Co-Occurring Depressive and Substance Use Disorders in Adolescents: An Examination of Reward Responsiveness During Treatment

Kathryn D. Boger, Randy P. Auerbach, Pia Pechtel, Alisa B. Busch, Shelly F. Greenfield, and Diego A. Pizzagalli
Mclean Hospital, Harvard Medical School

The goals of the present study were to examine: (a) putative dysfunctions in reward responsiveness in a sample of adolescents \((n = 40)\) with co-occurring depressive and substance use disorders; (b) possible links between reward responsiveness and symptoms of depression, anhedonia, anxiety, and motivation for change in relation to alcohol and drug use; and (c) potential gender differences in findings. Before and after a 2-week residential treatment, adolescents completed self-report assessments of depression, anhedonia, anxiety symptoms, and motivation for change in relation to substance use. In addition, participants completed a computer-based Probabilistic Reward Task (PRT) to examine reward responsiveness (i.e., participants’ ability to modulate behavior as a function of reinforcement history). Results indicated that depression and anhedonia symptoms decreased, and motivation for change in relation to drug use increased. Improved reward responsiveness over the course of residential treatment emerged in female, but not male, participants.

Keywords: reward responsiveness, adolescent, substance abuse, depressive disorders

According to recent data from the National Survey on Drug Use and Health, approximately 7% of adolescents in the United States meet criteria for a substance use disorder (National Survey on Drug Use and Health, U.S. Department of Health & Human Services, 2009), signifying a serious and costly public health concern. Substance use problems in adolescents also tend to coexist with other psychiatric conditions, and approximately 75% of adolescents with current alcohol and/or drug use disorders also meet criteria for mood, anxiety, or conduct disorders (Kandel et al., 1999). Adolescence is a crucial period for social/emotional, cognitive, and neural development, and therefore, substance- and psychiatric-related problems may profoundly disrupt healthy development. In fact, the presence of co-occurring substance and other psychiatric diagnoses among adolescents is associated with poor outcomes in terms of psychosocial functioning, school difficulties, medical illness, legal problems, homelessness, and suicide (U.S. Department of Health & Human Services, 2002), and may persist into adulthood (Harrington, Fudge, Rutter, Pickles, & Hill, 1990; Leshner, 1999).

Anhedonia in Depression and Substance Use Disorders

Anhedonia is a feature of both depressive and substance use disorders. It is a core symptom and potential trait marker for major depressive disorder (American Psychiatric Association,
Among depressed adolescents, research indicates that anhedonia may be a poor prognostic indicator as it is associated with longer time to remission and fewer depression-free days (McMakin et al., 2012). Similarly, anhedonia plays a key role in the onset and development of substance use disorders (Bovasso, 2001; Gawin & Ellinwood, 1988; Heinz, Schmidt, & Reischies, 1994; Miller, Summers, & Gold, 1993). Research has shown robust associations between anhedonia and the intensity of withdrawal, cravings, and relapse in substance dependence (Hatzigiakoumis, Martinotti, Giannantonio, & Janiri, 2011). However, to date, research has not examined the relationship between hedonic functioning and clinical outcomes at discharge from residential substance use disorder treatment. Critically, depression treatment research suggests that targeting the mechanisms underpinning anhedonia may, ultimately, improve treatment prognosis (e.g., McMakin et al., 2012).

Treatment for Adolescents With Co-Occurring Substance Use and Other Psychiatric Disorders

Adolescents with co-occurring substance use and other psychiatric disorders present with complex treatment needs. They exhibit poor adherence and retention in outpatient treatment, and relapse after treatment more frequently and more quickly as compared with adolescents with only substance use disorders (Grella, Hser, Joshi, & Rounds-Bryant, 2001; Tomlinson, Brown, & Abrantes, 2004). Acute residential treatment programs are thus a valuable resource for adolescents who have struggled in outpatient treatment and require a higher level of care. Yet, there is currently a dearth of research examining outcomes at discharge from short-term residential treatment for adolescents with co-occurring substance use and other psychiatric disorders. Moreover, in line with the National Institute of Mental Health Strategic Mission (http://www.nimh.nih.gov/about/strategic-planning-reports/nimh-strategic-plan-2008.pdf), there is a pressing need to examine putative mechanisms underlying symptom change in the context of treatment. To address these critical research gaps, the current study examined outcomes at discharge from short-term residential treatment for dually diagnosed adolescents in terms of changes in depression, anhedonia, anxiety, motivation for change and underlying hedonic functioning.

Deconstructing Anhedonia: An Examination of Reward Responsiveness

Mounting evidence highlights reward responsiveness as a key feature of hedonic functioning (Henriques, Glowacki, & Davidson, 1994; Pizzagalli, Iosifescu, Hallett, Ratner, & Fava, 2008; Pizzagalli et al., 2005). Reward responsiveness refers to the ability to modulate behavior as a function of previous reinforcement history. Past research utilizing a laboratory-based objective measure of hedonic functioning found that, compared with healthy individuals, depressed participants exhibit blunted reward responsiveness, which emerged as reduced response bias toward more frequently rewarded cues (Pizzagalli et al., 2008; Pizzagalli, Jahn, & O’Shea, 2005; Vrieze et al., 2012). This impairment correlated with self-reported anhedonic symptoms and predicted self-reported anhedonia one month after the initial assessment (Pizzagalli et al., 2008, 2005). In an adult inpatient sample, blunted reward responsiveness at study entry predicted the persistence of a major depressive disorder diagnosis after eight weeks of treatment (Vrieze et al., 2012).

There are a few studies on reward responsiveness in adolescents; however, preliminary results suggest that depressed youth exhibit patterns of reward deficits similar to those of adults. In a preadolescent sample of boys, depressed individuals did not attend to large versus small rewards in high probability conditions as frequently as did healthy boys (Forbes, Shaw, & Dahl, 2007). Such reward dysfunction was predictive of depressive symptoms and disorders 1 year later. Surprisingly, in spite of substantial gender differences in the prevalence of mood disorders (e.g., females > males; Hankin, Lakdawalla, Carter, Abela, & Adams, 2007) and substance use disorders (males > females; Cohen et al., 1993), gender-specific differences in reward responsiveness have not been explored in individuals with co-occurring depressive and substance use disorders and there is no current information on whether adolescent reward responsiveness differs by gender.

Taken together, these findings suggest that blunted reward responsiveness may be an im-
portant predictor of depression outcome in adults and youth. Given that: (a) adolescence is a key developmental period for the onset of both substance use and depressive disorders (Kessler, Avenevoli, & Merikangas, 2001; Swendsen et al., 2012); (b) hedonic functioning plays a role in relation to both substance use disorders and depression; and (c) opposing gender differences exist in the prevalence of depression and substance use disorders, further research is warranted to examine reward responsiveness in adolescents with comorbid depressive and substance use disorders and whether this differs by gender. Understanding the role of anhedonia in the treatment of these disorders may elucidate a key mechanism underlying therapeutic change in adolescents with co-occurring depressive and substance use disorders.

Goals of the Current Study

The current study examines depression, anhedonia, anxiety symptoms, motivation for change in relation to substance use, and reward learning in adolescents with co-occurring depressive and substance use disorders. To this end, adolescents in an acute residential treatment program for substance abuse and other psychiatric disorders completed self-report measures of clinical symptoms and motivation for change in relation to substance use as well as a computer-based probabilistic reward task to measure reward responsiveness upon admission and at discharge. We hypothesized that over the course of residential treatment, patients would: (a) exhibit improvement in depressive, anhedonic, and anxious symptoms and enhanced motivation for change in relation to substance use; (b) show increased reward responsiveness from admission to discharge; and (c) show gender-specific differences in improvement in hedonic functioning as measured through self-report and objective behavioral assessment.

Method

Participants

Participants included adolescents (n = 40, 16 females and 24 males) between the ages of 15 and 19 (M = 17.07, SD = .98) in a partially locked residential treatment program in the greater Boston area. In order to be admitted to the unit, adolescents must present with a substance use disorder and at least one co-occurring psychiatric disorder. Participants in the current sample were those presenting with a substance use and a depressive disorder (e.g., 22.5% MDD, 67.5% mood disorder not otherwise specified (NOS), 7.5% depressive disorder NOS, and 2.5% dysthymic disorder). Twenty-five percent of these patients also carried a diagnosis of anxiety disorder NOS and 5.0% had generalized anxiety disorder. At discharge, 50.0% of the participants (six females and 14 males) were being administered a selective serotonin reuptake inhibitor (SSRI) or serotonin and norepinephrine reuptake inhibitor (SNRI). Eighty percent of the participants who were on an SSRI or SNRI (five females and 11 males) were also on at least one additional psychotropic medication (e.g., mood stabilizers, benzodiazepines, etc.). Participants endorsed utilizing a variety of drugs, and they identified the following substances as causing the most difficulty prior to admission: 28.2% alcohol, 25.6% marijuana, 10.3% sedatives or sleeping pills, 10.3% prescription opioids, 5.1% prescribed amphetamine-based stimulants, 2.6% cocaine, 2.6% hallucinogens, and 2.6% nonprescription cough medicine (12.8% endorsed no recent difficulty with substances, despite the fact that they had been hospitalized for a substance use problem). Sixty-five percent of the adolescents lived with parents who were either married or in a marital-like relationship and 35.0% had parents who were divorced, separated, or widowed. Regarding socioeconomic status, 17.5% of the adolescents were enrolled in a free or reduced lunch program at school and 5.0% of families received food stamps. The sample was largely Caucasian (97.5%) with one patient self-identifying as “Other.”

Residential Treatment Program

All participants were admitted to a residential program that provided short-term treatment (M = 15.43 days, SD = 4.66) comprised of motivational interviewing (MI), 12-step facilitation, cognitive–behavioral (CBT), and dialectical behavioral (DBT) therapies. Treatment was provided in the form of assessment, group counseling, individual therapy, family meetings, psychopharmalogic management for patients, as well as psychoeducation groups for
parents. A multidisciplinary staff worked collaboratively with families, community-based clinicians, schools, and social service agencies to establish treatment goals and discharge plans.

Procedure

Mclean Hospital Internal Review Board provided approval for the study. Upon admission, adolescents and their parents were informed of the project aims, and then, adolescent assent and parent consent were obtained. Participants’ diagnostic information was determined based on DSMIV-TR criteria by staff psychiatrists in consultation with the accompanying treatment teams (i.e., social worker and/or clinical psychologist), and participants identified their primary substance of abuse. Within 24 hr of admission, adolescents completed an assessment battery of self-report measures including the Center for Epidemiologic Studies Depression Scale (CES-D; Radloff, 1977), the Snaith-Hamilton Pleasure Scale (SHAPS; Snaith et al., 1995), the Multidimensional Anxiety Scale for Children (MASC; March, Sullivan, & Parker, 1999), the Stages of Change Readiness and Treatment Eagerness Personal Drug Use and Drinking Questionnaires (SOCRATES; Miller & Tonigan, 1996) as well as a computerized probabilistic reward task. The same assessment battery was completed at discharge.

Instruments

Center for Epidemiologic Studies Depression Scale (CES-D; Radloff, 1977). The CES-D is a 20-item self-report measure examining the presence of depressive symptoms. Participants are instructed to rate, using a scale ranging from 0 (rarely or none of the time) to 3 (most of the time), how often they experienced particular feelings over the past week. Sample items include, “I felt depressed” and “I felt that everything I did was an effort.” In the present study, the Cronbach’s alpha ranged from .79 to .92 across administrations, indicating high internal consistency.

Snaith-Hamilton Pleasure Scale (SHAPS; Snaith et al., 1995). The SHAPS is a 14-item self-report inventory assessing hedonic capacity. Participants are asked to rate their ability to experience pleasure in the last few days and using a scale ranging from 0 (strongly disagree) to 3 (strongly agree). Examples of items are, “I would find pleasure in my hobbies and pastimes” and “I would enjoy seeing other people’s smiling faces.” In this study, the Cronbach’s alpha ranged from .70 to .86 between administrations, indicating high internal consistency.

Multidimensional Anxiety Scale for Children (MASC; March et al., 1999). The MASC is a 39-item self-report inventory measuring the presence of anxious symptoms, including overall anxiety, physical symptoms, social anxiety, harm avoidance, and separation anxiety. Items are rated on a 4-point Likert scale, ranging from 0 (never applies to me) to 3 (often applies to me), and higher scores are indicative of greater anxiety. Examples of questions include, “I keep my eyes open for danger” and “I have trouble getting my breath.” In this study, the Cronbach’s alpha ranged from .89 to .94 across administrations, indicating high internal consistency.

The Stages of Change Readiness and Treatment Eagerness Personal Drug Use and Personal Drinking Questionnaires (SOCRATES 8d; Miller & Tonigan, 1996). The Socrates Personal Drug Use Questionnaire and the Socrates Personal Drinking Questionnaire are each 19-item self-report inventory measuring motivation for change in relation to drug and alcohol use, respectively. Items are rated on a 5-point Likert scale, ranging from 1 (no, strongly disagree) to 5 (yes, strongly agree), and higher scores are indicative of greater motivation for change in relation to drug and alcohol use. In this study, the Cronbach’s alpha ranged from .89 to .95 (drug use) and .96 to .98 (drinking), respectively, across administrations, indicating high internal consistency.

Behavioral Task

Probabilistic Reward Task (PRT; Pizzagalli, Jahn, & O’Shea, 2005, modified after Tripp & Alsop, 1999). Participants completed a revised version of the PRT, which used an asymmetric reinforcement schedule of monetary feedback to examine reward responsiveness (i.e., ability to modulate behavior as a function of reward reinforcement history). The 15-min task was presented on a 17” laptop monitor using E-Prime software (Version 1.1.; Psychology Software Tools Inc., Pittsburgh, Pennsylvania). The task consists of 200 trials, divided into two blocks of 100 trials. Each trial
starts with a fixation cross (500 ms), followed by a mouthless cartoon face (500 ms) presented in the center of the screen. After a delay of 500 ms, either a short mouth (11.5 mm) or a long mouth (13 mm) is presented for 100 ms. Participants are instructed to press the respective keys (“c” or “m”) on the keyboard to identify whether the mouth was short or long. The face without the mouth remains on the screen until a key response is made. Key responses were counterbalanced from pre- to posttreatment assessment in order to avoid practice effects. For each block, the long and short mouths are presented equally often in a pseudorandomized sequence. Critically, an asymmetrical reinforcer ratio is utilized in order to induce a response bias; specifically, correct identification for one stimulus (hereafter referred as the rich stimulus) is rewarded three times more frequently than correct identification of the other (lean) stimulus. Correct responses received points, and participants were instructed that the goal of the task was to earn a maximum number of points. Participants completed a short series of practice trials to ensure that they understood the instructions. In previous research, the PRT has demonstrated significant but moderate test–retest reliability (see Pizzagalli et al., 2005; Santesso et al., 2008).

Data Analytic Approach

Paired sample t tests were used to compare admission versus discharge symptom scores (depressive symptoms, anhedonia, and anxious symptoms). Bivariate correlations were utilized to examine baseline association among depressive symptoms, anhedonia, anxious symptoms, and motivation for change in relation to drug and alcohol use.

For the PRT, established criteria (e.g., Pizzagalli et al., 2005) were first used to identify and exclude outlier trials: (a) trials with RTs of < 150 ms or > 1,500 ms were removed and (b) RTs falling outside the mean ± 3 standard deviation of the remaining trials (after log transformation). Next, signal detection theory (Macmillian & Creelman, 2005) was used to compute response bias (i.e., the preference for the more frequently rewarded stimulus) and discriminability (i.e., the ability to distinguish between the stimuli types) following established procedures and formulas (see Pizzagalli et al., 2008; Pizzagalli et al., 2005). Accuracy (percent correct responses) and reaction time (RT) were used as secondary measures of overall task performance.

Response bias and discriminability were calculated as follow:

Response Bias:

\[\log b = \frac{1}{2} \log \frac{\text{RICH correct} \times \text{LEAN incorrect}}{\text{RICH incorrect} \times \text{LEAN correct}}\]

Discriminability:

\[\log d = \frac{1}{2} \log \frac{\text{RICH correct} \times \text{LEAN correct}}{\text{RICH incorrect} \times \text{LEAN incorrect}}\]

In line with prior recommendations (Hautus, 1995), 0.5 was added to every cell of the detection matrix to allow computations in cases with a zero in one cell of the formula. Response bias was the primary behavioral measure of interest reflecting the magnitude of participants’ preference for the more frequently reinforced stimulus, which yields an objective measure of reward responsiveness. A high response bias emerges when participants correctly identify the rich and misclassify the lean stimulus as the rich stimulus.

To examine our hypotheses, a Treatment (pre, post) × Block (1, 2) × Gender (male, female) mixed ANOVA was run for response bias. An analogous (control) analysis was run on discriminability scores. For accuracy and RT values, separate Treatment (Pre, Post) × Block (1, 2) × Stimulus (rich, lean) × Gender (male, female) ANOVAs were performed. For all analyses, the Greenhouse-Geisser correction was used where applicable. Significant findings were followed-up with Bonferroni post hoc tests to provide a conservative test of all stated hypotheses. Finally, bivariate Pearson’s correlations coefficient examined associations among response bias, depressive symptoms, anhedonia, anxious symptoms, and motivation for change in relation to drug and alcohol use at admission and discharge.

Results

Descriptive Statistics

Bivariate correlations, means, standard deviations, and ranges of all admission measures are
presented in Table 1. Additionally, Table 2 provides descriptive data as a function of gender as well as bivariate correlations. Of note, there were no significant gender differences in depressive, anxious, or anhedonic symptoms upon admission.

Clinical Outcome Data

Over the course of acute residential treatment, adolescents exhibited significant reductions in depressive symptoms, $t(39) = 4.17, p < .001$, and anhedonic symptoms, $t(39) = 2.98, p = .005$, but not anxious symptoms, $t(39) = 1.76, p = .087$. Importantly, during the course of residential treatment, adolescents also demonstrated increased recognition of their drug problem, $t(39) = -3.15, p = .003$, as well as steps taken toward change in relation to drug use, $t(39) = -4.97, p < .001$. There were no significant differences in these outcomes between males and females. Of note, there were also no significant differences between males and females in the use of SSRI/SNRI medications ($\chi^2 = 1.67, p = .20$).

Response Bias

For response bias, a mixed ANOVA with Treatment (Pre, Post) \times Block (1, 2) \times Gender (male, female) revealed a main effect of Treatment, $F(1, 38) = 5.25, p = .028$. Post hoc tests confirmed that over the course of residential treatment, adolescents’ reward responsiveness improved ($p = .028$; see Figure 1). Follow-up analysis (paired t tests) revealed that girls, $t(15) = -3.23, p = .006$, but not boys, $t(23) = -0.62, p = .542$, exhibited a significant increase in response bias from admission to discharge (see Figure 2), although the Treatment \times Gender interaction did not reach significance, $F(1, 38) = 2.80, p = .10$. No other effects emerged (all $ps > .14$).

Discriminability

A mixed ANOVA with Treatment (Pre, Post) \times Block (1, 2) \times Gender (male, female) for discriminability revealed a significant Treatment \times Block interaction, $F(1, 38) = 4.61, p = .038$. Paired t tests revealed a significant increase in discriminability between Blocks 1 and 2 at discharge, $t(39) = -2.22, p = .032$, but not admission, $t(39) = 0.74, p = .47$. No other main effects or interaction effects emerged (all $ps > .18$).

Reaction Time

A mixed ANOVA with Treatment (Pre, Post) \times Block (1, 2) \times Stimulus Type (rich, lean) \times Gender (male, female) revealed a Main effect for Stimulus Type, $F(1, 38) = 14.68, p < .001$, which was qualified by a significant

Table 1

Pearson Correlations, Means, Standard Deviations, and Range for Baseline Instruments in the Total Sample (N = 40)

<table>
<thead>
<tr>
<th>Variables</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CESD</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2. SOCRATES–Drug recognition</td>
<td>.38*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3. SOCRATES–Drug ambivalence</td>
<td>.49**</td>
<td>.69**</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4. SOCRATES–Drug taking steps</td>
<td>-.18</td>
<td>.25</td>
<td>.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5. SOCRATES–Drinking recognition</td>
<td>.21</td>
<td>.49**</td>
<td>.22</td>
<td>.05</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6. SOCRATES–Drinking ambivalence</td>
<td>.26</td>
<td>.29</td>
<td>.43**</td>
<td>-.14</td>
<td>.74**</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7. SOCRATES–Drinking taking steps</td>
<td>.04</td>
<td>.19</td>
<td>.10</td>
<td>.34*</td>
<td>.67**</td>
<td>.48**</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8. MASC</td>
<td>.51**</td>
<td>.22</td>
<td>.37*</td>
<td>.14</td>
<td>.07</td>
<td>.18</td>
<td>.04</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>9. SHAPS</td>
<td>.28**</td>
<td>.01</td>
<td>.28</td>
<td>-.28</td>
<td>-.05</td>
<td>.16</td>
<td>-.07</td>
<td>.03</td>
<td>—</td>
</tr>
<tr>
<td>Mean</td>
<td>22.33</td>
<td>22.13</td>
<td>12.7</td>
<td>28.96</td>
<td>15.97</td>
<td>9.13</td>
<td>21.47</td>
<td>42.58</td>
<td>2.35</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>12.89</td>
<td>7.20</td>
<td>3.76</td>
<td>5.90</td>
<td>8.21</td>
<td>4.55</td>
<td>9.73</td>
<td>16.10</td>
<td>2.99</td>
</tr>
<tr>
<td>Low score</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>High score</td>
<td>51</td>
<td>35</td>
<td>19</td>
<td>40</td>
<td>35</td>
<td>17</td>
<td>40</td>
<td>72</td>
<td>12</td>
</tr>
</tbody>
</table>

Note. CES-D = Center for Epidemiologic Studies Depression Scale; SOCRATES = The Stages of Change Readiness and Treatment Eagerness Scale; MASC = Multidimensional Anxiety Scale for Children; SHAPS = Snaith-Hamilton Pleasure Scale.

*p < .05. **p < .01.
Table 2
Pearson Correlations, Means, Standard Deviations, and Range for Baseline Instruments in the Total Sample in Girls (n = 16) and Boys (n = 24)

<table>
<thead>
<tr>
<th>Variables</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CESD</td>
<td></td>
<td>.49</td>
<td>.65**</td>
<td>.16</td>
<td>.26</td>
<td>.34</td>
<td>-.04</td>
<td>.52*</td>
<td>.49</td>
</tr>
<tr>
<td>2. SOCRATES–Drug recognition</td>
<td>.31</td>
<td></td>
<td>.70**</td>
<td>.32</td>
<td>.53*</td>
<td>.23</td>
<td>.29</td>
<td>.30</td>
<td>.11</td>
</tr>
<tr>
<td>3. SOCRATES–Drug ambivalence</td>
<td>.44*</td>
<td>.71**</td>
<td></td>
<td>.03</td>
<td>.32</td>
<td>.64**</td>
<td>.20</td>
<td>.52*</td>
<td>.37</td>
</tr>
<tr>
<td>4. SOCRATES–Drug taking steps</td>
<td>-.17</td>
<td>.17</td>
<td>-.09</td>
<td></td>
<td>.14</td>
<td>-.15</td>
<td>.30</td>
<td>.04</td>
<td>-.20</td>
</tr>
<tr>
<td>5. SOCRATES–Drinking recognition</td>
<td>.15</td>
<td>.48*</td>
<td>.18</td>
<td>-.02</td>
<td></td>
<td>.55*</td>
<td>.74**</td>
<td>.10</td>
<td>-.02</td>
</tr>
<tr>
<td>6. SOCRATES–Drinking ambivalence</td>
<td>.22</td>
<td>.36</td>
<td>.22</td>
<td>-.15</td>
<td>.88**</td>
<td></td>
<td>.41</td>
<td>.26</td>
<td>.32</td>
</tr>
<tr>
<td>7. SOCRATES–Drinking taking steps</td>
<td>-.00</td>
<td>.13</td>
<td>.06</td>
<td>.43*</td>
<td>.63**</td>
<td>.54**</td>
<td></td>
<td>.03</td>
<td>-.08</td>
</tr>
<tr>
<td>8. MASC</td>
<td>.55**</td>
<td>.13</td>
<td>.13</td>
<td>.26</td>
<td>.05</td>
<td>.12</td>
<td>.07</td>
<td></td>
<td>-.05</td>
</tr>
<tr>
<td>9. SHAPS</td>
<td>.47*</td>
<td>-.13</td>
<td>.21</td>
<td>-.41*</td>
<td>-.12</td>
<td>-.03</td>
<td>-.11</td>
<td>.20</td>
<td></td>
</tr>
</tbody>
</table>

Mean

<table>
<thead>
<tr>
<th></th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>20.29</td>
<td>25.37</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>12.15</td>
<td>13.75</td>
</tr>
<tr>
<td>Low score</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>High score</td>
<td>41</td>
<td>51</td>
</tr>
</tbody>
</table>

Note. Pearson correlations for girls on the top portion of the diagonal and on the bottom portion of the matrix for boys. CES-D = Center for Epidemiologic Studies Depression Scale; SOCRATES = The Stages of Change Readiness and Treatment Eagerness Scale; MASC = Multidimensional Anxiety Scale for Children; SHAPS = Snaith-Hamilton Pleasure Scale.

*p < .05. **p < .01.
Block × Stimulus Type interaction, $F(1, 38) = 9.39, p = .004$. As expected in light of the asymmetrical reinforcement schedule, adolescents were faster in responding to the rich versus lean stimuli ($p < .001$); moreover, adolescents responded faster to the rich versus the lean stimulus in Block 2, $t(39) = -6.35, p < .001$, but not in Block 1, $t(39) = -1.27, p = .21$, indicating a successful reward manipulation. Critically, these effects were further qualified by a Treatment × Stimulus Type effect, $F(1, 38) = 9.63, p = .004$, which was due to the fact that adolescents were faster to respond to the rich versus lean stimuli at discharge, $t(39) = -5.22, p < .001$, but not admission, $t(39) = -1.34, p = .19$. Finally, there was a Block × Gender, $F(1, 38) = 7.87, p = .008$, effect, which indicated a trend for females to be faster

Figure 1. Overall task effect for response bias (averaged across blocks).

Figure 2. Overall task effect for response bias (averaged across blocks) by gender.
in Block 2 versus Block 1, \(t(15) = -2.08, p = .055 \), and a trend for males to be faster in Block 1 versus Block 2, \(t(23) = 1.81, p = .08 \). No other effects emerged (all \(ps < .11 \)).

Accuracy

With regard to accuracy, a mixed ANOVA with Treatment (Pre, Post) \(\times \) Block (1, 2) \(\times \) Stimulus Type (rich, lean) \(\times \) Gender (male, female) revealed a main effect for Stimulus Type, \(F(1, 38) = 24.92, p < .001 \), due to greater accuracy for the rich versus lean stimulus. There was also a Treatment \(\times \) Block interaction, \(F(1, 38) = 4.38, p = .043 \). Paired \(t \) tests revealed a trend for improvement in accuracy in Blocks 1 and 2 at discharge, \(t(39) = -1.97, p = .056 \), but not admission, \(t(39) = 0.99, p = .33 \). No other effects emerged (all \(ps > .11 \)).

Relationship Between Self-Report Data and Response Bias

Contrary to our hypotheses, there were no significant correlations between baseline or discharge response bias and depressive symptoms or anhedonic symptoms at these time points. There were also no significant correlations between change in response bias from admission to discharge and change in depressive symptoms or anhedonic symptoms over the course of treatment. However, change in response bias from admission to discharge was negatively correlated with change in anxiety from admission to discharge (\(r = -.359, p = .023 \)). There were no significant differences between males (\(r = -.384, p = .064 \)) and females (\(r = -.325, p = .219 \)) in relation to this finding.

Discussion

In the current study, we investigated changes in symptoms and reward responsiveness in a sample of adolescents with co-occurring depressive and substance use disorders who completed acute residential treatment. To our knowledge, this is the first study to examine reward processing in relation to outcomes among adolescents with these co-occurring disorders. In line with our first hypothesis, adolescents demonstrated significant reductions in depressive and anhedonic symptoms and improved motivation for change in relation to drug use over the course of acute residential treatment. Consistent with our second hypothesis, the results showed improved reward responsiveness from admission to discharge. Partially confirming our third hypothesis, female, but not male, participants exhibited improvements in reward responsiveness during acute residential treatment. Taken together, these results suggest that, in the context of short-term, residential treatment (which included abstinence), adolescents experienced improvement in depressive symptoms as well as reward responsiveness, which is promising given the complexity of the presenting problems and potential chronicity of anhedonia. These findings also build upon the existing literature on reward deficits and adolescent depression by indicating that reward responsiveness may be a feature co-occurring depressive and substance use disorders that is responsive to treatment and/or abstinence. Several findings warrant additional attention.

Presently, the effectiveness of short-term residential treatment for youth with co-occurring depressive and substance use disorders is not established. Importantly, results from the current study indicate that patients showed significant improvements in depressive symptoms, hedonic capacity, and motivation for change in relation to drug use over the course of acute residential treatment with a relatively brief length of stay (\(M = 15 \) days). Although adolescents improved significantly in terms of their depressive symptoms, their average depressive symptom score at discharge (\(M = 15.93 \)) approached the clinical range. Previous research indicates that a higher level of depressive symptoms upon treatment discharge is associated with a greater likelihood of relapse to substance use (Dodge, Sindelar, & Sinha, 2005), and adolescents also exhibited greater recognition of their drug problem and increased motivation for change in relation to drug use upon discharge. Thus, these improvements in depressive and anhedonic symptoms could have implications for sustained sobriety, recovery, and outpatient functioning. Further posttreatment follow-up assessments would be necessary to examine the extent of these potential implications over time.

Treatment response has typically been assessed through symptom change over the course of treatment (Siegle, Carter, & Thase, 2006). Yet, the National Institute of Mental Health
However, it is not yet clear how these critical changes occur. Prior research indicates that response bias is associated with striatal (Santesso et al., 2008) and dopaminergic functioning (Vrieze et al., 2013), and unmedicated subjects with major depression show reduced striatal reactivity to rewards (Pizzagalli et al., 2009). Thus, the improved reward responsiveness exhibited in this study may reflect improvements in striatal functioning as a result of treatment. Although the current study was not designed to specifically address this issue, it highlights the importance of assessing core behavioral indicators that underlie depressive and substance use disorders. Future studies would benefit from examining symptom, behavioral, and neurobiological mechanisms in order to ascertain the direction of effects associated with treatment response, and in doing so, may better target key mechanisms implicated in the maintenance and recurrence of psychopathology.

This study also highlights gender differences as females, but not males, exhibited significantly improved reward responsiveness following acute residential treatment. Critically, there were no significant gender differences in depressive or anhedonic symptoms at baseline, nor were there significant differences in self-reported symptom change as a function of gender. It is interesting that subjective reports of symptom change were similar between the genders although the objective measurement of hedonic functioning (i.e., reward responsiveness) was not. These findings suggest that improvements in reward responsiveness could reflect clinical change that is less prone to the biases of self-report, which underscores the importance of assessing core behavioral markers that underlie depressive and substance use disorders. Furthermore, these data may provide information about who is likely to improve with acute residential treatment (and/or abstinence). It is possible that, owing gender differences in maturity and social development during adolescence (Silverman & Snarey, 1993), female participants are better able to engage and capitalize upon the treatment. However, given the preliminary nature of these findings and the small sample size, study replication is warranted to better understand these gender differences.

Another important component of these findings is that half of the participants in the study were taking medications targeting the serotonin or norepinephrine systems implicated in reward processing. SSRI’s can reduce reward responsiveness, even over a short period of time (i.e., after only 7 days; McCabe, Mishor, Cowen, & Harmer, 2010). Yet, reward responsiveness in-
creased in this study, despite the number of adolescents on SSRI/SNRI medications. Furthermore, males and females did not differ significantly in their use of these medications, indicating that gender differences in response bias were not due to medication alone. Hence, the degree of improvement following treatment/abstinence in this investigation may represent a conservative estimate of the magnitude of improvement.

Several limitations should be noted. First, individuals in this study received a variety of interventions, including acute residential treatment (which entailed individual and group psychosocial interventions, family interventions, and psychopharmacologic treatment) and abstinence. Given this, it is difficult to determine the specific active ingredient(s) contributing to symptom attenuation. Ideally, one could determine the degree to which abstinence specifically contributed to these observed improvements; however, a relevant comparison group would be difficult to obtain in usual care acute residential treatment settings given that: (a) residential treatment programs are abstinence-based as the standard of care, and (b) adolescents who could remain abstinent during outpatient treatment would not meet admission criteria for acute residential level of care. Additionally, this usual care study sample included patients with multiple psychiatric diagnoses, representing different levels of symptomatology and readiness for change. However, this study sample and methodology is consistent with the aims of effectiveness research that underscores the importance of studying outcomes in usual care patient populations and settings (see Depp & Lebowitz, 2007; Weiss, Guidi, & Fava, 2009; Weiss, Donenberg, Han, & Weiss, 1995). Second, the sample was relatively small and largely Caucasian, and it is therefore unclear whether the findings would generalize to more diverse samples.

Psychotherapy Integration

Comorbidity is the rule rather than the exception with approximately 79% of patients experiencing comorbidity (Kessler et al., 1994). Although randomized clinical trials (RCTs) are the gold standard to examine the efficacy of specific psychotherapeutic and pharmacologic approaches, there is a critical need to understand successful components that drive effectiveness-based treatment. The current study underscores the importance of targeting core phenotypes (i.e., anhedonia) that cut across disorders, in the context of a multimodal approach to treatment. On the one hand, it is unclear which component of treatment implementation (i.e., CBT, IPT, DBT, family therapy, medication) is leading to the most significant symptom reductions. At the same time, given the heterogeneity in terms of symptoms, severity, substance use, family environment, and motivation within treatment, an integrative approach provides an ideal opportunity to meet a patient (and family) at place of his or her own readiness. The truth of the matter is that different patients attach to different aspects of treatment—some of which are more easily measurable (i.e., skill acquisition) —some of which are more difficult to operationalize (i.e., milieu effect). Residential facilities, especially insurance-based programs, do not have the luxury of pruning their patient population to satisfy RCT-equivalent inclusion and exclusion criteria, and thus, utilizing an integrative approach to treatment addresses the profound diversity surrounding patient needs. Such an approach provides the most success as it allows different patients with an array of needs to find relevant and identifiable therapeutic anchors from which they can build toward recovery. Thus, although the therapeutic options within the treatment program follow the guidelines of empirically based treatments, it may in fact be the gestalt, or integration therein, which helps drive successful outcomes.

Implications and Future Directions

This study highlights reward processing as a potentially important mechanism underpinning anhedonia among adolescents in acute residential treatment for depressive and substance use disorders. Incorporating objective markers with self-reported symptom reduction may shed important light on “how” and “why” symptom functioning improves. Such work is critical for both the development and refinement of treatment programs and may, in time, lead to an improved understanding of the etiological mechanisms that underpin substance and related disorders, which would allow us to provide more efficient and effective interventions.
References

Received February 7, 2014
Revision received February 20, 2014
Accepted March 19, 2014