various regions of
the cingulate cortex, including the dorsal ACC (dACC; Miltner
et al., 1997; Gehring and Willoughby, 2002), medial prefrontal
cortex (Muller et al., 2005; Nieuwenhuis et al., 2005; Van Veen
et al., 2004), and the posterior cingulate cortex (PCC), particu-
larly in response to positive versus negative feedback (Muller
et al., 2005; Nieuwenhuis et al., 2005). The FRN is thought to
reflect transmission of a DA signal from the BG (Holroyd and
Coles, 2002). Although commonly used to study negative
reinforcement, the FRN is reliably elicited by positive feedback
(Hajcak et al., 2005;Holroyd andColes, 2008;Muller et al., 2005;
Oliveira et al., 2007), and appears as a relatively more positive
ERP deflection (compared to that elicited by negative feedback).
We predicted that (1) reward feedback delivered after correctly
identifying the rich stimuluswould elicitmorepositive FRNs and
greaterdACCactivation in individualswhodevelopeda response
bias toward the rich stimulus (“learners”) versus those who did
not (“non-learners”); and (2) dACC activation would correlate
positively with reward learning and the FRN.

A secondary goal of this study was to test whether
“learners” and “non-learners” would differ in brain activation
in the BG, which includes the globus pallidus and three striatal
regions (nucleus accumbens, caudate, and putamen), in
response to reward feedback. We were able to address this
issue because a sub-set of the ERP participants also partici-
pated in an fMRI session that featured a monetary incentive
delay (MID) task, which has been used to probe reward-
related activity in the BG (Dillon et al., 2008; Knutson et al.,
2003). Relevant to the present study, recent neuroimaging
findings indicate that optimal performance in probabilistic
reward-learning tasks is accompanied by recruitment of
striatal regions. Accordingly, in a probabilistic reward-learn-
ing task, learners (but not non-learners) showed significant
correlations between prediction errors and fMRI signal in
dorsal and ventral striatal regions (Schonberg et al., 2007).
Along similar lines, participants who learned contingencies
between specific cues and the reward probabilities and used
them adaptively in a gambling task showed robust striatal
responses to reward feedback, particularly at early stages of
learning (Delgado et al., 2005). Based on these findings, we
predicted that, relative to non-learners, learners in the
probabilistic reward task would show larger BG responses to
reward feedback during the MID task.

Materials and methods

Participants

Two hundred and thirty-seven adults between 18 and
40 years old (105 men, mean age=24.5 years) were recruited
fromHarvard University and the surrounding community for a
larger study investigating the neurobiology and molecular
genetics of reward processing. Participants meeting the fol-
lowing criteria were excluded: present medical or neurologi-
cal illness (ADHD, head injury, loss of consciousness, seizures),
current alcohol/substance abuse or smoking, claustrophobia,
use of psychotropic medications during the last 2 weeks, and
pregnancy. All eligible participants were right-handed (Chap-
man and Chapman, 1987).

The study included three sessions. During the first session,
all participants completed the probabilistic reward task at the
Affective Neuroscience Laboratory, Harvard University. Sixty-
seven subjects were excluded due to failure to meet inclusion
criteria (n=31), prior task exposure (n=4), non-compliance
and/or performance below chance level (n=31), and outlier
status (n=1). Of the remaining 170 eligible subjects, 47 were
invited to complete an electroencephalogram (EEG) and fMRI
session (the order of which was counterbalanced). These 47
subjects were selected to cover a wide range of individual
differences in reward learning, which was measured by a
response bias difference score (block 3 – block 1; see below).
To this end, we first selected participants in the upper and
lower 20% of the distribution of reward learning; next, re-
maining subjects were selected in order to achieve a con-
tinuum in reward learning, so that selected participants would
be representative of the general population. Of the 47 par-
ticipants, 41 agreed to perform the probabilistic reward task
while EEG was recorded, whereas 38 completed the monetary
incentive delay (MID) task during functional scan acquisition
at the Martinos Center for Biomedical Imaging. For both the
EEG and fMRI datasets, 30 participants had usable data; data
from remaining participants were lost due to an insufficient
number of artifact-free EEG trials, equipment failure, incom-
plete data, non-compliance, motion artifacts (fMRI), and tech-
nical difficulties. Of the 30 participants with EEG data, 21 had
usable data from all three sessions.

Participants received $5 for the first session plus $5.80–
$6.20 in earnings in the probabilistic reward task. For the EEG
session, participants received $20 plus $24.60 (fixed amount)
in task earnings. For the fMRI session, participants received
$60 plus $20–$22 in earnings for the MID task. Participants
provided written informed consent. All procedures were
approved by the Committee on the Use of Human Subjects
at Harvard University and the Partners-Massachusetts General
Hospital Internal Review Board.

Procedures and tasks

Probabilistic reward task (EEG session)
During the EEG session, participants repeated the reward-

learning task used during subject selection, which has been
described in detail elsewhere (e.g., Pizzagalli et al., 2005,
2008; see also Tripp and Alsop, 1999). Briefly, the task in-
cluded 300 trials, divided into 3 blocks of 100 trials. Each trial
started with the presentation of a fixation point for 1400ms. A
mouthless cartoon face was then presented for 500 ms
followed by the presentation of this face with either a short
mouth or a long mouth for 100 ms. Participants were asked to
indicate whether a short or long mouth was presented by
pressing one of two keys (counterbalanced across subjects).
For each block, only 40 correct responses were followed by
positive feedback (“Correct!! You won 20 cents”), displayed
for 1500 ms in the center of the screen followed by a blank
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screen for 250 ms. [Unlike the EEG session, 5-cent rewards
were used for the behavioral pre-screening session involving
237 participants.] To induce a response bias, an asymmetrical
reinforcer ratio was used: correct responses for the rich
stimulus were rewarded three times (30:10) more frequently
than correct responses for the other (“lean”) stimulus. Par-
ticipants were informed at the outset that not all correct
responses would be rewarded but were not aware that one of
the stimuli would be rewarded more frequently. For 16 par-
ticipants, the same stimulus (e.g., rich mouth) was dispro-
portionally rewarded in both sessions; for the remaining 14
participants, the more frequently rewarded stimulus was
switched across the behavioral and EEG session.

After completing the task, participants filled out various
questionnaires, including the BDI-II (Beck et al., 1996) and the
62-item version of the Mood and Anxiety Symptom Ques-
tionnaire (MASQ; Watson et al., 1995) to assess depressive
symptoms, anxiety symptoms, anhedonic depression, and
general distress.

Monetary incentive delay task (fMRI session)
The MID task was identical to one recently used by our

group in an independent study to dissociate anticipatory
versus consummatory phases of incentive processing and
reliably elicits activity in brain reward circuitry, including the
four components of the BG (nucleus accumbens, caudate,
putamen, and globus pallidus) (Dillon et al., 2008; Knutson
et al., 2003). Participants completed 5 blocks of 24 trials. Each
trial began with the presentation of one of three equally pro-
bable cues (duration: 1.5 s) that signaled potential monetary
rewards (+$), no incentive (0$), or monetary losses (−$).
Following a jittered inter-stimulus interval (ISI: 3–7.5 s), a red
square was presented; participants responded to the target
with a button press. Following a second jittered ISI (4.4–8.9 s),
feedback was presented indicating a gain, no change, or loss:
successful reward trials yielded a gain (range: $1.96 to $2.34;
mean: $2.15); unsuccessful reward trials yielded no gain;
successful punishment trials yielded no loss; and unsuccessful
punishment trials yielded a loss (range: −$1.81 to −$2.19;
mean: −$2.00). No-incentive trials were always followed by
no change feedback. The task design and timing were
optimized using a genetic algorithm that maximized the
statistical orthogonality of the conditions under investigation
(Wager and Nichols, 2003).

Participants were told that their reaction time (RT) to the
target affected trial outcomes, such that rapid RTs increased
the probability of winning money on reward trials and
decreased the probability of losing money on loss trials. To
achieve a balanced design, delivery of outcomes was de-
coupled from RT such that 50% of reward and loss trials
resulted in delivery of gains and losses, respectively. However,
to maximize task believability, target presentation duration
was different for successful and unsuccessful trials. To this
end, participants were instructed to perform a practice block
of the MID task involving 40 trials while in the scanner; RT
were collected and subsequently used to titrate target
duration during the experimental blocks. Thus, when a suc-
cessful or unsuccessful trial was scheduled, the target was
presented for a duration corresponding to the 85th or 15th
percentiles, respectively, of RTs collected during the practice.
This subtle manipulation allowed participants to be generally
“successful” on scheduled success trials, and “unsuccessful”
on scheduled unsuccessful trials. Finally, to boost task en-
gagement, participants were informed that good performance
throughout the task would allow them to qualify for a sixth
“bonus” block (not analyzed here) involving larger gains
($3.63–$5.18) and few penalties (all participants “qualified”
for this bonus block). In two prior samples, we have shown
that the combination of instructions and task parameters used
in the current version of the MID task leads to sustained
motivated behavior (i.e., significantly shorter RT for reward
and loss trials compared to no-incentive trials across the five
blocks), and robust activation in reward-related brain regions
(Dillon et al., 2008).

Data collection and reduction

Behavioral data
For behavioral analyses, the main variables of interest were

response bias and reward learning during the probabilistic
reward task administered at the EEG session. Response bias (b)
assesses the systematic preference for the response pairedwith
the more frequent reward (rich stimulus), and was computed
as:

logb ¼ 1
2
log

RichcorrectTLeanincorrect

RichincorrectTLeancorrect

� �

Following prior recommendations, 0.5 was added to every
cell of the detectionmatrix to allow calculation of response bias
in cases with a zero in one cell of the formula (Hautus, 1995).
Reward learningwas computed as the response bias score from
block 3 minus the response bias score from block 1, as this
calculation captures the development of response bias across
the task. Negative values represent poor reward learning (i.e.,
failure to develop a response bias) and have been associated
with elevated self-reported anhedonic symptoms (Pizzagalli
et al., 2005) and purportedly reduced phasic dopaminergic
transmission (Pizzagalli et al., 2008), whereas positive values
indicate increased sensitivity to reward feedback. On the basis
of this difference score, two groups were formed for the ERP
analyses: a non-learners group (n=14), comprising individuals
who failed to develop a response bias (i.e., a negative score); and
a learners group (n=16), comprising those individuals display-
ing successful reward learning from block 1 to block 3.

Scalp ERP data
EEG was recorded continuously using a 128-channel Elec-

trical Geodesics system (EGI Inc., Eugene, OR) at 250 Hz with
0.1–100 Hz analog filtering referenced to the vertex. Impe-
dance of all channels was kept below 50 kΩ. Data were
segmented and re-referenced off-line to an average reference.
EEG epochs were extracted beginning 200 ms before and
ending 600 ms after feedback presentation during each block.
Data were processed using Brain Vision Analyzer (Brain
Products GmbH, Germany). Each trial was visually inspected
for movement artifacts and manually removed followed by
automatic artifact removal with a ±75 µV criterion. Eye-
movement artifacts were corrected by Independent Compo-
nent Analysis (e.g., Makeig et al., 1997). A pre-stimulus base-
line between −200 and 0 ms was used. The amplitude of the
ERP was derived from each individual's average waveform for
themidline sites Fz and FCz, where the FRN is typically largest,
and filtered at 1–30 Hz. The FRN was defined as the most
negative peak 200–400 ms after reward feedback following
correct identification of the rich stimulus.
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To allow participants to be exposed to the differential re-
inforcement schedule, primary analyses focused on ERPs
computed by averaging artifact-free EEG epochs time-locked
to reward feedback for the rich stimulus from blocks 2 and 3
(“blocks 2 and 3”). For analyses evaluating FRN changes over
time (see below), secondary analyses also considered ERP peak
data from block 1. To ensure that findings were not affected by
the relatively lownumber of trials available for someof the ERP
averaging (e.g., 30 rewarded rich trials in block 1), analyses
were re-run by considering both rich and lean rewarded trials.
Findingswere essentially identical to the ones presented in the
main text (results available upon request). Given the asym-
metric reinforcement ratio used in probabilistic reward task, it
was not possible to obtain a sufficient number of trials to
analyze reward feedback following lean stimuli.

Source localization of ERP data
Low Resolution Electromagnetic Tomography (LORETA;

Pascual-Marqui et al., 1999) was used to estimate intracerebral
current density underlying the reward-related FRN following
previously published procedures (e.g., Pizzagalli et al., 2002; see
Pizzagalli, 2007 for a summary of LORETA core assumptions and
prior validationfindings). Current densitywas computedwithin
a 200–280ms post-feedback timewindow, which captured the
mean peak latency of the FRN across frontocentral sites
(274 ms). At each voxel (n=2394; voxel resolution: 7 mm3),
current density was computed as the linear, weighted sum of
the scalp electric potentials (units are scaled to amperes per
square meter, A/m2). For each subject, LORETA values were
normalized to a total power of 1 and then log-transformed
before statistical analyses.

fMRI data
The imaging protocol has been described in detail in an

independent study from our laboratory (Dillon et al., 2008).
Briefly, fMRI data were acquired on a 1.5 T Symphony/Sonata
scanner (Siemens Medical Systems; Iselin, NJ) using an op-
timized acquisition protocol (Deichmann et al., 2003). During
functional imaging, gradient echo T2⁎-weighted echoplanar
images were acquired using the following parameters: TR/TE:
2500/35 ms; FOV: 200 mm; matrix: 64×64; 35 slices; 222
volumes; voxels: 3.125×3.125×3 mm. A high-resolution T1-
weighted MPRAGE structural volume was also collected for
anatomical localization and extraction of structural regions-of-
interest (ROIs) using standard parameters (TR/TE: 2730/3.31ms;
FOV: 256 mm; matrix: 192×192; 128 slices; voxels: 1.33×
1.33×1 mm). Padding was used to minimize head movement.

Analyses were conducted using FS-FAST (http://surfer.nmr.
mgh.harvard.edu) and FreeSurfer (Fischl et al., 2002, 2004).
Functional pre-processing includedmotion and slice-time cor-
rection, removal of slow linear trends, intensity normalization,
and spatial smoothing with a Gaussian filter (6 mm FWHM). A
canonical hemodynamic response function (a gamma func-
tion) was convolved with stimulus onsets, and the general
linear model was used to assess the fit between the model and
the data. A temporal whitening filter was used to estimate and
correct for autocorrelation in the noise. Participants with
incremental (volume-to-volume) or cumulative head move-
ment greater than 3.75mmor degreeswere removed from the
analysis (n=5); for the remaining participants, motion para-
meters were included in the model as nuisance regressors. Of
the subjects with usable ERP data, functional MRI data for 21
subjects were available and included in the statistical analyses.
Regression coefficients (“beta weights”) indicating the fit of
the model to the data were extracted from ROIs obtained from
FreeSurfer's parcellation. For the purposes of the present
study, we focused on data from four BG ROIs (nucleus accum-
bens, caudate, putamen, and globus pallidus), consistent with
prior fMRI studies implicating BG regions in reward proces-
sing and reinforcement learning (e.g., Delgado et al., 2005;
Dillon et al., 2008; Knutson and Cooper, 2005; Schonberg
et al., 2007).

Statistical analyses

Test–retest reliability of behavioral data
The EEG session took place, on average, 39.30 days (S.D.:

23.88) after the initial behavioral pre-screening session. In a
prior study using the same probabilistic reward task in an
independent sample, we showed that the test–retest relia-
bility for the reward-learning score (i.e., response bias block 3
minus response bias block 1) over a 38-day period was r=0.57
(pb0.004; Pizzagalli et al., 2005). In our prior study, 20 of the
24 participants were allocated to opposite keys for the rich
stimulus. Thus, for participants allocated to a different bias
across the two sessions, reward learning was used to estimate
test–retest reliability. For participants allocated to the same
bias, we did not expect a significant test–retest correlation
when considering reward learning. Participants developing a
strong response bias toward the long mouth in the first
session, for example, were expected to showa robust response
bias toward this stimulus already in block 1 of the second
session, minimizing the amount of additional learning that
could be achieved. Accordingly, for participants allocated to
the same bias, the overall response bias (averaged across the 3
blocks) was used for test–retest computations.

In addition, in our prior study (Pizzagalli et al., 2005), we
did not account for possible fluctuations in mood/affect
between the two sessions. Because reward learning has been
found to negatively correlate with anhedonic symptoms (e.g.,
Pizzagalli et al., 2005; Bogdan and Pizzagalli, 2006), fluctua-
tions in mood across the two sessions might diminish the
test–retest estimates. To this end, we also computed residua-
lized reward-learning scores in which variance associated
with anhedonic symptoms (MASQ AD subscore) was removed.

ERP data
For the primary analyses, mixed-model ANOVAs were used

to analyze the FRN collapsed across blocks 2 and 3 with Group
as a between-subject factor and Site (Fz, FCz) as a within-
subject factor. Moreover, to examine the temporal character-
istics of reward learning, a secondary mixed-model ANOVA
was performed using Group as between-subject factor and
Learning Phase (early: block 1 vs. late: blocks 2 and 3) as the
within-subject factor. For the LORETA data, the groups were
contrasted on a voxel-wise basis using unpaired t-tests com-
paring current density in response to rewarded rich trials at
the time of the scalp FRN. Statistical maps were thresholded at
pb0.020 with a minimum cluster size of 5 contiguous voxels
(1.715 cm3), and displayed on a standard MRI template.
Pearson correlations were performed among behavioral, scalp
ERP, LORETA, and fMRI data.

fMRI data
Although the MID task has been used to dissociate anti-

cipatory versus consummatory phases of incentive processing
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Fig.1. (A) Averaged ERPwaveforms at Fz and FCz from 200ms before to 600ms after the
presentation of reward feedback for the rich stimulus for learners (light line) and non-
learners (heavy line) in the probabilistic reward task; and (B) amplitude of the FRN at Fz
during early (block 1) and late phases (blocks 2 and 3) of learning. Error bars refer to
standard errors.
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(e.g., Dillon et al., 2008), our interest in reward-related re-
inforcement learning led us to focus exclusively on responses to
outcomes (gains versus no gains) on reward trials in the present
study. For each participant, mean beta weights were extracted
from the four BG ROIs for delivery ofmonetary gains (successful
reward trial, or “win”) and omission of potential gains (unsuc-
cessful reward trial, or “no win”) and entered into a Group
(learners,n=12;non-learners,n=9)×Region (caudate, putamen,
pallidus, nucleus accumbens)×Outcome (win, no win)×Hemi-
sphere (left, right) mixed-model ANOVA.

Across the analyses of the behavioral, ERP, and fMRI data,
the Greenhouse–Geisser correction was used when applic-
able. Significant ANOVA effects were follow-up by Newman–
Keuls post-hoc tests.

Results

Demographic and behavioral data

Learners (n=16) and non-learners (n=14) did not differ
with respect to age (21.38±2.01 vs. 21.51±4.51 years; t(28)=
0.11, pN0.90), education (14.69±1.30 vs. 14.21±1.81 years; t
(28)=−0.83, pN0.40), sex ratio (9 male/7 females vs. 8 males/6
females; χ2(1)=0.002, pN0.90), ethnicity (75% vs. 71.4% Cau-
casian; χ2(2)=2.06, pN0.36), employment status (87.5% vs.
85.7% undergraduate students; Fisher's exact test pN0.39),
and length between the behavioral pre-screening and EEG
session (36.06±24.06 vs. 43.00±23.45; t(28)=−0.80, pN0.40).
One non-learner had a past history of major depressive
episode, whereas 2 learners had a past history of subthreshold
major depressive episode; no participants had received psy-
chotropic medication in the past 6 months.

Replicating prior findings from an independent sample
(Pizzagalli et al., 2005), non-learners reported higher anhe-
donic symptoms at the EEG session, as assessed by an an-
hedonic BDI-II subscore [loss of pleasure (item #4), loss of
interest (item #12), loss of energy (item #15), and loss of
interest in sex (item #21)] (0.68±0.82 vs. 0.25±0.45; t(28)=
1.74, p=0.049, one-tailed) and MASQ anhedonic subscore
(51.57±17.02 vs. 43.16±9.98; t(28)=1.62, p=0.06, one-tailed).
Groups did not differ in general distress (MASQ General Di-
stress Anxiety: 15.86±4.52 vs. 15.25±3.47; t(28) =0.42,
p=0.68; General Distress Depression: 20.07±10.54 vs. 15.44±
2.73; t(28)=1.62, p=0.12) or anxiety symptoms (MASQ anxious
arousal: 19.79±5.25 vs. 18.19±1.56; t(28)=1.16, p=0.26). Per
design, learners had significantly higher response bias differ-
ence scores (block 3 – block 1) than non-learners (0.15±0.13 vs.
−0.17±0.14; t(28)=4.43 pb0.00001).

For participants allocated to a different bias for the behav-
ioral and EEG session, the test–retest correlation for reward
learning over the two sessions was r=0.50 (p=0.068, n=14).
When residualized reward-learning values were considered,
in which variance associated with anhedonic symptoms
(MASQ AD scores) was removed, the test–retest correlation
was r=0.56 (pb0.035). As expected, for participants allocated
to the same bias, overall response bias (r=0.62, pb0.12, n=16)
but not reward learning (r=−0.02, pN0.55) was significantly
correlated across the two sessions.

Scalp ERP data

The FRNwas larger at FCz compared to Fz, as evident from a
main effect of Site, F(1,28)=10.56, pb0.004, partial η2=0.37. A
main effect of Group also emerged: as hypothesized, learners
had significantly more positive FRNs to rich reward feedback
than non-learners across sites, F(1,28)=5.23, pb0.035, partial
η2=0.16. Follow-up post-hoc Newman–Keuls tests confirmed
that learners had more positive FRNs compared to non-
learners at Fz (1.72±2.89 μV vs. −0.14±2.15 μV; pb0.010) and
FCz (0.76±3.33 μV vs. −1.59±2.13 μV; pb0.005) (Fig. 1A). An
ANOVA considering FRN values at Fz as a function of learning
phase revealed a significant Group by Learning Phase interac-
tion, F(1,28)=4.29, pb0.050, partial η2=0.13. As shown in Fig.
1B, the FRN becamemore negative from early (block 1) to later
phases (blocks 2 and 3) of the task for non-learners (pb0.050),
whereas the FRN did not change for learners (pN0.39). Group
differences emerged only for the later phase (pb0.001). An
analogous ANOVA on FRN values at FCz revealed only a main
effect of Group, F(1,28)=4.20, pb0.05, partial η2=0.15; learners
had a significantly more positive FRN than non-learners,
particularly at later phases of learning (block 1: p=0.051;
blocks 2 and 3: pb0.002). Finally, Pearson correlations
confirmed that the amplitude of the FRN to rich reward



Table 1
Summary of significant results emerging from whole-brain LORETA analyses
contrasting learners (n=16) and non-learners (n=14) in their response to reward
feedback after correctly identifying the stimulus associated with more frequent reward
in the probabilistic reward task

Region MNI
coordinates

Brodmann
areas

Voxels t-value p-value

X Y Z

Dorsal anterior
cingulate cortex

−3 17 22 24, 32, 33 7 2.769 .009

Posterior cingulate cortex 4 −46 15 29, 30, 31 34 −3.074 .005

The anatomical regions, MNI coordinates, and Brodmann areas of extreme t-values are
listed. Positive t-values are indicative of stronger current density for the learners than
non-learners, and vice versa for negative t-values. The numbers of voxels exceeding the
statistical threshold are also reported (pb0.02; minimum cluster size: 5 voxels).
Coordinates in mm (MNI space), origin at anterior commissure; (X)= left (−) to right (+);
(Y)=posterior (−) to anterior (+); (Z)= inferior (−) to superior (+).

Fig. 3. Scatterplot and Pearson correlation between increases in dACC activation and
response bias from early (block 1) to late phases (blocks 2 and 3) of learning. Relatively
increased dACC current density in response to reward feedback for the rich stimulus is
associated with greater reward learning (r=0.40, pb0.030). When the subject with the
lowest reward learning was omitted, the correlation was r=0.59, pb0.001.
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feedback correlated positively with differences in response
bias over time [i.e., response bias (blocks 2 and 3 – block 1)]
at Fz (r=0.46, pb0.01) and FCz (r=0.35, p=0.06), indicating
that the positivity of the FRN is a reliable index of reward
learning.

Source localization data

LORETA was used to estimate intracerebral current density
underlying the FRN, specifically duringblocks 2 and3 compared
to block 1. As hypothesized, learners showed relatively higher
activity to rich reward feedback than non-learners in the dACC
(Brodmann areas (BAs) 24, 32, 33; t(28)=2.769, pb0.009)
Fig. 2. Results of voxel-by-voxel independent t-tests contrasting current density for the le
probabilistic reward task. Red: relatively higher activity for learners. Blue: relatively higher ac
5 voxels) and displayed on the MNI template.
(Table 1, Fig. 2). By contrast, non-learners showed relatively
higher activity in the posterior cingulate cortex (PCC; BAs29, 30,
31; t(28)=3.074, pb0.005).

Inter-correlations among behavioral and ERP variables

Because the dACC is implicated in representing reinforce-
ment histories to guide behavior (Amiez et al., 2006; Holroyd
arners and non-learners in response to reward feedback for the rich stimulus on the
tivity for non-learners. Statistical map is thresholded at pb0.020 (minimum cluster size:
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and Coles, 2008; Kennerley et al., 2006), a positive correlation
between dACC activation to reward feedback and the ability to
develop a response bias was expected. As shown in Fig. 3,
higher current density in the dACC region was indeed asso-
ciated with greater reward learning [response bias (blocks 2
and 3 – block 1)] (r=0.40, pb0.030). Also, more positive FRNs
were associated with higher current density in the dACC
(Fz: r=0.41, pb0.030; FCz: r=0.38, pb0.040). In contrast,
higher current density in the posterior cingulate was asso-
ciated with poor reward learning (r=−0.43, pb0.020). No
correlations emerged between PCC current density and FRNs.

fMRI data

Nodifferences emerged between learners and non-learners
with respect to the 15th (275.42±35.09 ms vs. 267.89±
34.20 ms; t(19)=0.49, pN0.62) and 85th (382.50±47.47 ms
vs. 393.44±69.14 ms; t(19)=−0.43, pN0.65) percentile RTs,
which were used to titrate target duration for “unsuccessful”
and “successful” trials, respectively. As in a prior study using
this version of theMID task (Dillon et al., 2008), the differences
between the short and long duration targets (learners:
Δ=107.08 ms; non-learners: Δ=125.55 ms) were different
enough to foster task engagement while being similar enough
to elicit a comparable BOLD response.

In addition, a Group x Trial Type (reward, loss) ANOVA
performed on the percentage of trials with a mismatch be-
tween RT and outcome revealed no significant effects (all
Fsb1.21, all psN0.29). Thus, no behavioral differences emerged
between learners and non-learners during the MID task
(% mismatched loss trials: 0.21±0.08 vs. 0.19±0.15; % mis-
matched reward trials: 0.20±0.07 vs. 0.22±0.13), indicating
that fMRI findings were not confounded by group differences
in performance during the MID task.
Fig. 4. (A) Parcellation of basal ganglia structures in a representative participant; only
the caudate, putamen, and globus pallidus are shown in this coronal slice. (B) Mean beta
weights (averaged across regions and hemispheres) in response to win feedback and
no-win feedback in learners and non-learners (significant Group×Outcome interaction).
Error bars refer to standard errors.
For the fMRI data, the Group×Region×Outcome×Hemisphere
ANOVA revealed a main effect of Condition, F(1,19)=9.36,
pb0.007, partial η2=0.33, due to significantly higher activation
following win than no-win feedback. More importantly, this
effect was qualified by a significant Group×Condition interac-
tion, F(1,19)=6.57, pb0.02, partial η2=0.26. Neuman–Keuls
post-hoc tests indicated that, as hypothesized, learners had
significantly higher BG activation thannon-learners in response
to wins (0.080±0.074 vs. 0.025±0.045; pb0.002) but not no-
win feedback (0.019±0.039 vs. 0.018±0.053; pN0.91). More-
over, learners (pb0.004) but not non-learners (pN0.73), had
significantly higher activation to win compared to no-win
feedback (Fig. 4). Although group differences for win feedback
were significant for both hemispheres (psb0.0003), the
strongest differentiation was seen in the right hemisphere, as
evident from a significant Group×Condition×Hemisphere inter-
action, F(1,19)=4.68, pb0.045, partial η2=0.20. The only other
effect to emergewas a significant Region×Condition interaction,
F(3,54)=10.02, pb0.001, partial η2=0.35, which was not
explored further because it did not involveGroup. No significant
correlations emerged between (1) BG activation towins, and (2)
behavioral or ERP variables.

Discussion

This study investigated the contribution of the dACC to
probabilistic reward learning in humans. As predicted, relative
to non-learners, learners generated more positive FRNs and
greater dACC activity in response to reward feedback following
correct identification of the more frequently rewarded
stimulus. Consistent with prior studies underscoring the sen-
sitivity of FRN amplitude to learning (e.g., Muller et al., 2005),
group differences were largest in later phases of the pro-
babilistic reward task, by which time learners had established
a robust response bias. Furthermore, FRN amplitude was po-
sitively correlated with current density in the dACC, and both
FRN amplitude and dACC activationwere positively correlated
with reward learning. These correlations support the conclu-
sion that dACC responses to reward feedback are a useful
marker of reinforcement learning. Reward-relatedmodulation
of activity in the dACC is hypothesized to reflect a DA signal
conveyed by the BG (Holroyd and Coles, 2002). Although the
limitations of the electrophysiological technique precluded
measuring BG activity during the probabilistic reward task, we
found that relative to non-learners, learners showed a stronger
BG response to rewarding outcomes in the MID task. Po-
tentiated recruitment of BG regions in subjects developing a
response bias toward the rich stimulus is consistent with the
hypothesis that BG regions are critically implicated in feed-
back-based learning (Delgado, 2007; O'Doherty et al., 2004;
Seymour et al., 2007). Collectively, the present findings extend
a well-established model of human learning (Holroyd and
Coles, 2002) into the domain of positive reinforcement, and
highlight the importance of the human dACC in probabilistic
reward learning.

The observation of relatively greater dACC activation in
learners, as well as the relationship between dACC activation
and reward learning, is consistent with emerging animal and
neuroimaging evidence implicating the dACC in encoding
reward probability and mediating the link between reinforce-
ment history and upcoming behavior (Akitsuki et al., 2003;
Amiez et al., 2006; Ernst et al., 2004; Ito et al., 2003; Nishijo
et al., 1997; Shima and Tanji, 1998; Rushworth et al., 2007).
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First, Ito et al. (2003) described dACC neurons that were
particularly responsive to unexpected reinforcement; learners
in the current study may have recruited this population of
neurons, as only 40% of trials in the probabilistic reward task
were rewarded. Second, Shima and Tanji (1998) identified a
region of the rostral cingulate motor area (rCMA) that fired
when monkeys voluntarily switched from one response to
another in order to obtain greater reward, and this finding has
been replicated in humans (Bush et al., 2002). The human
homologue for rCMA is the anterior motor cingulate cortex
(BA 24b; Vogt, 2005), thus these findings suggest that the
human dACC – specifically, BA 24 – might play an important
role in updating response selection based on reward feedback.
Indeed BA 24 is the region identified by LORETA as more
strongly activated by rewards in learners versus non-learners
(Fig. 2). Third, Nishijo et al. (1997) identified dACC neurons
that not only responded to rewarding objects but whose
magnitude of response correlated with the monkey's object
preferences. This result mirrors the present demonstration of
a positive correlation between dACC activation and response
bias.

Although the current results are consistent with findings
highlighting the role of the dACC in using reward information
to optimize behavior, we note that the positive relationship
between FRN amplitude and dACC activation observed here
appears inconsistent with an influential model of the FRN
(Holroyd and Coles, 2002). The model proposes that the dACC
is tonically inhibited by dopaminergic BG signals, such that
when an event is worse than expected (negative prediction
error), the resultant DA dip disinhibits the dACC and a rela-
tively negative FRN is generated. The same model predicts
that when events are better than expected (positive prediction
error), the resultant DA burst will yield a more positive FRN
(Holroyd and Coles, 2008). Although a relationship between
the dACC and BG data presented here must be considered
speculative given important differences between the prob-
abilistic reward learning and MID tasks, this is essentially
what was observed in the current study: learners, who
showed a more vigorous BG response to unpredictable
rewarding outcomes than non-learners (Fig. 4), also showed
more positive FRNs (Fig.1). However, alongwithmore positive
FRNs, learners also showed relatively greater dACC activation
(Fig. 2). This seems to contradict the model (Holroyd and
Coles, 2002), because although it is not explicitly stated that
the relationship between DA bursts and more positive FRNs
must be mediated by inhibition of the dACC, this seems
logically implied by the fact that excitation of the dACC yields
a more negative FRN.

We are not currently able to resolve this discrepancy, but it
should be noted that we have observed this pattern of results
previously. Using the same paradigm, we found that adminis-
tration of a DA agonist (hypothesized to activate DA autorecep-
tors and thus decrease reward-related DA bursting) impaired
reward learning and led to a more negative FRN along with de-
creased dACC activity (Santesso et al., unpublished). By contrast,
participants who received a placebo demonstrated better re-
ward learning, a more positive FRN, and greater dACC activity.
Thus, in two studies examining probabilistic reward learning,we
have observed positive correlations between dACC activity and
FRN amplitude, rather than the negative correlation that has
been described in situations when performance and/or out-
comes are worse than expected (Holroyd and Coles, 2002). Fu-
ture research will be needed to specify how the relationship
between DA signals, dACC activation, and scalp FRN differs for
unpredicted negative vs. positive outcomes. Positive and nega-
tive prediction errors appear to be partially segregated to dif-
ferent regions of the striatum, with ventral anterior regions
relatively more implicated in positive prediction errors and dor-
sal posterior striatal regions relativelymore involved in negative
prediction errors (Seymour et al., 2007); this raises the pos-
sibility that different sub-regions within the dACC may mediate
FRNs to unpredicted positive vs. negative outcomes.

Relative to learners, non-learners unexpectedly showed re-
latively greater activation in the posterior cingulate cortex (PCC)
in response to rewards. The PCC is connected with reward-
related areas of the brain such as the ACC, medial PFC, and
caudate nucleus (Vogt et al., 1992). Furthermore, PCC activity
has beennoted during the expectation and delivery of reward in
monkeys (McCoy et al., 2003) and in response to positive
compared with negative feedback in humans (Marco-Pallares
et al., 2007; Nieuwenhuis et al., 2005), and implicated in the
acquisition of response-outcome associations in rodents (Tabu-
chi et al., 2005). However, the reason for a stronger PCC re-
sponse to rewards in non-learners versus learners is currently
unclear and will require additional research.

The present study has five main limitations. First, negative
feedbackwas not included in the probabilistic reward task. The
FRN deflection is notably larger following negative versus
positive feedback, and FRNs elicited by positive and negative
feedbackmay be generated by distinct areas in themedial PFC/
ACC (Nieuwenhuis et al., 2005); because our task involved only
positive feedback, we could not test this hypothesis. Second,
although we were able to investigate the spatio-temporal dy-
namics of brainmechanisms underling reinforcement learning
with millisecond time resolution, we could not examine ac-
tivity in subcortical regions (e.g., BG), or interactions between
BG and cingulate regions, during the probabilistic reward task.
Thus, while we show that relative to non-learners, learners
demonstrated increased dACC and BG activation to reward
feedback, it is important to emphasize that these data came
from different tasks, only one of which (the probabilistic
reward task) has a learning component. Although the di-
sparate nature of the tasks might explain the lack of cor-
relations between the EEG and fMRI data, we note that one of
the strengths of the present study was our ability to show that
non-learners were characterized by reduced activation in
brain regions implicated in reinforcement learning (BG and
ACC) in two rather distinct tasks, highlighting convergence
and promising generalizability across the findings. Never-
theless, the implied relationship between the ERP and fMRI
data is tentative and must be interpreted with caution. Third,
while the LORETA algorithm has received important cross-
modal validation (Pizzagalli, 2007), the spatial resolution of
this source localization technique (1–2 cm) remains relatively
coarse. Fourth, recent studies focusing on individual differ-
ences in reinforcement learning have provided compelling
evidence that genetic variations affecting dopaminergic func-
tion can have profound influences on behavior (Frank et al.,
2007) and brain activation (Klein et al., 2007), critically
extending theoretical models of reinforcement learning. Un-
fortunately, for the present analyses, genetic information was
not available. Finally, no data were collected about socio-
economical status — a variable that has been found to mo-
dulate monetary reward prediction error responses in a recent
fMRI study (Tobler et al., 2007). However, among these 30
participants, 26 were Harvard undergraduate students (12
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non-learners and 14 learners), 3 were graduate students, and
one had graduated from college and was employed. Despite
these similarities, results should be replicated with samples
directly evaluated with respect to economic status.

Nonetheless, the present study provides important electro-
physiological evidence of the critical role of the dACC in positive
reinforcement learning in humans, and suggests that the
differences in dACC activity in learners versus non-learners
may be related to differences in the vigor of BG responses to
rewards. The positive relationship between FRN amplitude and
dACC activation is at odds with a prominent model of human
reinforcement learning (Holroyd and Coles, 2002). Overall,
however, the findings are consistent with two of the model's
main hypotheses: (1) that phasic DA bursts act as signals that
reinforce rewardingbehaviors (Bayer andGlimcher, 2005;Garris
et al., 1999), and (2) that these signals “teach” the dACC to select
among various response options (Holroyd and Coles, 2002).
Moreover, these results add to emerging evidence indicating
that the dACC plays an important role in integrating reinforce-
ment history over time to guide adaptive behavior (Amiez et al.,
2006; Kennerley et al., 2006; Rushworth et al., 2007).
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