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Long-term memory (LTM) is a multifactorial construct,
composed of different stages of information processing
and different cognitive operations that are mediated by dis-
tinct neural systems, some of which may be more respon-
sible for the marked memory problems that limit the daily
function of individuals with schizophrenia. From the outset
of the CNTRICS initiative, this multidimensionality was
appreciated, and an effort was made to identify the specific
memory constructs and task paradigms that hold the most
promise for immediate translational development. During
the second CNTRICS meeting, the LTM group identified
item encoding and retrieval and relational encoding and re-
trieval as key constructs. This article describes the process
that the LTM group went through in the third and final
CNTRICS meeting to select nominated tasks within the
2 LTM constructs and within a reinforcement learning con-
struct that were judged most promising for immediate de-
velopment. This discussion is followed by each nominating
authors’ description of their selected task paradigm, ending
with some thoughts about future directions.
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Introduction

From the outset, the CNTRICS initiative appreciated
that long-term memory (LTM) is a broad and multidi-
mensional construct, encompassing multiple stages of in-

formation processing and engaging distinct neural
systems, some of which are likely to be more central to
thememory problems that limit the daily function of indi-
viduals with schizophrenia. A great deal of this under-
standing grew from clinical research employing
traditional neuropsychological memory tasks such as
the California Verbal Learning Test1 andWechslerMem-
ory Scale.2 However, unlike the previous MATRICS ini-
tiative3 that focused on these neuropsychological
measures, the goal of the CNTRICS initiative was to
identify tasks from the cognitive neuroscience world
that hold promise for translational development for
drug discovery.4 Accordingly, during the second of 3
CNTRICS meetings, 2 LTM domains5 were identified
as the most promising constructs for immediate transla-
tional development: (1) relational encoding and retrieval,
defined as ‘‘the processes involved in memory for stimuli/
elements and how they were associated with coincident
context, stimuli or events’’ and (2) item encoding and
retrieval, defined as ‘‘the processes involved in memory
for individual stimuli or elements irrespective of contem-
poraneously presented context or elements.’’ The LTM
group was also assigned the construct of reinforcement
learning, defined as ‘‘acquired behavior as a function
of both positive and negative reinforcers including the
ability to (a) associate previously neutral stimuli with
value, as in Pavlovian conditioning; (b) rapidly modify
behavior as a function of changing reinforcement contin-
gencies; and (c) slowly integrate over multiple reinforce-
ment experiences to determine probabilistically optimal
behaviors in the long run.’’ At the end of the secondmeet-
ing, a call went out to the scientific community to engage
in an online submission process to nominate tasks that
assess these 3 constructs to be considered for ongoing
development.
As part of the nomination process, scientists were

asked to provide evidence for each task’s construct val-
idity, link to neural circuits, clarity of cognitive mecha-
nisms, availability of an animal model, link to neural
systems through neuropsychopharmacology, amenabil-
ity for use in neuroimaging, evidence of impairment in
schizophrenia, and psychometric characteristics. In the
third CNTRICS meeting, the LTM breakout group
was asked to select the 2 most promising tasks within
each construct based on these same criteria, with an un-
derstanding that although all tasks may not meet all
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requirements (eg, animal model, psychometric character-
istics), tasks without clear evidence of construct validity
and link to a neural circuit should not be given further
consideration. The purpose of this article is to report
on the outcome of this deliberation process and provide
the reader with the nominating authors’ description of
the (1) item encoding and retrieval, (2) relational encod-
ing and retrieval, and (3) reinforcement learning tasks
that were judged to be ready for immediate translational
development.

For the construct of relational encoding and retrieval,
2 tasks—associative inference paradigm (AIP) and rela-
tional and item encoding and retrieval (RIER)—were
judged ready for further development and will be de-
scribed below. The third nominated task was a transitive
inference paradigm (TIP). Group members were
impressed with TIP’s link to neural circuits, availability
of an animal model, link to neuropsychopharmacology,
and evidence of impairment in schizophrenia. However,
the greater complexity of the TIP vs AIP resulted in
a somewhat lower score for construct validity and led
to a decision to select the AIP over the TIP for immediate
development. Two tasks were considered for the item
encoding and retrieval construct—RIER and inhibition
of current irrelevant memories task. Of these, only the
RIER (which assesses both item and relational memory)
was chosen. The nominating author’s acknowledgement
that the inhibition of current irrelevant memories task
has ‘‘unknown’’ construct validity precluded it from fur-
ther consideration. Within the reinforcement learning
construct, the complementary nature of several of the
nominated tasks lead the working group to recommend
3 tasks for further development—the probabilistic re-
ward task, the probabilistic selection task, and the prob-
abilistic reversal learning task. The weather prediction
task was the fourth task nominated. Because the nomi-
nating author described 3 different possible learning
strategies, questions arose about the task’s construct val-
idity and it did not receive further consideration. The rec-
ommended tasks are shown in table 1. Below are the
nominating authors’ descriptions of the selected tasks
within each of the 3 LTM constructs.

Relational Encoding and Retrieval

Associative Inference Paradigm

Description. Relational representations bind distinct
elements of an event into a memory representation
that captures the relationships between the elements.6,7

Relational representations are thought to underlie mne-
monic flexibility that allows for the generative use of
stored knowledge about elements of experience to ad-
dress new questions posed by the environment. The
AIP provides a means to examine mnemonic flexibility
and the nature of the relational representations that sup-
port the use of memory in novel situations.

In the AIP, participants receive explicit training on 2
sets of paired associates (eg, AB and BC) and are then
tested on whether they can infer from these associations
the relationship between A and C. Specifically, partici-
pants learn an initial set of AB associations, where
eachAmight consist of a unique face and each B a unique
house (figure 1a). Then, participants learn an overlapping
set of associations consisting of the same B stimuli (eg,
the same houses) paired with a new set of C stimuli
(eg, another unique set of faces). Thus, during learning,
each B stimulus (a house) is associated with 2 different
stimuli, A and C (2 unique faces), though the A and C
stimuli are not directly experienced together.
During a subsequent memory test, participants make

2-alternative forced-choice judgments that depend on
memory for the learned associations (AB and BC) and
the inferential relationship between A and C. For all
test trials, the incorrect choice item (foil) is a stimulus
that had been studied in another pairing, ensuring that
the 2-choice stimuli are equally familiar. This aspect of
the design provides construct validity because perfor-
mance requires memory for the relations between stimuli
rather the memory for individual items. That is, memory
judgments for trained pairs (AB, BC) cannot be deter-
mined from stimulus familiarity and must be made based
on learned associations. Similarly, for inferential pairs
(AC) whose relationship was not studied, participants
must retrieve the relation between the A and C stimuli
that emerges from the overlapping associations with
the same B stimulus.

ConstructValidity. The logic of the AIP rests on the the-
oretical argument that relational representations sepa-
rately code elements of an event, maintaining the

Table 1. Long-Term Memory in Schizophrenia

Relational encoding and retrieval: The processes involved in
memory for stimuli/elements and how they were associated with
coincident context, stimuli, or events.

Recommended for immediate development:
(1) Associative inference paradigm
(2) Relational and item encoding and retrieval (RIER) task

Item encoding and retrieval: The processes involved in memory for
individual stimuli or elements irrespective of contemporaneously
presented context or elements.

Recommended for immediate development:
(1) RIER task

Reinforcement learning: Acquired behavior as a function of both
positive and negative reinforcers including the ability to (a)
associate previously neutral stimuli with value, as in Pavlovian
conditioning; (b) rapidly modify behavior as a function of
changing reinforcement contingencies; and (c) slowly integrate
over multiple reinforcement experiences to determine
probabilistically optimal behaviors in the long run.

Recommended for immediate development:
(1) Probabilistic reward task
(2) Probabilistic selection task
(3) Probabilistic reversal learning task
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compositionality of the elemental representations and or-
ganizing them in terms of their relations to one an-
other.6,7 The compositional nature of these relations
allows for reactivation of representations from partial in-
put (pattern completion),8,9 a process thought to underlie
event recollection. Further, maintenance of the composi-
tionality of elements in relational representations allows
flexible use of learned information at retrieval, making it
possible to infer relations across stimuli without explicit
training. This flexibility is important for associative infer-
ence decisions that putatively require inference to solve
novel (untrained) stimulus configurations at test (AC re-
trieval decisions). However, relational representations
may also contribute to inferential decisions through
pattern completion at encoding (D. Shohamy and
A. D. Wagner, unpublished data).9,10 When learning
an overlapping set of pairs, AB and BC, pattern comple-
tion to AB during presentation of BC would enable an
AC relation to be encoded. At test, inferential logic is
not required to make an AC decision because a stored
AC relation exists and can be directly retrieved.

Neural Systems. Neuroanatomical and computational
models have proposed that the medial temporal region,
and the hippocampus, in particular, is essential for pat-
tern completion processes that support performance in
the AIP.9,11,12 Recent neuroimaging work with humans
has revealed activation in anterior hippocampal regions
at retrieval during inferential judgments relative to explic-
itly learned associations (figure 1b).13

Pharmacological and BehavioralManipulation. Data on
pharmacological manipulation effects on the AIP are not
yet available. Behavioral variation in performance has
been observed in the AIP, with awareness of the overlap-
ping relationships between stimuli during encoding per-
haps being essential to inferential performance at test.
For example, participants who are explicitly informed
about the overlapping relationships between stimuli prior
to learning or who spontaneously acquire such awareness

during learning perform more accurately on AC judg-
ments than uninformed or unaware subjects.14

Animal Models. Complementary animal work has
documented impaired associative inference judgments
following hippocampal lesion. In rats, lesions of hippo-
campus proper impair AC judgments without disrupting
the ability to encode or retrieve the explicitly trained asso-
ciations (AB and BC).15

Performance in Schizophrenia. How schizophrenia
affects performance in the AIP is currently unknown.
However, in the hierarchical TIP, schizophrenia impairs
relational judgments (BD) with performance on nonrela-
tional judgments (AE) remaining intact.16 Functional
neuroimaging has further demonstrated that impaired
memory performance in schizophrenia during conscious
recollection17 and the hierarchical inference task18 is as-
sociated with decreased activation in hippocampal
regions.

PsychometricData. These data are not yet available for
the AIP.

Future Directions. The AIP has a clearly defined con-
struct and good theoretical work done on neural systems.
Future studies should build psychometric evidence of
test-retest reliability, extend examination of the AIP to
schizophrenia populations, and increase examination
of pharmacological affects on performance. In particular,
medial temporal lobe regions that are thought to support
relational memory performance in the AIP receive input
from and provide feedback to dopamine (DA) releasing
neurons in the midbrain that are associated with reward
and motivation.19 Alteration in medial temporal lobe-
midbrain interactions may exist in schizophrenia given
the abnormal transmission of DA observed in the disease,
and these alterations may have important implications
for relational memory function. Medications used to
treat schizophrenia may also influence interactions
between medial temporal lobe structures and midbrain
DA regions thus impacting memory. Determining how
medication affects medial temporal lobe function and
performance in the AIP may yield new insights into dis-
ease treatment.

Item Encoding and Retrieval and Relational Encoding and
Retrieval

Relational and Item Encoding and Retrieval Task

Description. The RIER task combines 2 paradigms pre-
viously used to study item-specific and relational episodic
memory in schizophrenia. The first is a levels-of-processing
(LOP) task designed to control for group differences in
item-specific encoding strategies and, thereby, generate
equivalent recognition and source memory performance

Fig. 1. Associative Inference Paradigm. a) Participants encode
overlapping face-house pairs (AB, BC) and are tested on the
inferential relationship between pairs (AC). b) Anterior
hippocampal activation associated with inferential retrieval of AC
pairs.13 Reprinted with Permission from Wiley 8/27/08.

199

CNTRICS Final Task Selection



between schizophrenia patients and controls.20,21 The sec-
ond is a relational encoding task22 that produces a signifi-
cant recognition deficit in patients with schizophrenia.
During the encoding phase of RIER, participants are pre-
sented with 2 trial types in separate blocks. During ‘‘item-
specific’’ encoding blocks, participants are presented with
a series of trials in which they are shown a single object and
asked to rate whether it is pleasant or unpleasant. During
‘‘relational’’ encoding blocks, participants are presented
with a series of trials in which 3 objects are shown and
theymust judgewhether the objects are in the correct order
in terms of weight (from lightest to heaviest). In each study
block,participants encode12objects, anda totalof3blocks
arecompletedforeachencodingcondition.Thesequenceof
encoding blocks is counterbalanced to minimize order
effects. During the retrieval phase of the task, participants
first complete a yes/no item recognition test consisting of
a random sequence of 72 previously studied objects (36
fromitemspecificand36 fromrelational)and72previously
unseen foil objects. Next, participants are given an associa-
tive recognition test consisting of objects that were previ-
ously studied on relational trials. The test includes 18
‘‘intact’’ pairs consisting of objects that were originally
studied on the same trial and 18 ‘‘recombined’’ pairs con-
sisting of objects that were originally studied on different
trials. Subjects are asked to indicate if the pairs are intact
or rearranged.

Construct Validity. Behavioral research has distin-
guished between item-specific and relational encoding
strategies.22–24 Common item-specific encoding strategies
involve making a semantic decision about an item (eg,
‘‘pleasant’’/‘‘unpleasant,’’ ‘‘abstract’’/‘‘concrete’’),whereas
relational encoding strategies include imagining 2 or more
items interacting or linking 2 or more words in the context
of a sentence or story. It is thought that relational encoding
promotes memory for associations among items, whereas
item-specific encoding enhances the distinctiveness of spe-
cific item.23–26 In the episodicmemory literature, relational
encoding has been linked to the function of the hippocam-
pus, which is thought to support the binding of novel rep-
resentations.27–29 The distinction between relational vs
item-specific encoding has also been supported by neuroi-
maging studies of working memory (WM) that have
revealed dissociations between brain regions involved in
item-specificWMmaintenanceandregions involved inma-
nipulation of relationships fbetween items while they are
being maintained. Research has shown that dorsolateral
prefrontal cortex (DLPFC) is selectively activated on trials
in which relationships among items are processed.30More-
over, engagement of the DLPFC during relational WM
processingpredicts successfulLTMretrieval.22,31,32Several
studies have shown that although both relational and item-
specific encoding tasks are effective, they tend to have dif-
ferent effects on memory performance.23–26 For example,
relational encoding is optimal when memory for associa-

tionsbetween itemswillbe tested(eg,pairedassociate learn-
ing), whereas item-specific encoding is optimal when
memory for item details is tested (R. S. Blumenfeld and
C. Ranganath, unpublished data). The available evidence
therefore indicates that the construct of relational encoding
and retrieval has validity at both the cognitive and neural
level of analysis and that it is supported by both hippocam-
pal and DLPFC-mediated mechanisms.
In prior work,22 it has been shown that the associative

portion of the RIER task promotes LTM by building
associations between triplets of words, whereas this evi-
dence was not seen for a control task that involved pas-
sive rehearsal of words. Preliminary results (see below)
suggest that performance is impaired in patients relative
to controls. In contrast, item-specific semantic encoding
has been shown to improve memory by facilitating
encoding of distinctive item-specific information because
it does not encourage building of relationships among
items.24 As described below, item-specific semantic
encoding tasks promote robust levels of memory perfor-
mance in patients with schizophrenia.20,33,34

Neural Systems. Several recent studies have demon-
strated that DLPFC activation during relational encod-
ing reliably predicts successful LTM.22 However,
DLPFC activity is generally not correlated with success-
ful item-specific encoding (see Blumenfeld and Ranga-
nath 31 for review). For example, in a recent study
from Dr Ranganath’s labortory22 using a variant of
the relational encoding task used in the RIER paradigm,
participants were scanned while performing the 2 WM
tasks (figure 2a). On ‘‘rehearse’’ trials, subjects were re-
quired to rehearse a set of 3 words across a 12-second de-
lay period, whereas on ‘‘reorder’’ trials, participants were
required to rearrange a set of 3 words based on the weight
of the object that each word referred to over the delay.
Although both conditions required maintenance across
the delay, reorder trials also required participants to eval-
uate relationships between items in the memory set along
a single dimension (weight). Analyses of subsequentLTM
performance showed significantly more reorder trials in
which all 3 items were recollected than would be expected
based on overall item hit rates alone (figure 2b), but the
same was not true for rehearse trials. This result suggests
that, on reorder trials, participants successfully encoded
relationships between the items in each memory set.
Consistent with the idea that the DLPFC is involved in
relational processing in WM, DLPFC activation was in-
creasedduring reorder trials comparedwith rehearse trials
(figure 2c). Furthermore, DLPFC activation during reor-
der, but not rehearse trials, was positively correlated with
subsequent LTM performance. No such relationship was
evidentduring rehearse trials. In contrast, activation in the
left ventrolateral prefrontal cortex (VLPFC) (Broadmann
area 44/6) and in the hippocampus was correlated with
subsequent memory performance on both rehearse and
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reorder trials. Results from this study andothers32 suggest
that theDLPFCmay be specifically recruited during rela-
tional encoding, adding support to the validity of this
neural construct.

Pharmacological and BehavioralManipulation. Data on
pharmacological manipulation effects on the RIER are
not yet available. As noted above, when patients are pro-
vided with an item-specific encoding strategy, there are
no longer group differences in item recognition and
source retrieval performance20,21 or in functional mag-
netic resonance imaging (fMRI) activation in the
VLPFC.33,34

Animal Models. The kinds of relational encoding pro-
cesses that are manipulated in the RIER paradigm have
not been extensively investigated in animal models, in
part because it is difficult to directly manipulate encod-
ing strategies in nonhuman animals. Some relevant ev-

idence, however, comes from studies of WM tasks in
monkeys. For example, a single-unit recording study35

showed that neurons in the monkey dorsal prefrontal
cortex encoded information about temporal order rela-
tionships between a series of items presented in a WM
task. In contrast, ventral prefrontal neurons tended to
encode the physical features of objects to be maintained.
Another study demonstrated that lesions to mid-
DLPFC impaired memory for sequences of actions.36

This prior work demonstrates the feasibility of investi-
gating associative memory in animal models although
direct translation of the RIER to rodent models may
not be feasible, in which case nonhuman primate models
may be more appropriate.

Performance in Schizophrenia. Research by Dr Ragland
and others has revealed consistent evidence of episodic
memory deficits in schizophrenia linked to impaired
organizational processes. During initial experiments,

Fig. 2. Results From Blumenfeld and Ranganath.22 a) Example stimuli and task timing for working memory trials. b) Difference between
observed and expected numbers of recollected triplets from eachmemory set. Themean difference between the observed number of trials for
whichall 3wordswere successfully judgedas rememberedand the expectednumberof such trials given theoverall hit rate is separatelyplotted
for reorder and rehearse trials. A positive difference indicated that subsequent memory performance was benefited by enhanced inter-item
associations. Error bars depict the SEM across subjects, and the asterisk denotes that the observed expected difference was statistically
significant forreorder trials. c)Timecourseofactivation inprefrontal regionsof interest (ROIs).Theactivity in the reorderandrehearse task is
plotted separately for the left dorsolateral prefrontal cortex (DLPFC), andanterior ventrolateral prefrontal cortex (aVLPFC)was correlated
with subsequent LTM performance specifically during reorder trials. In contrast, delay period activation in the posterior ventrolateral
prefrontal cortex (pVLPFC)was predictive of subsequent LTMonboth rehearse and reorder trials. The error bars in the time courses reflect
the SEM at each time point for the reorder and rehearse tasks for each ROI. Reprinted with permission from Society for Neuroscience.
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subjects were studied with explicit word list encoding
tasks where no strategy was provided.37,38 During
debriefing, controls were more likely to engage in item-
specific semantic processing, and we suspected that
patients were employing a less effective strategy. A lev-
els-of-processing paradigm39 tested whether providing
a semantic, item-specific encoding strategy could im-
prove patients’ performance and prefrontal function.
As predicted, patients showed the same benefit as healthy
controls from item-specific semantic processing on both
recognition20,34 and source memory tasks21 and showed
robust activation in the ventrolateral portions of the pre-
frontal cortex.33,34 These results suggest that item-specific
encoding processes may be relatively spared compared
with relational encoding and motivate inclusion of a se-
mantic item-specific encoding condition in the RIER
paradigm to address issues of generalized deficit.

In contrast, pilot data from Dr Ragland and Dr
Ranganath using the relational encoding condition
from the RIER task suggest that when individuals
with schizophrenia are provided with a relational encod-
ing strategy, they may perform more poorly than con-
trols (figure 3). Specifically, preliminary data from
a sample of 15 patients with schizophrenia (8 females)
and 16 demographically matched healthy volunteers
showed main effects of group [F(1,29) = 7.04], p <.05,
task [F(1,29) =13.7, p < .001], and a task by group in-
teraction [F(1,29) =5.06, p < .05] on recognition accu-
racy. As can be seen in Figure 3, this interaction was
due to patients having worse recognition accuracy rela-
tive to healthy volunteers on the relational memory re-
order condition [F(1,29) =10.0, p < .005], but not on the
item-specific rehearse condition [F(1,29) =3.84, p < .06].

PsychometricData. These data are not yet available for
the RIER.

Future Directions. The RIER task has well-established
construct validity, identification of specific prefrontal
cognitive control systems underpinning task perfor-
mance, and preliminary evidence for a relative deficit
in relational vs item-specific encoding and retrieval per-
formance in schizophrenia. Improved understanding of
the specific role that the hippocampus and MTL play
in task performance, development of animal models,
and building psychometric evidence of test-retest reliabil-
ity were identified as important future directions. Al-
though relational memory can be examined in animal
models, direct translation of the RIER to animal models
will require directly manipulating encoding strategies.
Meeting this goal may be more feasible in nonhuman pri-
mates then in rodent models. As with all LTM tasks,
establishing adequate test-retest reliability is also a chal-
lenge given the likelihood of substantial practice effects
on task performance. This may necessitate development
of parallel forms of the RIER.

Reinforcement Learning

Probabilistic Reward Task

Description. This task is based on a differential rein-
forcement schedule that provides an objective assessment
of participants’ propensity to modulate behavior as
a function of reward history.40 The task, which was mod-
ified from an earlier paradigm described by Tripp and
Alsop,41 is rooted within the behavioral model of signal
detection42 and the generalized matching law.43,44

Figure 4 provides an illustration of the probabilistic re-
ward task (adapted from Pizzagalli et al40). The task
includes 300 trials, divided into 3 blocks of 100 trials,
which are separated by a 30-second break. A trial starts
with the presentation of an asterisk for 1400milliseconds,
immediately followed by a schematic mouthless cartoon
face presented for 500 milliseconds. Next, either a short
(11.5 mm) or long (13 mm) mouth is briefly presented on
the screen for 100 milliseconds. The mouthless face
remains visible until the participant makes a response.
For each trial, participants are asked to determine which
mouth stimulus was presented by pressing either the ‘‘z’’
key or the ‘‘/’’ key on a PC keyboard (counterbalanced
across subjects). For each block, the 2 mouth stimuli
are presented equally often using a pseudorandomized se-
quence allowing up to 3 consecutive presentations of the
same stimulus. Within each block, only 40 correct trials
are followed by reward feedback (eg, ‘‘Correct!! You won
5 cents’’), presented for 1500milliseconds immediately af-
ter a correct response. If a reward feedback is presented,
an additional blank screen is presented for 250 millisec-
onds. For nonrewarded trials, a blank screen is presented
for 1750 milliseconds.

Fig. 3. Recognition accuracy of controls (blue circles) and patients
(red triangles) for rehearse and reorder tasks. Error bars depict the
SEM across subjects, and the asterisk denotes a significant group
difference for the reorder but not rehearse task.
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Critically, an asymmetric reinforcer schedule is used to
induce a response bias.45 Thus, correct identification of
one mouth (‘‘rich stimulus’’) is rewarded 3 times more
frequently than correct identification of the other mouth
(‘‘lean stimulus’’). Only 40 correct trials are rewarded in
each block (30 rich, 10 lean) to ensure that each partic-
ipant is exposed to the same (or a very similar) number of
rewards. To achieve this goal, a controlled reinforcer
procedure is used: if a participant makes an incorrect
response on a trial scheduled to be rewarded, the feed-
back is delayed until the next correct response of the
same stimulus.
Before the task, participants are instructed that the

goal of the task is to win as much money as possible
and that not all correct responses will receive a reward
feedback. Importantly, participants are not informed
that one of the stimuli will be rewarded more frequently.
Note that due to the probabilistic nature of the task, par-
ticipants cannot infer which stimulus is more advanta-
geous based on the outcome of a single trial; instead,
in order to optimize their choices, participants need to
‘‘integrate’’ reinforcement history over time. Depending
on the monetary reward used for each trial, participants
earn approximately $6 (5 cent per trial)40 or approxi-
mately $24 (20 cent per trial).46

The main variable of interest is response bias, which
can be computed41,42 as

log b=
1

2
log

�
Richcorrect3Leanincorrect

Richincorrect3Leancorrect

�
:

As evident from the formula, a high-response bias
emerges when participants tend to correctly identify
the stimulus associated with more frequent rewards
(rich hits) and to misclassify the lean stimulus (lean
misses). To examine general task performance, secondary
analyses consider hit rates [(number of hits)/(number of
hits þ number of misses)], reaction time, and discrimina-
bility. Discriminability, which assesses the subjects’ abil-

ity to perceptually distinguish between the stimuli and
can thus be used as an indication of task difficulty, is
computed as

log d =
1

2
log

�
Richcorrect3Leancorrect

Richincorrect3Leanincorrect

�
:

In addition to these variables, the probability of spe-
cific responses as a function of the immediately preced-
ing trial can be computed to evaluate the strength of
a response bias as a function of (a) which stimulus
had been rewarded in the preceding trial and (b) prox-
imity of reward delivery. For example, the probability
of selecting ‘‘rich’’ or ‘‘lean’’ in trials immediately
following a correctly identified, rewarded rich trial vs
a correctly identified, nonrewarded rich trial may be
computed.47 Finally, in several studies, we have found
that reward learning, which can be measured by
subtracting response bias in block 1 from response
bias in block 3, showed strong construct and predictive
validity.40,47

Construct Validity. Initial construct validity comes
from studies evaluating samples hypothesized to be char-
acterized by dysfunctional reinforcement learning.48,49

Subjects with elevated depressive symptoms,40 unmedi-
cated patients with major depressive disorder
(MDD),50 and medicated euthymic patients with bipolar
disorders47 showed reduced response bias toward the
more frequently rewarded stimulus (figure 5a). More-
over, trial-by-trial probability analyses revealed that
MDD subjects were impaired at expressing a response
bias toward the more frequently rewarded cue in the ab-
sence of immediate reward (manifested as increased miss
rates), whereas they were responsive to delivery of single
rewards. Increased miss rates for the more frequently
rewarded stimulus correlated with anhedonic symptoms
(r = 0.52, P < .05), even after considering anxiety symp-
toms and general distress.50

Neural Systems. Compared with learners, nonlearners
showed significantly lower activation in response to re-
ward feedback in dorsal anterior cingulate cortex
(dACC) regions that have been previously implicated
in integrating reinforcement history over time.51,52

This result is consistent with the hypothesis that non-
learners have blunted reinforcement sensitivity. More-
over, the ability to develop a response bias toward
the more frequently rewarded stimulus correlated
with dACC activation (r = 0.40, P < .030). A final fea-
ture of this study was that some of the participants per-
formed a monetary incentive delay (MID) task53,54

during fMRI. Relative to nonlearners, learners showed
larger basal ganglia responses to reward feedback (mon-
etary gains) in theMID task. These findings suggest that
participants developing a response bias toward the more

Fig.4.SummaryofTaskDesign.Ateachtrial,participantsareasked
to select via bottom press whether a short or long mouth had been
presented. Figure modified with permission from Pizzagalli et al.40

Reprinted with Permission from Elsevier.
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frequently rewarded stimulus had stronger dACC and
basal ganglia responses to reward outcomes.

Pharmacological and Behavioral Manipulation. Two
studies have shown that response bias in the probabilistic
reward task is modulated by pharmacological manipula-
tions affecting DA either directly46 or indirectly.55 In the
first study, a single 0.5 mg dose of the D2/3 agonist pra-
mipexole or placebo was administered to healthy volun-
teers 2 hours before performing the task.46 Consistent
with predictions based on animal evidence,56–58 prami-
pexole impaired reinforcement learning (see Frank and
O’Reilly59 for a prior human study postulating similar
effects). Compared with placebo, subjects receiving pra-
mipexole showed lower response bias toward the more

frequently rewarded stimulus (figure 5b).46 Control anal-
yses confirmed that reduced response bias was not due to
transient adverse effects.
The aim of a second pharmacological study was to test

the hypothesis that nicotine might increase responsive-
ness to reward-related cues,55 based on prior findings
that nicotine increases appetitive responding through ac-
tivation of presynaptic nicotinic receptors on mesocorti-
colimbic DA neurons in animals,60,61 and increases the
incentive value of monetary reward in humans.62 Using
a randomized, double-blind, placebo-controlled cross-
over design, Barr et al55 administered a single dose of
transdermal nicotine (7–14 mg) to 30 psychiatrically
healthy adult nonsmokers. Nicotine increased response
bias toward the more frequently rewarded stimulus,
and this effect persisted over time, as demonstrated by
a greater response bias during the placebo session in par-
ticipants who received nicotine in the first compared with
the second session (1 week later).

AnimalModels. In collaborationwithAthinaMarkou at
University of California at San Diego, Dr Pizzagalli is
developing a task analogous to the human probabilistic
reward task for use in rodent studies.

Performance inSchizophrenia. In a recent study, Heerey
et al63 used the probabilistic reward task in a sample of 40
clinically stable and medicated outpatients with schizo-
phrenia. The authors found that, compared with healthy
controls, patients with schizophrenia had a reduced abil-
ity to discriminate between the stimuli but a similar re-
sponse bias. The authors concluded that schizophrenia
is characterized by intact sensitivity to reward and ability
to modify responses based on reinforcements. Although
intriguing, the interpretation of these findings is some-
what difficult because all patients were medicated at
the time of testing. Moreover, no information was pro-
vided about the smoking status of participants, in partic-
ular whether patients and controls were matched for this
variable. In light of the recent finding that nicotine
enhances response bias in the probabilistic reward
task,55 and given high rates of smoking in schizophre-
nia,64,65 it is unclear whether the null findings reported
in63 might be partially due to group differences in smok-
ing status and/or history.

Psychometric Data. The test-retest reliability of the
probabilistic reward task over approximately 38 days
was r = 0.57, P < .004. Satisfactory test-retest reliability
of reward learning (r = 0.56 over an averaged period of 39
days period) also emerged in an independent sample.66 In
a recent study evaluating monozygotic (n = 20) and dizy-
gotic (n = 15) twin pairs, the heritability of reward respon-
siveness was estimated to be 48%.67 Due to the limited
sample size of this twin study, these heritability estimates
should be considered preliminary.

Fig. 5. Selected Findings Derived From the Probabilistic Reward
Task. Response bias toward themore frequently rewarded stimulus
is reduced in (a) unmedicated major depressive disorder subjects;50

(b) healthy controls receiving a single dose of a D2/3 agonist
assumed to activate dopamine (DA) autoreceptors and thus reduce
phasic DA bursts to unpredictable reward;47 and (c) healthy
controls exposed to an acute stressor.67 A and C reprinted with
permission from Elsevier. B reprinted with permission from
Springer Science and Business Media.
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Future Directions. As noted above, the probablistic re-
ward task has a growing body of evidence for its con-
struct validity and neural bases. However, there are
several important avenues for future development of
this task. First, additional work is needed to determine
the degree to which performance on this task is sensitive
to reward learning deficits in schizophrenia. The pub-
lished study on schizophrenia performance on this task
did not reveal deficits in reward sensitivity. If additional
work confirms the integrity of reward processing in this
task in schizophrenia, this may not be a particularly use-
ful task for schizophrenia research (though it may still be
very valuable for work on mood disorders or other dis-
orders with impaired reward sensitivity). Second, the cur-
rent version of the task is quite long (300 trials) that
reduces the feasibility of using it in clinical trials settings.
Thus, one important future direction for the development
of this task is to determine whether a shorter version (eg,
only 1–2 blocks) would have sufficient sensitivity and re-
liability. Third, the test-retest reliability, while good for
an experimental task, is overall less than would be opti-
mal for a task to be used in clinical trials and would ben-
efit from efforts to increase reliability.

Probabilistic Selection Task

Description. The probabilistic selection task68,69 meas-
ures participants’ ability to learn from positive and
negative feedback by integrating reinforcement probabil-
ities over many trials. Three different stimulus pairs (AB,
CD, EF) are presented in random order, and participants
have to learn to choose 1 of the 2 stimuli. Feedback fol-
lows the choice to indicate whether it was correct or in-
correct, but this feedback is probabilistic: In AB trials,
a choice of stimulus A leads to positive feedback in
80% of trials, whereas a B choice leads to negative feed-
back in these trials. CD and EF pairs are less reliable:
stimulus C is correct in 70% of trials, while E is correct
in 60% of trials. Over the course of training, participants
learn to choose stimuli A, C, and Emore often than B, D,
or F. Note that learning to choose A over B could be ac-
complished either by learning that choosing A leads to
positive feedback or that choosing B leads to negative
feedback (or both). To evaluate whether participants
learn more about positive or negative outcomes of their
decisions, performance is subsequently probed in a test/
transfer phase in which all novel combinations of stimuli
are presented and no feedback is provided. Positive feed-
back learning is assessed by reliable choice of the most
positive stimulus A in this test phase, when presented
with other stimuli (AC, AD, AE, and AF). Negative feed-
back learning is assessed by reliable avoidance of the
most negative stimulus B when presented with the
same stimuli (BC, BD, BE, and BF). The extent to which
participants perform better in choose-A or avoid-B pairs
has been associated with a ‘‘Go’’ or ‘‘NoGo’’ learning

bias and is very sensitive to dopaminergic state, manip-
ulation, and genetics.59,69–73

In addition to the probabilistic reinforcement learning
biases, the task can also probe other aspects of reinforce-
ment-based decision making. For example, the tendency
to rapidly learn from a single instance of reinforcement in
the initial trials of the task is thought to rely on distinct
process from that involved in integrating feedback prob-
abilities over trials.71 Similarly, when faced with novel
test pairs, participants adaptively modulate their re-
sponse times in proportion to the degree of reinforcement
conflict. High conflict choices involving stimuli with sim-
ilar reinforcement probabilities are associated with lon-
ger response times than those associated with divergent
reinforcement probabilities, a process thought to depend
on interactions between dorsomedial frontal cortex and
the subthalamic nucleus.72

Construct Validity. Performance on the probabilistic se-
lection task is defined by the ability to choose the probabi-
listically most optimal stimulus. Of course, many factors
can contribute to better or worse performance aside
from reinforcement learning, including attention, motiva-
tion, fatigue, WM, etc. However, the main measure of
interest in the task is within subject (ie, the ability to choose
the most positive stimulus is contrasted with that of avoid-
ing the most negative stimulus), thereby controlling for
overall performance levels and specifically assessing the
contribution of reinforcement. This relative positive to
negative feedback learning measure is reliably altered by
dopaminergic manipulation in a range of populations,
and moreover, similar effects in positive vs negative learn-
ing have been observed in other tasks meant to measure
similar constructs but using different stimuli, motor
responses, and task rules (ie, probabilisticGo/NoGo learn-
ing task59 and probabilistic reversal learning task74).

NeuralSystems. Within the task paradigm, positive and
negative feedback learning in this task are thought to rely
on striatal D1 and D2 receptors, respectively. As
described above, probabilistic positive and negative feed-
back learning are sensitive to dopaminergic manipula-
tion. Increases in dopaminergic stimulation, likely in
the striatum, lead to better positive learning but cause
impairments in negative feedback learning.59,71,72 These
effects are thought to arise because DA bursts that occur
during positive outcomes75 support ‘‘Go learning’’ via
D1 receptors,68,76 whereas DA dips that occur during
negative outcomes75 support ‘‘NoGo learning’’ via D2 re-
ceptor disinhibition.68,76 Thus, an increase in striatal DA
(eg, due to pharmacology) would continually stimulate
D2 receptors and effectively block the effects of DA
dips needed for NoGo learning.68,76 Conversely, DA de-
pletion is associated with relatively better negative feed-
back learning but worse positive feedback learning. At
the individual difference level, genes that control D1
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and D2 DA function in the striatum are predictive of
probabilistic positive and negative learning, whereas
genes that control DA function in prefrontal cortex
are predictive of rapid trial-to-trial learning from nega-
tive feedback.70 Negative feedback learning is also asso-
ciated with enhanced error-related negativity (brain
potentials originating from anterior cingulate cortex)76,77

and activation of this same region in functional neuroi-
maging.73 Lesions to medial prefrontal cortex are associ-
ated with both deficits in the acquisition of reinforcement
contingencies (patients took longer to learn) and im-
paired negative feedback learning in the test phase.78

Finally, the subthalamic nucleus (a component within
the basal ganglia network) is believed to delay responses
during high conflict decisions. Supporting this claim,
deep brain stimulation of the subthalamic nucleus causes
premature responding in these high conflict choices.71

Pharmacological and Behavioral Manipulation. As pre-
viously noted, the probabilistic selection task is sensitive
to pharmacological manipulation. DA agonists, includ-
ing levodopa and D2 agonists, impair negative feedback
learning in Parkinson patients while sometimes im-
proving positive feedback learning.72 In attention
deficit/hyperactivity disorder, stimulant medications
(methylphenidate and amphetamine), which elevate stria-
tal DA, improved positive but not negative feedback
learning.77 In healthy participants, low doses of D2 ago-
nists and antagonists, which may act presynaptically to
modulate DA release, predictably alter positive and neg-
ative feedback learning.59

Animal Models. There is currently no available animal
modelof theprobabilistic selection task.However,prelim-
inary unpublished results from Claudio DaCunha’s labo-
ratory in Brazil suggest that rats can learn a reduced form
of the taskusingodordiscriminationand2pairsof stimuli.
In a related project, Rui Costa and colleagues have devel-
opeda forced-choice task requiringmice to learn to choose
and avoid behaviors associatedwith positive and negative
tastants.79 Mice with elevated striatal DA levels showed
enhanced bias to approach rewarding tastants together
with a reduced bias to avoid aversive tastants, similar to
the data reported in humans. In monkeys, striatal D1 re-
ceptor blockade abolishes the normal response speeding
observed when a large reward is available (a measure of
Go learning), whereas D2 receptor blockade leads to
greater response slowing when smaller than average
rewards are available (a measure of NoGo learning).80

Performance in Schizophrenia. In a preliminary study,
patients with schizophrenia showed large deficits in learn-
ing the standard version of the probabilistic selection
task, which uses Japanese Hiragana characters as stim-
uli.81 Subsequent testing using verbalizable stimuli (pic-
tures of every day objects such as bicycles) showed that

patients can learn the task but show selective deficits in
early acquisition (thought to rely on prefrontal struc-
tures), which correlated with their negative symptoms.81

In the test phase, patients showed intact ‘‘NoGo’’ learn-
ing but selectively impaired ‘‘Go’’ learning. Further, all
the genetic polymorphisms predictive of learning in
this task are candidate genes for schizophrenia.

PsychometricData. Practice effects for the probabilistic
selection task have been assessed in Frank andO’Reilly.59

Different stimuli are used across sessions. On average,
participants are faster to learn the task after multiple ses-
sions, but this practice does not affect relative positive vs
negative feedback learning.

FutureDirections. Aswith the probabilistic reward task,
the probabilistic selection task has good construct validity
andgood theoretical and empiricalworkon its neural sub-
strates. One issue in regard to construct validity is the de-
gree to which the speed of initial learning influences the
ability to learn from positive vs negative reinforcement.
In other words, if fast learners experience relatively little
negative feedback associated with the ‘‘B’’ stimulus, they
may show reduced ‘‘negative feedback’’ learning. How-
ever, this may not reflect a true impairment in learning
from negative feedback but rather an absence or a reduc-
tion in the actual experience of negative feedback during
the task. Like many paradigms from cognitive neurosci-
ence, the current version of the probabilistic reward
task does not have an immediate animal homologue
and is likely too long to be used in standard clinical trials,
though it may be amenable to use in early-phase studies.
However, work examining the degree to which the task
could be shortened or simplified, while still retaining con-
struct validity, would facilitate its use in clinical trials. In
addition,more information is neededonall psychometrics
aspects of the task, including test-retest reliability, floor
and ceiling effects, and practice effects.

Probabilistic Reversal Learning Task

Description. This task was developed by Trevor
Robbins and Robert Rogers and first published in Law-
rence et al82 and Swainson et al.83 On each trial, subjects
are presented 2 visual patterns (rectangles of colored
stripes; figure 6). These patterns appear in 2 randomly
chosen boxes out of 4 possible boxes. The task consists
of 2 stages, starting with a simple probabilistic visual
discrimination, in which subjects have to make a
2-alternative forced-choice between 2 colors. The ‘‘cor-
rect’’ stimulus (which is always the first stimulus touched)
receives an 80:20 ratio of positive:negative feedback, and
the opposite ratio of reinforcement is given for the ‘‘in-
correct’’ stimulus. In the second, reversal stage, the con-
tingencies are reversed, without warning, so that the
previously ‘‘incorrect’’ color is now correct and vice versa
for the previously ‘‘correct’’ color.
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Although all subjects receive a total of 80 trials, a learn-
ing criterion of 8 consecutive correct trials is generally im-
posed for the purposes of analysis. Main performance
measures are failure or success at each stage, mean errors
to criterion, and mean latencies. Failure/success rates are
analyzed using the likelihood-ratio method for contin-
gency tables.84 Subjects failing stage 1 are excluded
from subsequent analyses of error rates and latencies
at stage 2. They are included when error rates and laten-
cies at stage 1 are analyzed (to obtain a measure of acqui-
sition). Measures of perseveration and maintenance can
also be obtained. Consecutive-perseverative responses re-
fer to consecutive responses made, directly following re-
versal of the reinforcement contingencies, to the color
that was correct during stage 1 but is now incorrect in
stage 2. Stage 1-perseverative errors (in the terminology
of Jones and Mishkin85) refer to errors in blocks of 8 tri-
als (of the reversal stage), in which performance within
these blocks falls significantly below chance (�1 correct
response). Both these perseveration scores tend to corre-
late significantly with total errors made in stage 2 of the
task. Therefore, each should be converted to a score in-
dicating the proportion of total errors in stage 2. Main-
tenance errors refer to the errors made subsequent to
criterion being reached (ie, the number of responses to
incorrect stimulus/total trials remaining), subject to there
being at least 10 trials after criterion is reached.

Construct Validity. The probabilistic reversal learning
task gauges adaptive behavior, which requires anticipa-
tion of biologically relevant events, ie, rewards and pun-
ishments, by learning signals of their occurrence. The
ability to predict events interacts with the ability to
strengthen and weaken actions when these actions are
closely followed by rewards and punishments. These pro-

cesses are often collectively referred to as reinforcement
learning. Models of reinforcement learning use a tempo-
ral difference prediction error signal, representing the dif-
ference between expected and obtained events, to update
their predictions based on states of the environment.86

Probabilistic learning tasks are commonly used to assess
reinforcement learning and neural activity associated
with prediction errors.87–89 For example, O’Doherty
et al88,89 used probabilistic learning tasks to establish
that activity in the (ventral) striatum, and orbitofrontal
cortex was positively correlated with the prediction error
signal.
More generally, it should be noted that demands for

reinforcement learning are particularly high in probabi-
listic reversal learning paradigms. However, reversal
learning constitutes a special case of reinforcement learn-
ing, and adequate performance also depends on other
processes including prepotent response inhibition and
stimulus switching. On a related note, it should be recog-
nized that simple reinforcement learning models do not
encompass all aspects of probabilistic reversal learning,
as implemented in our paradigm. For example, Hampton
et al90 have shown that behavioral performance on neural
activity (in the ventromedial prefrontal cortex) during
probabilistic reversal learning was fit better by a model
that also simulated knowledge of the abstract task struc-
ture than by a simple reinforcement learning model that
did not incorporate such a higher order knowledge about
interdependencies between actions.

NeuralSystems. Anumberofneuropsychological studies
have revealed that (probabilistic anddeterministic) reversal
learning is disrupted by frontal lobe lesions.91–94 The defi-
cits appear restricted to patients with ventromedial frontal
lesions, do not to extend to patients with dorsolateral pre-
frontal lesions, and cannot be attributed to problems with
initial acquisition of stimulus-reinforcement contingencies.
Recently, Hornak et al93 observed deficits on the probabi-
listic reversal learning task in a small number of patients
with DLPFC lesions, but posttest debriefing revealed
that these patients had failed to pay attention to the crucial
feedbackprovidedon the screen. Ina further study, a group
of patients with frontal variant frontotemporal dementia
showed impairments on the probabilistic reversal learning
task, while showing intact performance on executive func-
tions associated with the DLPFC.95

The first fMRI study of this task96 revealed suprathres-
hold activity in the VLPFC, anterior cingulate cortex,
and posterior parietal cortex during the final reversal
errors relative to the baseline correct responses. A priori
hypotheses allowed more focused region of interest anal-
yses, which revealed that the activity in the VLPFC was
significantly larger on the final reversal errors than on the
other (eg, probabilistic) errors that did not lead to switch-
ing. It should be noted that at a lower statistical threshold
(uncorrected for multiple comparisons), the DLPFC was

Fig. 6. Screen Display of the Probabilistic Reversal Learning Task.
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also active during the final reversal errors. Such addi-
tional (albeit relatively less) activity in the DLPFC was
confirmed in later fMRI studies with this task97–101

and with a slightly adapted version of the task.100 Finally,
more recent studies that employed more optimal acqui-
sition sequences have also revealed reversal-related activ-
ity in the more anterior orbitofrontal cortex.97,100 In our
initial study, reversal-related activity was also observed in
the ventral striatum, centered on the nucleus accumbens.
Reversal-related activity was also observed in the nucleus
accumbens in patients with Parkinson disease (who had
abstained from their medication97). However, the exact
computation carried by the nucleus accumbens during
probabilistic reversal learning is still under investigation.

Pharmacological and Behavioral Manipulation. Proba-
bilistic reversal learning is sensitive to dopaminergic
and serotoninergic manipulations but not to noradren-
ergic manipulations in humans. Withdrawal of dopami-
nergic medication, such as levodopa and DA receptor
agonists, in patients with mild Parkinson disease (PD)
improves performance.101 These results are consistent
with Mehta et al,102 who showed that administration
of the DA receptor agonist bromocriptine impaired per-
formance on this task in young healthy volunteers while
improving spatial memory. Additional support for the
overdose hypothesis came from a recent pharmacolog-
ical fMRI study, which revealed that dopaminergic
medication in mild PD patients abolished reversal-re-
lated activity in the ventral striatum (particularly in
the nucleus accumbens).97 The effect of medication
was particularly large on final reversal errors that led
to behavioral switching. Interestingly, another pharma-
cological fMRI study in healthy volunteers revealed that
administration of methylphenidate (60 mg oral) also
abolished reversal-related activity in the ventral stria-
tum (particularly in the ventral putamen), an effect
that was again particularly prominent on the final rever-
sal errors.98 Discrepancies in the precise localization of
this effect within the ventral striatum indicate the need
for further work.

Serotoninergic manipulation also affects performance
on the task. However, the nature of the effect is quali-
tatively different from that observed after dopaminergic
manipulation. Chamberlain et al103 observed that acute
administration of citalopram, a selective serotonin reup-
take inhibitor, but not atomoxetine, a selective nor-
adrenaline reuptake inhibitor, increased the number
of switches after probabilistic errors (ie, misleading pun-
ishment). This effect was attributed to a presynaptic
mechanism of action, paradoxically reducing serotonin
levels. Consistent with this hypothesis, Evers et al104

found that the dietary acute tryptophan depletion pro-
cedure, which lowers serotonin synthesis, enhanced neu-
ral activity in the dorsomedial prefrontal cortex during
punishment on switch and nonswitch trials. Thus, in

contrast to dopaminergic medication, serotoninergic
manipulation affected the processing of punishment
irrespective of switching. Interestingly, patients with
major depression, which has been associated with sero-
toninergic abnormality, were found to suffer a deficit on
probabilistic reversal learning that did not reflect per-
severative responding but rather reflected an inability
to maintain responding to the usually correct stimulus
in the face of misleading, probabilistic errors.99,105

Finally, Taylor-Tavares et al99 observed an inverse cor-
relation between suppressed activity in the amygdala
during probabilistic, misleading errors and the tendency
to switch after these misleading errors. Critically, this
relationship was abolished in depressed patients. Addi-
tional pharmaco-fMRI studies examined different
versions of the current task paradigm.106–111

Animal Models. There is a long history of animal work
on the probabilistic reversal learning task.85,112,113 When
assessing convergence between animal and human stud-
ies, it is important to consider subtle differences in task
design. First, studies with experimental animals have
used deterministic rather than probabilistic contingen-
cies, so that animals never obtain ‘‘misleading’’ punish-
ment or reward. Second, the nature of reward and
punishment is qualitatively different, with reward consti-
tuting prolonged periods of access to juice or food in ani-
mals but (often) bonus points of positive feedback in
humans. On the other hand, punishment may consist
of periods of darkness or reward omission in animals
but bonus point loss or negative feedback in humans.
Nevertheless, there is remarkable convergence. Consis-

tent with neuroimaging studies in humans, animal work
has implicated the orbitofrontal cortex in reversal learn-
ing.85,113,114 Single-cell recordings have also revealed that
the firing of orbitofrontal neurons changes with altera-
tions in reward contingencies.115,116 More recent sin-
gle-cell recording studies suggest that the activity of
orbitofrontal neurons reverses more slowly than that
of neurons in the amygdale,117,118 which may suggest
that the orbitofrontal cortex may indirectly facilitate flex-
ibility in downstream regions (such as the amygdala) by
signaling the expected value of outcomes rather than by
directly inhibiting previously relevant responses.
In addition to orbitofrontal and amygdala findings,85

animal studies have implicated the ventral striatum in re-
versal learning. Specifically, lesions of the ventrolateral
part of the head of the caudate nucleus induced a persev-
erative response tendency during (object) reversal learn-
ing in monkeys.112 Subsequent work with rodents and
nonhuman primates indicates that lesions of nucleus
accumbens also disrupts performance on (object and/
or spatial) reversal learning tasks.119,120 However, the im-
pairment following nucleus accumbens lesions is gener-
ally not restricted to the reversal stages of the task, but
extends to initial acquisition stages, suggesting a more
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general role in the learning of stimulus-reinforcement
contingencies rather than in reversal specifically.119

Psychopharmacological work with marmosets sup-
ports human evidence that reversal learning is sensitive
to serotoninergic manipulations. Clarke et al121–123

revealed that depletion of serotonin in the orbitofrontal
cortex with the neurotoxin 5,7-dihydroxytriptamine
(DHT) impaired reversal learning and induced persev-
erative responding to the previously rewarded stimulus.
It might be noted that the perseverative nature of the
deterministic reversal deficit after 5,7-DHT lesions in
marmosets is qualitatively different from the inappro-
priate switching seen after tryptophan depletion in
humans. This discrepancy may reflect differences in
the task used in marmosets and humans (probabilistic
vs deterministic; emphasis on punishment) or, more
likely, differences in the effect of the manipulation on
the degree of serotonin depletion in the brain.124,125

Performance in Schizophrenia. Waltz and Gold126 re-
cently employed a modified version of the probabilistic
reversal learning task in 34 patients with schizophrenia
and 26 controls. Although patients and controls per-
formed similarly on the initial acquisition of probabilistic
contingencies, patients showed substantial learning
impairments when reinforcement contingencies were
reversed, achieving significantly fewer reversals.

PsychometricData. These data are not yet available for
the probabilistic reversal learning task.

Future Directions. The probabilistic reversal learning
task has clearly established validity for both the rein-
forcement learning and the reversal learning constructs
of the task paradigm. As in the other reinforcement learn-
ing paradigms, there is also solid work identifying neural
substrates, developing animal models, and investigating
effects of pharmacological manipulation. In future work,
it will be important to more fully investigate the impact
of schizophrenia on task performance. Establishing that
patient impairments are specific to the reversal condition
will address alternate generalized deficit explanations. As
with most tasks being translated from the cognitive neu-
roscience domain, substantial work will also be needed to
establish and optimize psychometric characteristics.
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